Spaces:
Running
on
L40S
Running
on
L40S
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
import xformers | |
import xformers.ops | |
class CrossAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.upcast_efficient_attention = False | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self._slice_size = None | |
self._use_memory_efficient_attention_xformers = False | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
else: | |
self.group_norm = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size).contiguous() | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size).contiguous() | |
return tensor | |
def reshape_heads_to_4d(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size).contiguous() | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim).contiguous() | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size).contiguous() | |
return tensor | |
def reshape_4d_to_heads(self, tensor): | |
batch_size, seq_len, head_size, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, dim * head_size).contiguous() | |
return tensor | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
self._slice_size = slice_size | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
else: | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def _attention(self, query, key, value, attention_mask=None): | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
attention_scores = torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
# cast back to the original dtype | |
attention_probs = attention_probs.to(value.dtype) | |
# compute attention output | |
hidden_states = torch.bmm(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
query_slice = query[start_idx:end_idx] | |
key_slice = key[start_idx:end_idx] | |
if self.upcast_attention: | |
query_slice = query_slice.float() | |
key_slice = key_slice.float() | |
attn_slice = torch.baddbmm( | |
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
query_slice, | |
key_slice.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
if self.upcast_softmax: | |
attn_slice = attn_slice.float() | |
attn_slice = attn_slice.softmax(dim=-1) | |
# cast back to the original dtype | |
attn_slice = attn_slice.to(value.dtype) | |
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
if self.upcast_efficient_attention: | |
org_dtype = query.dtype | |
query = query.float() | |
key = key.float() | |
value = value.float() | |
if attention_mask is not None: | |
attention_mask = attention_mask.float() | |
hidden_states = self._memory_efficient_attention_split(query, key, value, attention_mask) | |
if self.upcast_efficient_attention: | |
hidden_states = hidden_states.to(org_dtype) | |
hidden_states = self.reshape_4d_to_heads(hidden_states) | |
return hidden_states | |
# print("Errror: no xformers") | |
# raise NotImplementedError | |
def _memory_efficient_attention_split(self, query, key, value, attention_mask): | |
batch_size = query.shape[0] | |
max_batch_size = 65535 | |
num_batches = (batch_size + max_batch_size - 1) // max_batch_size | |
results = [] | |
for i in range(num_batches): | |
start_idx = i * max_batch_size | |
end_idx = min((i + 1) * max_batch_size, batch_size) | |
query_batch = query[start_idx:end_idx] | |
key_batch = key[start_idx:end_idx] | |
value_batch = value[start_idx:end_idx] | |
if attention_mask is not None: | |
attention_mask_batch = attention_mask[start_idx:end_idx] | |
else: | |
attention_mask_batch = None | |
result = xformers.ops.memory_efficient_attention(query_batch, key_batch, value_batch, attn_bias=attention_mask_batch) | |
results.append(result) | |
full_result = torch.cat(results, dim=0) | |
return full_result | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out)) | |
def forward(self, hidden_states): | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class GELU(nn.Module): | |
r""" | |
GELU activation function | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
def gelu(self, gate): | |
if gate.device.type != "mps": | |
return F.gelu(gate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states = self.gelu(hidden_states) | |
return hidden_states | |
# feedforward | |
class GEGLU(nn.Module): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def gelu(self, gate): | |
if gate.device.type != "mps": | |
return F.gelu(gate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
def forward(self, hidden_states): | |
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) | |
return hidden_states * self.gelu(gate) | |
class ApproximateGELU(nn.Module): | |
""" | |
The approximate form of Gaussian Error Linear Unit (GELU) | |
For more details, see section 2: https://arxiv.org/abs/1606.08415 | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
def forward(self, x): | |
x = self.proj(x) | |
return x * torch.sigmoid(1.702 * x) | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device, dtype=torch.float32) | |
freqs = torch.outer(t, freqs) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return freqs_cis | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2).contiguous()) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2).contiguous()) | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(2) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(2) | |
return xq_out.type_as(xq), xk_out.type_as(xk) |