datnguyentien204's picture
Upload 338 files
8e0b903 verified
raw
history blame
3.4 kB
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# stuff names
stuff_names: [
'banner', 'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage',
'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter', 'cupboard',
'curtain', 'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', 'floor-other', 'floor-stone', 'floor-tile',
'floor-wood', 'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass', 'gravel', 'ground-other', 'hill',
'house', 'leaves', 'light', 'mat', 'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', 'paper',
'pavement', 'pillow', 'plant-other', 'plastic', 'platform', 'playingfield', 'railing', 'railroad', 'river', 'road',
'rock', 'roof', 'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs',
'stone', 'straw', 'structural-other', 'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick',
'wall-concrete', 'wall-other', 'wall-panel', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops',
'window-blind', 'window-other', 'wood',
# other
'other',
# unlabeled
'unlabeled'
]
# Download script/URL (optional)
download: |
from utils.general import download, Path
# Download labels
#segments = True # segment or box labels
#dir = Path(yaml['path']) # dataset root dir
#url = 'https://github.com/WongKinYiu/yolov7/releases/download/v0.1/'
#urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
#download(urls, dir=dir.parent)
# Download data
#urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
# 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
# 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
#download(urls, dir=dir / 'images', threads=3)