dippatel1994 commited on
Commit
a90bb7c
1 Parent(s): eff7d81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -41
app.py CHANGED
@@ -1,41 +1,49 @@
1
- import streamlit as st
2
- import requests
3
- from transformers import pipeline, BertTokenizer
4
-
5
- # Function to generate answers using the BERT model
6
- def generate_answers(chunks, question):
7
- # Initialize the BERT tokenizer
8
- tokenizer = BertTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
9
-
10
- # Initialize the question-answering pipeline
11
- model = pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
12
-
13
- # Concatenate chunks into a single text
14
- paper_text = ' '.join(chunks)
15
-
16
- # Generate answers for the question based on the entire context
17
- answer = model(question, paper_text)
18
- return answer['answer']
19
-
20
- # Streamlit app
21
- st.title("Research Paper Question Answering")
22
-
23
- paper_link = st.text_input("Enter the link to the research paper (Arxiv link):")
24
- question = st.text_input("Enter your question:")
25
-
26
- if st.button("Generate Answer"):
27
- if not (paper_link and question):
28
- st.warning("Please provide both the paper link and the question.")
29
- else:
30
- # Download the research paper
31
- response = requests.get(paper_link)
32
- paper_text = response.text
33
-
34
- # Split the paper text into chunks of 512 words
35
- paper_chunks = [paper_text[i:i+512] for i in range(0, len(paper_text), 512)]
36
-
37
- # Generate answer based on chunks
38
- answer = generate_answers(paper_chunks, question)
39
- st.success("Answer generated successfully!")
40
- st.text("Generated Answer:")
41
- st.write(answer)
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
4
+
5
+
6
+ class ResearchPaperQAModel:
7
+ """Class to load the model and answer questions based on abstract and text of reserach paper.
8
+ """
9
+ def __init__(self, model_name):
10
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ self.model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
12
+
13
+ def answer_question(self, question, context):
14
+ # Tokenize input question and context
15
+ inputs = self.tokenizer(question, context, return_tensors="tf")
16
+
17
+ # Get the start and end logits for the answer
18
+ outputs = self.model(**inputs)
19
+ start_logits, end_logits = outputs.start_logits[0].numpy(), outputs.end_logits[0].numpy()
20
+
21
+ # Find the tokens with the highest probability for start and end positions
22
+ start_index = tf.argmax(start_logits, axis=-1).numpy()
23
+ end_index = tf.argmax(end_logits, axis=-1).numpy()
24
+
25
+ # Convert token indices to actual tokens
26
+ tokens = self.tokenizer.convert_ids_to_tokens(inputs["input_ids"].numpy().squeeze())
27
+ answer_tokens = tokens[start_index : end_index + 1]
28
+
29
+ # Convert answer tokens back to a string
30
+ answer = self.tokenizer.convert_tokens_to_string(answer_tokens)
31
+
32
+ return answer
33
+
34
+
35
+ model = "bert-large-uncased-whole-word-masking-finetuned-squad" # Model name
36
+ paper_model = ResearchPaperQAModel(model) #Create an instance of the model
37
+
38
+ # Create a Gradio interface
39
+ iface = gr.Interface(
40
+ fn=paper_model.answer_question,
41
+ inputs=["text", "text"],
42
+ outputs="text",
43
+ live=True,
44
+ title="Ask question to research paper",
45
+ description="Enter title of research paper, abstract, and list of questions to get answers."
46
+ )
47
+
48
+ # Launch the Gradio interface
49
+ iface.launch(share=True)