Julián Tachella commited on
Commit
fd548c6
·
1 Parent(s): ece0ce5
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -13,9 +13,9 @@ def pil_to_torch(image):
13
 
14
  ref_size = 256
15
  if image.shape[2] > image.shape[3]:
16
- size = (ref_size, ref_size * image.shape[2]//image.shape[3])
17
  else:
18
- size = (ref_size * image.shape[3]//image.shape[2], ref_size)
19
 
20
  image = torch.nn.functional.interpolate(image, size=size, mode='bilinear')
21
  return image
@@ -55,7 +55,7 @@ output_images = gr.Image(label='Denoised Image')
55
  noise_image = gr.Image(label='Noisy Image')
56
  input_image_output = gr.Image(label='Input Image')
57
 
58
- noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.4, 0.5], value=0.1, label='Noise Level')
59
 
60
  denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'BM3D', 'MedianFilter', 'TV', 'TGV'], value='DnCNN', label='Denoiser')
61
 
@@ -65,7 +65,7 @@ demo = gr.Interface(
65
  examples=[['https://deepinv.github.io/deepinv/_static/deepinv_logolarge.png', 0.1, 'DnCNN']],
66
  outputs=[noise_image, output_images],
67
  title="Image Denoising with DeepInverse",
68
- description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to 256 vertical pixels to reduce the computation time. For more advanced models, please run the code locally.",
69
  )
70
 
71
  demo.launch()
 
13
 
14
  ref_size = 256
15
  if image.shape[2] > image.shape[3]:
16
+ size = (ref_size, ref_size * image.shape[3]//image.shape[2])
17
  else:
18
+ size = (ref_size * image.shape[2]//image.shape[3], ref_size)
19
 
20
  image = torch.nn.functional.interpolate(image, size=size, mode='bilinear')
21
  return image
 
55
  noise_image = gr.Image(label='Noisy Image')
56
  input_image_output = gr.Image(label='Input Image')
57
 
58
+ noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.5, 1], value=0.1, label='Noise Level')
59
 
60
  denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'BM3D', 'MedianFilter', 'TV', 'TGV'], value='DnCNN', label='Denoiser')
61
 
 
65
  examples=[['https://deepinv.github.io/deepinv/_static/deepinv_logolarge.png', 0.1, 'DnCNN']],
66
  outputs=[noise_image, output_images],
67
  title="Image Denoising with DeepInverse",
68
+ description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to 256 pixels to reduce the computation time. For more advanced models, please run the code locally.",
69
  )
70
 
71
  demo.launch()