File size: 6,414 Bytes
55ac26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532f4e
 
 
 
 
 
dd6503b
 
55ac26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532f4e
55ac26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bddb8a1
55ac26c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (2025) Bytedance Ltd. and/or its affiliates 

# Licensed under the Apache License, Version 2.0 (the "License"); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 

#     http://www.apache.org/licenses/LICENSE-2.0 

# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
import torch
import torch.nn.functional as F
import torch.nn as nn
from torchvision.transforms import Compose
import cv2
from tqdm import tqdm
import numpy as np
import gc

from .dinov2 import DINOv2
from .dpt_temporal import DPTHeadTemporal
from .util.transform import Resize, NormalizeImage, PrepareForNet

from utils.util import compute_scale_and_shift, get_interpolate_frames

# infer settings, do not change
INFER_LEN = 32
OVERLAP = 10
KEYFRAMES = [0,12,24,25,26,27,28,29,30,31]
INTERP_LEN = 8

class VideoDepthAnything(nn.Module):
    def __init__(
        self,
        encoder='vitl',
        features=256, 
        out_channels=[256, 512, 1024, 1024], 
        use_bn=False, 
        use_clstoken=False,
        num_frames=32,
        pe='ape'
    ):
        super(VideoDepthAnything, self).__init__()

        self.intermediate_layer_idx = {
            'vits': [2, 5, 8, 11],
            'vitl': [4, 11, 17, 23]
        }
        
        self.encoder = encoder
        self.pretrained = DINOv2(model_name=encoder)

        self.head = DPTHeadTemporal(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken, num_frames=num_frames, pe=pe)

    def forward(self, x):
        B, T, C, H, W = x.shape
        patch_h, patch_w = H // 14, W // 14
        features = self.pretrained.get_intermediate_layers(x.flatten(0,1), self.intermediate_layer_idx[self.encoder], return_class_token=True)
        depth = self.head(features, patch_h, patch_w, T)
        depth = F.interpolate(depth, size=(H, W), mode="bilinear", align_corners=True)
        depth = F.relu(depth)
        return depth.squeeze(1).unflatten(0, (B, T)) # return shape [B, T, H, W]
    
    def infer_video_depth(self, frames, target_fps, input_size=518, device='cuda'):
        frame_height, frame_width = frames[0].shape[:2]
        ratio = max(frame_height, frame_width) / min(frame_height, frame_width)
        if ratio > 1.78:
            input_size = int(input_size * 1.78 / ratio)
            input_size = round(input_size / 14) * 14

        print(f'==> infer lower bound input size: {input_size}')

        transform = Compose([
            Resize(
                width=input_size,
                height=input_size,
                resize_target=False,
                keep_aspect_ratio=True,
                ensure_multiple_of=14,
                resize_method='lower_bound',
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            PrepareForNet(),
        ])

        frame_list = [frames[i] for i in range(frames.shape[0])]
        frame_step = INFER_LEN - OVERLAP
        org_video_len = len(frame_list)
        append_frame_len = (frame_step - (org_video_len % frame_step)) % frame_step + (INFER_LEN - frame_step)
        frame_list = frame_list + [frame_list[-1].copy()] * append_frame_len
        
        depth_list = []
        pre_input = None
        for frame_id in tqdm(range(0, org_video_len, frame_step)):
            cur_list = []
            for i in range(INFER_LEN):
                cur_list.append(torch.from_numpy(transform({'image': frame_list[frame_id+i].astype(np.float32) / 255.0})['image']).unsqueeze(0).unsqueeze(0))
            cur_input = torch.cat(cur_list, dim=1).to(device)
            if pre_input is not None:
                cur_input[:, :OVERLAP, ...] = pre_input[:, KEYFRAMES, ...]

            with torch.no_grad():
                depth = self.forward(cur_input) # depth shape: [1, T, H, W]

            depth = F.interpolate(depth.flatten(0,1).unsqueeze(1), size=(frame_height, frame_width), mode='bilinear', align_corners=True)
            depth_list += [depth[i][0].cpu().numpy() for i in range(depth.shape[0])]

            pre_input = cur_input

        del frame_list
        gc.collect()

        depth_list_aligned = []
        ref_align = []
        align_len = OVERLAP - INTERP_LEN
        kf_align_list = KEYFRAMES[:align_len]

        for frame_id in range(0, len(depth_list), INFER_LEN):
            if len(depth_list_aligned) == 0:
                depth_list_aligned += depth_list[:INFER_LEN]
                for kf_id in kf_align_list:
                    ref_align.append(depth_list[frame_id+kf_id])
            else:
                curr_align = []
                for i in range(len(kf_align_list)):
                    curr_align.append(depth_list[frame_id+i])
                scale, shift = compute_scale_and_shift(np.concatenate(curr_align),
                                                       np.concatenate(ref_align),
                                                       np.concatenate(np.ones_like(ref_align)==1))

                pre_depth_list = depth_list_aligned[-INTERP_LEN:]
                post_depth_list = depth_list[frame_id+align_len:frame_id+OVERLAP]
                for i in range(len(post_depth_list)):
                    post_depth_list[i] = post_depth_list[i] * scale + shift
                    post_depth_list[i][post_depth_list[i]<0] = 0
                depth_list_aligned[-INTERP_LEN:] = get_interpolate_frames(pre_depth_list, post_depth_list)

                for i in range(OVERLAP, INFER_LEN):
                    new_depth = depth_list[frame_id+i] * scale + shift
                    new_depth[new_depth<0] = 0
                    depth_list_aligned.append(new_depth)

                ref_align = ref_align[:1]
                for kf_id in kf_align_list[1:]:
                    new_depth = depth_list[frame_id+kf_id] * scale + shift
                    new_depth[new_depth<0] = 0
                    ref_align.append(new_depth)
            
        depth_list = depth_list_aligned
            
        return np.stack(depth_list[:org_video_len], axis=0), target_fps