Shane922's picture
add gradio demo
55ac26c
raw
history blame
4.23 kB
# Copyright (2025) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
import torch.nn as nn
from .dpt import DPTHead
from .motion_module.motion_module import TemporalModule
from easydict import EasyDict
class DPTHeadTemporal(DPTHead):
def __init__(self,
in_channels,
features=256,
use_bn=False,
out_channels=[256, 512, 1024, 1024],
use_clstoken=False,
num_frames=32,
pe='ape'
):
super().__init__(in_channels, features, use_bn, out_channels, use_clstoken)
assert num_frames > 0
motion_module_kwargs = EasyDict(num_attention_heads = 8,
num_transformer_block = 1,
num_attention_blocks = 2,
temporal_max_len = num_frames,
zero_initialize = True,
pos_embedding_type = pe)
self.motion_modules = nn.ModuleList([
TemporalModule(in_channels=out_channels[2],
**motion_module_kwargs),
TemporalModule(in_channels=out_channels[3],
**motion_module_kwargs),
TemporalModule(in_channels=features,
**motion_module_kwargs),
TemporalModule(in_channels=features,
**motion_module_kwargs)
])
def forward(self, out_features, patch_h, patch_w, frame_length):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous()
B, T = x.shape[0] // frame_length, frame_length
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
B, T = layer_1.shape[0] // frame_length, frame_length
layer_3 = self.motion_modules[0](layer_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
layer_4 = self.motion_modules[1](layer_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_4 = self.motion_modules[2](path_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_3 = self.motion_modules[3](path_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(
out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True
)
out = self.scratch.output_conv2(out)
return out