Spaces:
Sleeping
Sleeping
File size: 1,997 Bytes
af9162a 52893ae 501b516 a983c72 af9162a ba74db2 501b516 a983c72 501b516 a983c72 501b516 a983c72 501b516 f3af5c1 a983c72 501b516 af9162a a983c72 ba74db2 501b516 ba74db2 8a7fe4e ba74db2 a983c72 501b516 dbb94b0 7f74cd7 501b516 a983c72 26a9ba5 744ad2f ba74db2 26a9ba5 501b516 26a9ba5 744ad2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import deepinv as dinv
import torch
import numpy as np
import PIL.Image
def pil_to_torch(image):
image = np.array(image)
image = image.transpose((2, 0, 1))
image = torch.tensor(image).float() / 255
return image.unsqueeze(0)
def torch_to_pil(image):
image = image.squeeze(0).cpu().detach().numpy()
image = image.transpose((1, 2, 0))
image = (image * 255).astype(np.uint8)
image = PIL.Image.fromarray(image)
return image
def image_mod(image, noise_level, denoiser):
image = pil_to_torch(image)
if denoiser == 'DnCNN':
denoiser = dinv.models.DnCNN()
elif denoiser == 'MedianFilter':
denoiser = dinv.models.MedianFilter()
elif denoiser == 'BM3D':
denoiser = dinv.models.BM3D()
elif denoiser == 'DRUNet':
denoiser = dinv.models.DRUNet()
else:
raise ValueError("Invalid denoiser")
noisy = image + torch.randn_like(image) * noise_level
estimated = denoiser(image, noise_level)
return torch_to_pil(noisy), torch_to_pil(estimated)
input_image = gr.Image(label='Input Image')
output_images = gr.Image(label='Denoised Image')
noise_image = gr.Image(label='Noisy Image')
input_image_output = gr.Image(label='Input Image')
noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.4, 0.5], value=0.1, label='Noise Level')
denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'BM3D', 'MedianFilter'], value='DnCNN', label='Denoiser')
demo = gr.Interface(
image_mod,
inputs=[input_image, noise_levels, denoiser],
examples=[['https://deepinv.github.io/deepinv/_static/deepinv_logolarge.png', 0.1, 'DnCNN']],
outputs=[noise_image, output_images],
title="Image Denoising with DeepInverse",
description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU.",
)
demo.launch() |