File size: 6,631 Bytes
55ac26c
 
 
 
 
 
 
 
 
 
 
 
 
19adaee
55ac26c
bddb8a1
55ac26c
 
 
 
 
 
bddb8a1
55ac26c
 
 
 
31acc4c
6596772
 
 
9ee2acc
 
 
 
 
 
55ac26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864aa62
55ac26c
 
21e4f98
55ac26c
 
 
 
 
 
 
 
 
bddb8a1
 
55ac26c
 
 
 
 
 
 
bddb8a1
 
 
 
55ac26c
 
 
 
 
 
 
 
46a6c3d
55ac26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (2025) Bytedance Ltd. and/or its affiliates 

# Licensed under the Apache License, Version 2.0 (the "License"); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 

#     http://www.apache.org/licenses/LICENSE-2.0 

# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
import spaces
import gradio as gr
import gc

import numpy as np
import os
import torch

from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video

from huggingface_hub import hf_hub_download

examples = [
    ['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280],
    ['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280],
    ['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280],
    ['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280],
    ['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280],
    ['assets/example_videos/davis_burnout.mp4', -1, -1, 1280],
    ['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280],
    ['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280],
    ['assets/example_videos/obj_1.mp4', -1, -1, 1280],
    ['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280],
]

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}

encoder2name = {
    'vits': 'Small',
    'vitl': 'Large',
}

encoder='vitl'
model_name = encoder2name[encoder]

video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model")
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()


title = "# Video Depth Anything"
description = """Official demo for **Video Depth Anything**.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""


@spaces.GPU(duration=240)
def infer_video_depth(
    input_video: str,
    max_len: int = -1,
    target_fps: int = -1,
    max_res: int = 1280,
    output_dir: str = './outputs',
    input_size: int = 518,
):
    frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
    depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)

    video_name = os.path.basename(input_video)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4')
    depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4')
    save_video(frames, processed_video_path, fps=fps)
    save_video(depths, depth_vis_path, fps=fps, is_depths=True)

    gc.collect()
    torch.cuda.empty_cache()

    return [processed_video_path, depth_vis_path]


def construct_demo():
    with gr.Blocks(analytics_enabled=False) as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        gr.Markdown("### If you find this work useful, please help ⭐ the [\[Github Repo\]](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_video = gr.Video(label="Input Video")

            # with gr.Tab(label="Output"):
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    processed_video = gr.Video(
                        label="Preprocessed video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )
                    depth_vis_video = gr.Video(
                        label="Generated Depth Video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    with gr.Accordion("Advanced Settings", open=False):
                        max_len = gr.Slider(
                            label="max process length",
                            minimum=-1,
                            maximum=1000,
                            value=-1,
                            step=1,
                        )
                        target_fps = gr.Slider(
                            label="target FPS",
                            minimum=-1,
                            maximum=30,
                            value=15,
                            step=1,
                        )
                        max_res = gr.Slider(
                            label="max side resolution",
                            minimum=480,
                            maximum=1920,
                            value=1280,
                            step=1,
                        )
                    generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass

        gr.Examples(
            examples=examples,
            inputs=[
                input_video,
                max_len,
                target_fps,
                max_res
            ],
            outputs=[processed_video, depth_vis_video],
            fn=infer_video_depth,
            cache_examples="lazy",
        )

        generate_btn.click(
            fn=infer_video_depth,
            inputs=[
                input_video,
                max_len,
                target_fps,
                max_res
            ],
            outputs=[processed_video, depth_vis_video],
        )

    return demo

if __name__ == "__main__":
    demo = construct_demo()
    demo.queue()
    demo.launch(share=True)