Spaces:
Sleeping
Sleeping
Update app.py
#7
by
kadirnar
- opened
- app.py +2 -2
- dataloader.py +55 -0
- download.py +17 -0
- istanbul_unet.py +21 -0
app.py
CHANGED
@@ -87,7 +87,7 @@ def sahi_yolov5_inference(
|
|
87 |
|
88 |
model = YOLO('SerdarHelli/deprem_satellite_labeled_yolov8')
|
89 |
result = model.predict(image, imgsz=image_size)[0]
|
90 |
-
render = render_result(model=model, image=image, result=result
|
91 |
return render
|
92 |
|
93 |
elif model_type == "YOLOv7":
|
@@ -98,7 +98,7 @@ def sahi_yolov5_inference(
|
|
98 |
return results.render()[0]
|
99 |
|
100 |
elif model_type == "Unet-Istanbul":
|
101 |
-
from
|
102 |
|
103 |
output = unet_prediction(input_path=image, model_path=model_id)
|
104 |
return output
|
|
|
87 |
|
88 |
model = YOLO('SerdarHelli/deprem_satellite_labeled_yolov8')
|
89 |
result = model.predict(image, imgsz=image_size)[0]
|
90 |
+
render = render_result(model=model, image=image, result=result)
|
91 |
return render
|
92 |
|
93 |
elif model_type == "YOLOv7":
|
|
|
98 |
return results.render()[0]
|
99 |
|
100 |
elif model_type == "Unet-Istanbul":
|
101 |
+
from istanbul_unet import unet_prediction
|
102 |
|
103 |
output = unet_prediction(input_path=image, model_path=model_id)
|
104 |
return output
|
dataloader.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as albu
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
6 |
+
|
7 |
+
|
8 |
+
class Dataset:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
image_path,
|
12 |
+
augmentation=None,
|
13 |
+
preprocessing=None,
|
14 |
+
):
|
15 |
+
self.pil_image = image_path
|
16 |
+
self.augmentation = augmentation
|
17 |
+
self.preprocessing = preprocessing
|
18 |
+
|
19 |
+
def get(self):
|
20 |
+
# pil image > numpy array
|
21 |
+
image = np.array(self.pil_image)
|
22 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
23 |
+
|
24 |
+
# apply augmentations
|
25 |
+
if self.augmentation:
|
26 |
+
sample = self.augmentation(image=image)
|
27 |
+
image = sample['image']
|
28 |
+
|
29 |
+
# apply preprocessing
|
30 |
+
if self.preprocessing:
|
31 |
+
sample = self.preprocessing(image=image)
|
32 |
+
image = sample['image']
|
33 |
+
|
34 |
+
return image
|
35 |
+
|
36 |
+
|
37 |
+
def get_validation_augmentation():
|
38 |
+
"""Add paddings to make image shape divisible by 32"""
|
39 |
+
test_transform = [
|
40 |
+
albu.PadIfNeeded(384, 480)
|
41 |
+
]
|
42 |
+
return albu.Compose(test_transform)
|
43 |
+
|
44 |
+
|
45 |
+
def to_tensor(x, **kwargs):
|
46 |
+
return x.transpose(2, 0, 1).astype('float32')
|
47 |
+
|
48 |
+
|
49 |
+
def get_preprocessing(preprocessing_fn):
|
50 |
+
|
51 |
+
_transform = [
|
52 |
+
albu.Lambda(image=preprocessing_fn),
|
53 |
+
albu.Lambda(image=to_tensor),
|
54 |
+
]
|
55 |
+
return albu.Compose(_transform)
|
download.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def attempt_download_from_hub(repo_id, hf_token=None):
|
2 |
+
# https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py
|
3 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
4 |
+
from huggingface_hub.utils._errors import RepositoryNotFoundError
|
5 |
+
from huggingface_hub.utils._validators import HFValidationError
|
6 |
+
try:
|
7 |
+
repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token)
|
8 |
+
model_file = [f for f in repo_files if f.endswith('.pth')][0]
|
9 |
+
file = hf_hub_download(
|
10 |
+
repo_id=repo_id,
|
11 |
+
filename=model_file,
|
12 |
+
repo_type='model',
|
13 |
+
token=hf_token,
|
14 |
+
)
|
15 |
+
return file
|
16 |
+
except (RepositoryNotFoundError, HFValidationError):
|
17 |
+
return None
|
istanbul_unet.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from download import attempt_download_from_hub
|
2 |
+
import segmentation_models_pytorch as smp
|
3 |
+
from dataloader import *
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
def unet_prediction(input_path, model_path):
|
8 |
+
model_path = attempt_download_from_hub(model_path)
|
9 |
+
best_model = torch.load(model_path)
|
10 |
+
preprocessing_fn = smp.encoders.get_preprocessing_fn('efficientnet-b6', 'imagenet')
|
11 |
+
|
12 |
+
test_dataset = Dataset(input_path, augmentation=get_validation_augmentation(), preprocessing=get_preprocessing(preprocessing_fn))
|
13 |
+
image = test_dataset.get()
|
14 |
+
|
15 |
+
x_tensor = torch.from_numpy(image).to("cuda").unsqueeze(0)
|
16 |
+
pr_mask = best_model.predict(x_tensor)
|
17 |
+
pr_mask = (pr_mask.squeeze().cpu().numpy().round())*255
|
18 |
+
|
19 |
+
# Save the predicted mask
|
20 |
+
cv2.imwrite("output.png", pr_mask)
|
21 |
+
return 'output.png'
|