Commit
·
a9d976a
1
Parent(s):
e79863e
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,19 +5,29 @@ import gradio as gr
|
|
| 5 |
from scipy import ndimage
|
| 6 |
|
| 7 |
fnames = get_image_files("./albumentations/original")
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
w, h = 768, 1152
|
| 11 |
-
img_size = (w,h)
|
| 12 |
-
im_size = (h,w)
|
| 13 |
|
| 14 |
dls = SegmentationDataLoaders.from_label_func(
|
| 15 |
-
".",
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
learn = unet_learner(dls, resnet34)
|
| 20 |
-
learn.load(
|
|
|
|
| 21 |
|
| 22 |
def segmentImage(img_path):
|
| 23 |
img = cv2.imread(img_path, 0)
|
|
@@ -25,7 +35,7 @@ def segmentImage(img_path):
|
|
| 25 |
for j in range(img.shape[1]):
|
| 26 |
if img[i][j] > 0:
|
| 27 |
img[i][j] = 1
|
| 28 |
-
kernel = np.ones((3,3), np.uint8)
|
| 29 |
img = cv2.erode(img, kernel, iterations=1)
|
| 30 |
img = cv2.dilate(img, kernel, iterations=1)
|
| 31 |
img = ndimage.binary_fill_holes(img).astype(int)
|
|
@@ -56,10 +66,21 @@ def segmentImage(img_path):
|
|
| 56 |
for j in range(img.shape[1]):
|
| 57 |
if labels[i][j] != 0:
|
| 58 |
gradient_img[i][j] = colors[labels[i][j]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
colors = np.random.randint(0, 255, (nlabels + 1, 3))
|
| 60 |
colors[0] = 0
|
| 61 |
img_color = colors[labels]
|
| 62 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def predict_segmentation(img):
|
| 65 |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
@@ -68,14 +89,23 @@ def predict_segmentation(img):
|
|
| 68 |
scaled_pred = (pred[0].numpy() * 255).astype(np.uint8)
|
| 69 |
output_image = PILImage.create(scaled_pred)
|
| 70 |
# Save the image to a temporary file
|
| 71 |
-
temp_file =
|
| 72 |
output_image.save(temp_file)
|
| 73 |
# Call the segmentImage function
|
| 74 |
-
segmented_image, gradient_image = segmentImage(temp_file)
|
| 75 |
-
return output_image, segmented_image, gradient_image
|
|
|
|
| 76 |
|
| 77 |
input_image = gr.inputs.Image()
|
| 78 |
-
output_image1 = gr.outputs.Image(type=
|
| 79 |
-
output_image2 = gr.outputs.Image(type=
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from scipy import ndimage
|
| 6 |
|
| 7 |
fnames = get_image_files("./albumentations/original")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def label_func(fn):
|
| 11 |
+
return "./albumentations/labelled/" f"{fn.stem}.png"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
codes = np.loadtxt("labels.txt", dtype=str)
|
| 15 |
w, h = 768, 1152
|
| 16 |
+
img_size = (w, h)
|
| 17 |
+
im_size = (h, w)
|
| 18 |
|
| 19 |
dls = SegmentationDataLoaders.from_label_func(
|
| 20 |
+
".",
|
| 21 |
+
bs=3,
|
| 22 |
+
fnames=fnames,
|
| 23 |
+
label_func=label_func,
|
| 24 |
+
codes=codes,
|
| 25 |
+
item_tfms=Resize(img_size),
|
| 26 |
)
|
| 27 |
|
| 28 |
learn = unet_learner(dls, resnet34)
|
| 29 |
+
learn.load("learn")
|
| 30 |
+
|
| 31 |
|
| 32 |
def segmentImage(img_path):
|
| 33 |
img = cv2.imread(img_path, 0)
|
|
|
|
| 35 |
for j in range(img.shape[1]):
|
| 36 |
if img[i][j] > 0:
|
| 37 |
img[i][j] = 1
|
| 38 |
+
kernel = np.ones((3, 3), np.uint8)
|
| 39 |
img = cv2.erode(img, kernel, iterations=1)
|
| 40 |
img = cv2.dilate(img, kernel, iterations=1)
|
| 41 |
img = ndimage.binary_fill_holes(img).astype(int)
|
|
|
|
| 66 |
for j in range(img.shape[1]):
|
| 67 |
if labels[i][j] != 0:
|
| 68 |
gradient_img[i][j] = colors[labels[i][j]]
|
| 69 |
+
Sum = 0
|
| 70 |
+
count = 0
|
| 71 |
+
for i in range(len(new_sizes)):
|
| 72 |
+
if new_sizes[i] > 250 * c * c:
|
| 73 |
+
Sum += new_sizes[i]
|
| 74 |
+
count += 1
|
| 75 |
colors = np.random.randint(0, 255, (nlabels + 1, 3))
|
| 76 |
colors[0] = 0
|
| 77 |
img_color = colors[labels]
|
| 78 |
+
return (
|
| 79 |
+
img_color,
|
| 80 |
+
gradient_img,
|
| 81 |
+
"Average Area of grains: " + str(Sum / count) + " µm^2",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
|
| 85 |
def predict_segmentation(img):
|
| 86 |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 89 |
scaled_pred = (pred[0].numpy() * 255).astype(np.uint8)
|
| 90 |
output_image = PILImage.create(scaled_pred)
|
| 91 |
# Save the image to a temporary file
|
| 92 |
+
temp_file = "temp.png"
|
| 93 |
output_image.save(temp_file)
|
| 94 |
# Call the segmentImage function
|
| 95 |
+
segmented_image, gradient_image, avg_area = segmentImage(temp_file)
|
| 96 |
+
return output_image, segmented_image, gradient_image, avg_area
|
| 97 |
+
|
| 98 |
|
| 99 |
input_image = gr.inputs.Image()
|
| 100 |
+
output_image1 = gr.outputs.Image(type="pil")
|
| 101 |
+
output_image2 = gr.outputs.Image(type="pil")
|
| 102 |
+
output_image3 = gr.outputs.Image(type="pil")
|
| 103 |
+
output_image4 = gr.outputs.Textbox()
|
| 104 |
+
app = gr.Interface(
|
| 105 |
+
fn=predict_segmentation,
|
| 106 |
+
inputs=input_image,
|
| 107 |
+
outputs=[output_image1, output_image2, output_image3, output_image4],
|
| 108 |
+
title="Microstructure Segmentation",
|
| 109 |
+
description="Segment the input image into grain and background.",
|
| 110 |
+
)
|
| 111 |
+
app.launch()
|