Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (2025) Bytedance Ltd. and/or its affiliates | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import spaces | |
import gradio as gr | |
import gc | |
import numpy as np | |
import os | |
import torch | |
from video_depth_anything.video_depth import VideoDepthAnything | |
from utils.dc_utils import read_video_frames, save_video | |
from huggingface_hub import hf_hub_download | |
examples = [ | |
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280], | |
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280], | |
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280], | |
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280], | |
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280], | |
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280], | |
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280], | |
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280], | |
['assets/example_videos/obj_1.mp4', -1, -1, 1280], | |
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280], | |
] | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_configs = { | |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
} | |
encoder2name = { | |
'vits': 'Small', | |
'vitl': 'Large', | |
} | |
encoder='vitl' | |
model_name = encoder2name[encoder] | |
video_depth_anything = VideoDepthAnything(**model_configs[encoder]) | |
filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model") | |
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu')) | |
video_depth_anything = video_depth_anything.to(DEVICE).eval() | |
title = "# Video Depth Anything" | |
description = """Official demo for **Video Depth Anything**. | |
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details.""" | |
def infer_video_depth( | |
input_video: str, | |
max_len: int = -1, | |
target_fps: int = -1, | |
max_res: int = 1280, | |
output_dir: str = './outputs', | |
input_size: int = 518, | |
): | |
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res) | |
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE) | |
video_name = os.path.basename(input_video) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4') | |
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4') | |
save_video(frames, processed_video_path, fps=fps) | |
save_video(depths, depth_vis_path, fps=fps, is_depths=True) | |
gc.collect() | |
torch.cuda.empty_cache() | |
return [processed_video_path, depth_vis_path] | |
def construct_demo(): | |
with gr.Blocks(analytics_enabled=False) as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown("### If you find this work useful, please help ⭐ the [\[Github Repo\]](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!") | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
input_video = gr.Video(label="Input Video") | |
# with gr.Tab(label="Output"): | |
with gr.Column(scale=2): | |
with gr.Row(equal_height=True): | |
processed_video = gr.Video( | |
label="Preprocessed video", | |
interactive=False, | |
autoplay=True, | |
loop=True, | |
show_share_button=True, | |
scale=5, | |
) | |
depth_vis_video = gr.Video( | |
label="Generated Depth Video", | |
interactive=False, | |
autoplay=True, | |
loop=True, | |
show_share_button=True, | |
scale=5, | |
) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
with gr.Row(equal_height=False): | |
with gr.Accordion("Advanced Settings", open=False): | |
max_len = gr.Slider( | |
label="max process length", | |
minimum=-1, | |
maximum=1000, | |
value=-1, | |
step=1, | |
) | |
target_fps = gr.Slider( | |
label="target FPS", | |
minimum=-1, | |
maximum=30, | |
value=15, | |
step=1, | |
) | |
max_res = gr.Slider( | |
label="max side resolution", | |
minimum=480, | |
maximum=1920, | |
value=1280, | |
step=1, | |
) | |
generate_btn = gr.Button("Generate") | |
with gr.Column(scale=2): | |
pass | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
input_video, | |
max_len, | |
target_fps, | |
max_res | |
], | |
outputs=[processed_video, depth_vis_video], | |
fn=infer_video_depth, | |
cache_examples="lazy", | |
) | |
generate_btn.click( | |
fn=infer_video_depth, | |
inputs=[ | |
input_video, | |
max_len, | |
target_fps, | |
max_res | |
], | |
outputs=[processed_video, depth_vis_video], | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = construct_demo() | |
demo.queue() | |
demo.launch(share=True) |