Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,414 Bytes
55ac26c 1532f4e dd6503b 55ac26c 1532f4e 55ac26c bddb8a1 55ac26c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# Copyright (2025) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
import torch.nn as nn
from torchvision.transforms import Compose
import cv2
from tqdm import tqdm
import numpy as np
import gc
from .dinov2 import DINOv2
from .dpt_temporal import DPTHeadTemporal
from .util.transform import Resize, NormalizeImage, PrepareForNet
from utils.util import compute_scale_and_shift, get_interpolate_frames
# infer settings, do not change
INFER_LEN = 32
OVERLAP = 10
KEYFRAMES = [0,12,24,25,26,27,28,29,30,31]
INTERP_LEN = 8
class VideoDepthAnything(nn.Module):
def __init__(
self,
encoder='vitl',
features=256,
out_channels=[256, 512, 1024, 1024],
use_bn=False,
use_clstoken=False,
num_frames=32,
pe='ape'
):
super(VideoDepthAnything, self).__init__()
self.intermediate_layer_idx = {
'vits': [2, 5, 8, 11],
'vitl': [4, 11, 17, 23]
}
self.encoder = encoder
self.pretrained = DINOv2(model_name=encoder)
self.head = DPTHeadTemporal(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken, num_frames=num_frames, pe=pe)
def forward(self, x):
B, T, C, H, W = x.shape
patch_h, patch_w = H // 14, W // 14
features = self.pretrained.get_intermediate_layers(x.flatten(0,1), self.intermediate_layer_idx[self.encoder], return_class_token=True)
depth = self.head(features, patch_h, patch_w, T)
depth = F.interpolate(depth, size=(H, W), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1).unflatten(0, (B, T)) # return shape [B, T, H, W]
def infer_video_depth(self, frames, target_fps, input_size=518, device='cuda'):
frame_height, frame_width = frames[0].shape[:2]
ratio = max(frame_height, frame_width) / min(frame_height, frame_width)
if ratio > 1.78:
input_size = int(input_size * 1.78 / ratio)
input_size = round(input_size / 14) * 14
print(f'==> infer lower bound input size: {input_size}')
transform = Compose([
Resize(
width=input_size,
height=input_size,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
frame_list = [frames[i] for i in range(frames.shape[0])]
frame_step = INFER_LEN - OVERLAP
org_video_len = len(frame_list)
append_frame_len = (frame_step - (org_video_len % frame_step)) % frame_step + (INFER_LEN - frame_step)
frame_list = frame_list + [frame_list[-1].copy()] * append_frame_len
depth_list = []
pre_input = None
for frame_id in tqdm(range(0, org_video_len, frame_step)):
cur_list = []
for i in range(INFER_LEN):
cur_list.append(torch.from_numpy(transform({'image': frame_list[frame_id+i].astype(np.float32) / 255.0})['image']).unsqueeze(0).unsqueeze(0))
cur_input = torch.cat(cur_list, dim=1).to(device)
if pre_input is not None:
cur_input[:, :OVERLAP, ...] = pre_input[:, KEYFRAMES, ...]
with torch.no_grad():
depth = self.forward(cur_input) # depth shape: [1, T, H, W]
depth = F.interpolate(depth.flatten(0,1).unsqueeze(1), size=(frame_height, frame_width), mode='bilinear', align_corners=True)
depth_list += [depth[i][0].cpu().numpy() for i in range(depth.shape[0])]
pre_input = cur_input
del frame_list
gc.collect()
depth_list_aligned = []
ref_align = []
align_len = OVERLAP - INTERP_LEN
kf_align_list = KEYFRAMES[:align_len]
for frame_id in range(0, len(depth_list), INFER_LEN):
if len(depth_list_aligned) == 0:
depth_list_aligned += depth_list[:INFER_LEN]
for kf_id in kf_align_list:
ref_align.append(depth_list[frame_id+kf_id])
else:
curr_align = []
for i in range(len(kf_align_list)):
curr_align.append(depth_list[frame_id+i])
scale, shift = compute_scale_and_shift(np.concatenate(curr_align),
np.concatenate(ref_align),
np.concatenate(np.ones_like(ref_align)==1))
pre_depth_list = depth_list_aligned[-INTERP_LEN:]
post_depth_list = depth_list[frame_id+align_len:frame_id+OVERLAP]
for i in range(len(post_depth_list)):
post_depth_list[i] = post_depth_list[i] * scale + shift
post_depth_list[i][post_depth_list[i]<0] = 0
depth_list_aligned[-INTERP_LEN:] = get_interpolate_frames(pre_depth_list, post_depth_list)
for i in range(OVERLAP, INFER_LEN):
new_depth = depth_list[frame_id+i] * scale + shift
new_depth[new_depth<0] = 0
depth_list_aligned.append(new_depth)
ref_align = ref_align[:1]
for kf_id in kf_align_list[1:]:
new_depth = depth_list[frame_id+kf_id] * scale + shift
new_depth[new_depth<0] = 0
ref_align.append(new_depth)
depth_list = depth_list_aligned
return np.stack(depth_list[:org_video_len], axis=0), target_fps
|