Spaces:
Runtime error
Runtime error
File size: 7,084 Bytes
89c278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from typing import List, Dict
import torch
from loguru import logger
import numpy as np
from iopaint.download import scan_models
from iopaint.helper import switch_mps_device
from iopaint.model import models, ControlNet, SD, SDXL
from iopaint.model.utils import torch_gc, is_local_files_only
from iopaint.schema import InpaintRequest, ModelInfo, ModelType
class ModelManager:
def __init__(self, name: str, device: torch.device, **kwargs):
self.name = name
self.device = device
self.kwargs = kwargs
self.available_models: Dict[str, ModelInfo] = {}
self.scan_models()
self.enable_controlnet = kwargs.get("enable_controlnet", False)
controlnet_method = kwargs.get("controlnet_method", None)
if (
controlnet_method is None
and name in self.available_models
and self.available_models[name].support_controlnet
):
controlnet_method = self.available_models[name].controlnets[0]
self.controlnet_method = controlnet_method
self.model = self.init_model(name, device, **kwargs)
@property
def current_model(self) -> ModelInfo:
return self.available_models[self.name]
def init_model(self, name: str, device, **kwargs):
logger.info(f"Loading model: {name}")
if name not in self.available_models:
raise NotImplementedError(
f"Unsupported model: {name}. Available models: {list(self.available_models.keys())}"
)
model_info = self.available_models[name]
kwargs = {
**kwargs,
"model_info": model_info,
"enable_controlnet": self.enable_controlnet,
"controlnet_method": self.controlnet_method,
}
if model_info.support_controlnet and self.enable_controlnet:
return ControlNet(device, **kwargs)
elif model_info.name in models:
return models[name](device, **kwargs)
else:
if model_info.model_type in [
ModelType.DIFFUSERS_SD_INPAINT,
ModelType.DIFFUSERS_SD,
]:
return SD(device, **kwargs)
if model_info.model_type in [
ModelType.DIFFUSERS_SDXL_INPAINT,
ModelType.DIFFUSERS_SDXL,
]:
return SDXL(device, **kwargs)
raise NotImplementedError(f"Unsupported model: {name}")
@torch.inference_mode()
def __call__(self, image, mask, config: InpaintRequest):
"""
Args:
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
config:
Returns:
BGR image
"""
self.switch_controlnet_method(config)
self.enable_disable_freeu(config)
self.enable_disable_lcm_lora(config)
return self.model(image, mask, config).astype(np.uint8)
def scan_models(self) -> List[ModelInfo]:
available_models = scan_models()
self.available_models = {it.name: it for it in available_models}
return available_models
def switch(self, new_name: str):
if new_name == self.name:
return
old_name = self.name
old_controlnet_method = self.controlnet_method
self.name = new_name
if (
self.available_models[new_name].support_controlnet
and self.controlnet_method
not in self.available_models[new_name].controlnets
):
self.controlnet_method = self.available_models[new_name].controlnets[0]
try:
# TODO: enable/disable controlnet without reload model
del self.model
torch_gc()
self.model = self.init_model(
new_name, switch_mps_device(new_name, self.device), **self.kwargs
)
except Exception as e:
self.name = old_name
self.controlnet_method = old_controlnet_method
logger.info(f"Switch model from {old_name} to {new_name} failed, rollback")
self.model = self.init_model(
old_name, switch_mps_device(old_name, self.device), **self.kwargs
)
raise e
def switch_controlnet_method(self, config):
if not self.available_models[self.name].support_controlnet:
return
if (
self.enable_controlnet
and config.controlnet_method
and self.controlnet_method != config.controlnet_method
):
old_controlnet_method = self.controlnet_method
self.controlnet_method = config.controlnet_method
self.model.switch_controlnet_method(config.controlnet_method)
logger.info(
f"Switch Controlnet method from {old_controlnet_method} to {config.controlnet_method}"
)
elif self.enable_controlnet != config.enable_controlnet:
self.enable_controlnet = config.enable_controlnet
self.controlnet_method = config.controlnet_method
pipe_components = {
"vae": self.model.model.vae,
"text_encoder": self.model.model.text_encoder,
"unet": self.model.model.unet,
}
if hasattr(self.model.model, "text_encoder_2"):
pipe_components["text_encoder_2"] = self.model.model.text_encoder_2
self.model = self.init_model(
self.name,
switch_mps_device(self.name, self.device),
pipe_components=pipe_components,
**self.kwargs,
)
if not config.enable_controlnet:
logger.info(f"Disable controlnet")
else:
logger.info(f"Enable controlnet: {config.controlnet_method}")
def enable_disable_freeu(self, config: InpaintRequest):
if str(self.model.device) == "mps":
return
if self.available_models[self.name].support_freeu:
if config.sd_freeu:
freeu_config = config.sd_freeu_config
self.model.model.enable_freeu(
s1=freeu_config.s1,
s2=freeu_config.s2,
b1=freeu_config.b1,
b2=freeu_config.b2,
)
else:
self.model.model.disable_freeu()
def enable_disable_lcm_lora(self, config: InpaintRequest):
if self.available_models[self.name].support_lcm_lora:
# TODO: change this if load other lora is supported
lcm_lora_loaded = bool(self.model.model.get_list_adapters())
if config.sd_lcm_lora:
if not lcm_lora_loaded:
self.model.model.load_lora_weights(
self.model.lcm_lora_id,
weight_name="pytorch_lora_weights.safetensors",
local_files_only=is_local_files_only(),
)
else:
if lcm_lora_loaded:
self.model.model.disable_lora()
|