Spaces:
Sleeping
Sleeping
import os | |
import shutil | |
import gradio as gr | |
from transformers import ReactCodeAgent, HfEngine, Tool | |
import pandas as pd | |
from gradio import Chatbot | |
from test_streaming import stream_to_gradio | |
from huggingface_hub import login | |
from gradio.data_classes import FileData | |
#login(os.getenv("HUGGINGFACEHUB_API_TOKEN")) | |
llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct") | |
agent = ReactCodeAgent( | |
tools=[], | |
llm_engine=llm_engine, | |
additional_authorized_imports=["numpy", "pandas", "matplotlib", "seaborn","scipy"], | |
max_iterations=10, | |
) | |
base_prompt = """You are an expert full stack data analyst. | |
You are given a data file and the data structure below. | |
The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly. | |
DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter! | |
When plotting using matplotlib/seaborn save the figures to the (already existing) folder'./figures/': take care to clear each figure with plt.clf() before doing another plot. | |
When filtering pandas dataframe use the iloc. | |
When importing packages use this format: from package import module | |
For example: from matplotlib import pyplot as plt | |
Not: import matplotlib.pyplot as plt | |
Use the data file to answer the question or solve a problem given below. | |
Structure of the data: | |
{structure_notes} | |
Question/Problem: | |
""" | |
example_notes="""This data is about the Titanic wreck in 1912. | |
The target figure is the survival of passengers, notes by 'Survived' | |
pclass: A proxy for socio-economic status (SES) | |
1st = Upper | |
2nd = Middle | |
3rd = Lower | |
age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5 | |
sibsp: The dataset defines family relations in this way... | |
Sibling = brother, sister, stepbrother, stepsister | |
Spouse = husband, wife (mistresses and fiancés were ignored) | |
parch: The dataset defines family relations in this way... | |
Parent = mother, father | |
Child = daughter, son, stepdaughter, stepson | |
Some children travelled only with a nanny, therefore parch=0 for them.""" | |
def get_images_in_directory(directory): | |
image_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff'} | |
image_files = [] | |
for root, dirs, files in os.walk(directory): | |
for file in files: | |
if os.path.splitext(file)[1].lower() in image_extensions: | |
image_files.append(os.path.join(root, file)) | |
return image_files | |
def interact_with_agent(file_input, additional_notes): | |
shutil.rmtree("./figures") | |
os.makedirs("./figures") | |
data_file = pd.read_csv(file_input) | |
data_structure_notes = f"""- Description (output of .describe()): | |
{data_file.describe()} | |
- Columns with dtypes: | |
{data_file.dtypes}""" | |
prompt = base_prompt.format(structure_notes=data_structure_notes) | |
if additional_notes and len(additional_notes) > 0: | |
prompt += additional_notes | |
messages = [gr.ChatMessage(role="user", content=additional_notes)] | |
yield messages + [ | |
gr.ChatMessage(role="assistant", content="⏳ _Starting task..._") | |
] | |
plot_image_paths = {} | |
for msg in stream_to_gradio(agent, prompt, data_file=data_file): | |
messages.append(msg) | |
for image_path in get_images_in_directory("./figures"): | |
if image_path not in plot_image_paths: | |
image_message = gr.ChatMessage( | |
role="assistant", | |
content=FileData(path=image_path, mime_type="image/png"), | |
) | |
plot_image_paths[image_path] = True | |
messages.append(image_message) | |
yield messages + [ | |
gr.ChatMessage(role="assistant", content="⏳ _Still processing..._") | |
] | |
yield messages | |
with gr.Blocks( | |
theme=gr.themes.Soft( | |
primary_hue=gr.themes.colors.blue, | |
secondary_hue=gr.themes.colors.yellow, | |
) | |
) as demo: | |
gr.Markdown("""# Llama-3.1 Data analyst 📊🤔 | |
Drop a `.csv` file below and ask a question about your data. | |
**Llama-3.1-70B will analyze and answer.**""") | |
file_input = gr.File(label="Your file to analyze") | |
text_input = gr.Textbox( | |
label="Ask a question about your data?" | |
) | |
submit = gr.Button("Run", variant="primary") | |
chatbot = gr.Chatbot( | |
label="Data Analyst Agent", | |
type="messages", | |
avatar_images=( | |
None, | |
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png", | |
), | |
) | |
# gr.Examples( | |
# examples=[["./example/titanic.csv", example_notes]], | |
# inputs=[file_input, text_input], | |
# cache_examples=False | |
# ) | |
submit.click(interact_with_agent, [file_input, text_input], [chatbot]) | |
if __name__ == "__main__": | |
demo.launch(server_port=7860) | |