Shane922's picture
update info
46a6c3d
# Copyright (2025) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import gradio as gr
import gc
import numpy as np
import os
import torch
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import read_video_frames, save_video
from huggingface_hub import hf_hub_download
examples = [
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280],
['assets/example_videos/obj_1.mp4', -1, -1, 1280],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280],
]
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder='vitl'
model_name = encoder2name[encoder]
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model")
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything"
description = """Official demo for **Video Depth Anything**.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
@spaces.GPU(duration=240)
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
output_dir: str = './outputs',
input_size: int = 518,
):
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
video_name = os.path.basename(input_video)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4')
save_video(frames, processed_video_path, fps=fps)
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
gc.collect()
torch.cuda.empty_cache()
return [processed_video_path, depth_vis_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [\[Github Repo\]](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_video = gr.Video(label="Input Video")
# with gr.Tab(label="Output"):
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(
label="Preprocessed video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
depth_vis_video = gr.Video(
label="Generated Depth Video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row(equal_height=False):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(
label="max process length",
minimum=-1,
maximum=1000,
value=-1,
step=1,
)
target_fps = gr.Slider(
label="target FPS",
minimum=-1,
maximum=30,
value=15,
step=1,
)
max_res = gr.Slider(
label="max side resolution",
minimum=480,
maximum=1920,
value=1280,
step=1,
)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[
input_video,
max_len,
target_fps,
max_res
],
outputs=[processed_video, depth_vis_video],
fn=infer_video_depth,
cache_examples="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[
input_video,
max_len,
target_fps,
max_res
],
outputs=[processed_video, depth_vis_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue()
demo.launch(share=True)