Spaces:
Runtime error
Runtime error
nikunjkdtechnoland
commited on
Commit
•
89c278d
1
Parent(s):
063372b
init commit some more files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- data/dataset.py +75 -0
- full-stack-server.py +231 -0
- iopaint/cli.py +223 -0
- iopaint/const.py +121 -0
- iopaint/download.py +294 -0
- iopaint/file_manager/file_manager.py +215 -0
- iopaint/helper.py +425 -0
- iopaint/installer.py +12 -0
- iopaint/model/anytext/cldm/cldm.py +630 -0
- iopaint/model/anytext/cldm/ddim_hacked.py +486 -0
- iopaint/model/anytext/cldm/embedding_manager.py +165 -0
- iopaint/model/anytext/cldm/hack.py +111 -0
- iopaint/model/anytext/cldm/model.py +40 -0
- iopaint/model/anytext/ldm/models/diffusion/ddim.py +354 -0
- iopaint/model/anytext/ldm/models/diffusion/ddpm.py +2380 -0
- iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
- iopaint/model/anytext/ldm/modules/diffusionmodules/model.py +973 -0
- iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py +786 -0
- iopaint/model/anytext/ldm/modules/distributions/distributions.py +92 -0
- iopaint/model/anytext/ldm/modules/ema.py +80 -0
- iopaint/model/anytext/ldm/modules/encoders/modules.py +411 -0
- iopaint/model/anytext/main.py +45 -0
- iopaint/model/anytext/ocr_recog/common.py +74 -0
- iopaint/model/anytext/ocr_recog/en_dict.txt +95 -0
- iopaint/model/controlnet.py +190 -0
- iopaint/model/ddim_sampler.py +193 -0
- iopaint/model/fcf.py +1737 -0
- iopaint/model/helper/controlnet_preprocess.py +68 -0
- iopaint/model/helper/cpu_text_encoder.py +41 -0
- iopaint/model/helper/g_diffuser_bot.py +167 -0
- iopaint/model/instruct_pix2pix.py +64 -0
- iopaint/model/kandinsky.py +65 -0
- iopaint/model/lama.py +57 -0
- iopaint/model/ldm.py +336 -0
- iopaint/model/manga.py +97 -0
- iopaint/model/mat.py +1945 -0
- iopaint/model/mi_gan.py +110 -0
- iopaint/model/opencv2.py +29 -0
- iopaint/model_manager.py +191 -0
- iopaint/plugins/briarmbg.py +512 -0
- iopaint/plugins/gfpgan_plugin.py +74 -0
- iopaint/plugins/gfpganer.py +84 -0
- iopaint/plugins/interactive_seg.py +89 -0
- iopaint/plugins/segment_anything/build_sam.py +168 -0
- iopaint/plugins/segment_anything/modeling/common.py +43 -0
- iopaint/plugins/segment_anything/modeling/image_encoder.py +395 -0
- iopaint/plugins/segment_anything/modeling/mask_decoder.py +176 -0
- model/networks.py +563 -0
- only_gradio_server.py +188 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Du Ang
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
data/dataset.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch.utils.data as data
|
3 |
+
from os import listdir
|
4 |
+
from utils.tools import default_loader, is_image_file, normalize
|
5 |
+
import os
|
6 |
+
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
|
9 |
+
|
10 |
+
class Dataset(data.Dataset):
|
11 |
+
def __init__(self, data_path, image_shape, with_subfolder=False, random_crop=True, return_name=False):
|
12 |
+
super(Dataset, self).__init__()
|
13 |
+
if with_subfolder:
|
14 |
+
self.samples = self._find_samples_in_subfolders(data_path)
|
15 |
+
else:
|
16 |
+
self.samples = [x for x in listdir(data_path) if is_image_file(x)]
|
17 |
+
self.data_path = data_path
|
18 |
+
self.image_shape = image_shape[:-1]
|
19 |
+
self.random_crop = random_crop
|
20 |
+
self.return_name = return_name
|
21 |
+
|
22 |
+
def __getitem__(self, index):
|
23 |
+
path = os.path.join(self.data_path, self.samples[index])
|
24 |
+
img = default_loader(path)
|
25 |
+
|
26 |
+
if self.random_crop:
|
27 |
+
imgw, imgh = img.size
|
28 |
+
if imgh < self.image_shape[0] or imgw < self.image_shape[1]:
|
29 |
+
img = transforms.Resize(min(self.image_shape))(img)
|
30 |
+
img = transforms.RandomCrop(self.image_shape)(img)
|
31 |
+
else:
|
32 |
+
img = transforms.Resize(self.image_shape)(img)
|
33 |
+
img = transforms.RandomCrop(self.image_shape)(img)
|
34 |
+
|
35 |
+
img = transforms.ToTensor()(img) # turn the image to a tensor
|
36 |
+
img = normalize(img)
|
37 |
+
|
38 |
+
if self.return_name:
|
39 |
+
return self.samples[index], img
|
40 |
+
else:
|
41 |
+
return img
|
42 |
+
|
43 |
+
def _find_samples_in_subfolders(self, dir):
|
44 |
+
"""
|
45 |
+
Finds the class folders in a dataset.
|
46 |
+
Args:
|
47 |
+
dir (string): Root directory path.
|
48 |
+
Returns:
|
49 |
+
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
|
50 |
+
Ensures:
|
51 |
+
No class is a subdirectory of another.
|
52 |
+
"""
|
53 |
+
if sys.version_info >= (3, 5):
|
54 |
+
# Faster and available in Python 3.5 and above
|
55 |
+
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
|
56 |
+
else:
|
57 |
+
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
|
58 |
+
classes.sort()
|
59 |
+
class_to_idx = {classes[i]: i for i in range(len(classes))}
|
60 |
+
samples = []
|
61 |
+
for target in sorted(class_to_idx.keys()):
|
62 |
+
d = os.path.join(dir, target)
|
63 |
+
if not os.path.isdir(d):
|
64 |
+
continue
|
65 |
+
for root, _, fnames in sorted(os.walk(d)):
|
66 |
+
for fname in sorted(fnames):
|
67 |
+
if is_image_file(fname):
|
68 |
+
path = os.path.join(root, fname)
|
69 |
+
# item = (path, class_to_idx[target])
|
70 |
+
# samples.append(item)
|
71 |
+
samples.append(path)
|
72 |
+
return samples
|
73 |
+
|
74 |
+
def __len__(self):
|
75 |
+
return len(self.samples)
|
full-stack-server.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import io
|
4 |
+
import uuid
|
5 |
+
from ultralytics import YOLO
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision import transforms
|
11 |
+
import imageio.v2 as imageio
|
12 |
+
from trainer import Trainer
|
13 |
+
from utils.tools import get_config
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from iopaint.single_processing import batch_inpaint
|
16 |
+
from pathlib import Path
|
17 |
+
from flask import Flask, request, jsonify,render_template
|
18 |
+
from flask_cors import CORS
|
19 |
+
|
20 |
+
app = Flask(__name__)
|
21 |
+
CORS(app)
|
22 |
+
|
23 |
+
# set current working directory cache instead of default
|
24 |
+
os.environ["TORCH_HOME"] = "./pretrained-model"
|
25 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = "./pretrained-model"
|
26 |
+
|
27 |
+
|
28 |
+
def resize_image(input_image_base64, width=640, height=640):
|
29 |
+
"""Resizes an image from base64 data and returns the resized image as bytes."""
|
30 |
+
try:
|
31 |
+
# Decode base64 string to bytes
|
32 |
+
input_image_data = base64.b64decode(input_image_base64)
|
33 |
+
# Convert bytes to NumPy array
|
34 |
+
img = np.frombuffer(input_image_data, dtype=np.uint8)
|
35 |
+
# Decode NumPy array as an image
|
36 |
+
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
|
37 |
+
|
38 |
+
# Resize while maintaining the aspect ratio
|
39 |
+
shape = img.shape[:2] # current shape [height, width]
|
40 |
+
new_shape = (width, height) # the shape to resize to
|
41 |
+
|
42 |
+
# Scale ratio (new / old)
|
43 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
44 |
+
ratio = r, r # width, height ratios
|
45 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
46 |
+
|
47 |
+
# Resize the image
|
48 |
+
im = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
49 |
+
|
50 |
+
# Pad the image
|
51 |
+
color = (114, 114, 114) # color used for padding
|
52 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
53 |
+
# divide padding into 2 sides
|
54 |
+
dw /= 2
|
55 |
+
dh /= 2
|
56 |
+
# compute padding on all corners
|
57 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
58 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
59 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
60 |
+
|
61 |
+
# Convert the resized and padded image to bytes
|
62 |
+
resized_image_bytes = cv2.imencode('.png', im)[1].tobytes()
|
63 |
+
return resized_image_bytes
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error resizing image: {e}")
|
67 |
+
return None # Or handle differently as needed
|
68 |
+
|
69 |
+
|
70 |
+
def load_weights(path, device):
|
71 |
+
model_weights = torch.load(path)
|
72 |
+
return {
|
73 |
+
k: v.to(device)
|
74 |
+
for k, v in model_weights.items()
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
# Function to convert image to base64
|
79 |
+
def convert_image_to_base64(image):
|
80 |
+
# Convert image to bytes
|
81 |
+
_, buffer = cv2.imencode('.png', image)
|
82 |
+
# Convert bytes to base64
|
83 |
+
image_base64 = base64.b64encode(buffer).decode('utf-8')
|
84 |
+
return image_base64
|
85 |
+
|
86 |
+
|
87 |
+
def convert_to_base64(image):
|
88 |
+
# Read the image file as binary data
|
89 |
+
image_data = image.read()
|
90 |
+
# Encode the binary data as base64
|
91 |
+
base64_encoded = base64.b64encode(image_data).decode('utf-8')
|
92 |
+
return base64_encoded
|
93 |
+
|
94 |
+
|
95 |
+
@app.route('/')
|
96 |
+
def index():
|
97 |
+
return render_template('index.html')
|
98 |
+
|
99 |
+
|
100 |
+
@app.route('/process_images', methods=['POST'])
|
101 |
+
def process_images():
|
102 |
+
# Static paths
|
103 |
+
config_path = Path('configs/config.yaml')
|
104 |
+
model_path = Path('pretrained-model/torch_model.p')
|
105 |
+
|
106 |
+
# Check if the request contains files
|
107 |
+
if 'input_image' not in request.files or 'append_image' not in request.files:
|
108 |
+
return jsonify({'error': 'No files found'}), 419
|
109 |
+
|
110 |
+
# Get the objectName from the request or use default "chair" if not provided
|
111 |
+
default_class = request.form.get('objectName', 'chair')
|
112 |
+
|
113 |
+
# Convert the images to base64
|
114 |
+
try:
|
115 |
+
input_base64 = convert_to_base64(request.files['input_image'])
|
116 |
+
append_base64 = convert_to_base64(request.files['append_image'])
|
117 |
+
except Exception as e:
|
118 |
+
return jsonify({'error': 'Failed to read files'}), 419
|
119 |
+
|
120 |
+
# Resize input image and get base64 data of resized image
|
121 |
+
input_resized_image_bytes = resize_image(input_base64)
|
122 |
+
|
123 |
+
# Convert resized image bytes to base64
|
124 |
+
input_resized_base64 = base64.b64encode(input_resized_image_bytes).decode('utf-8')
|
125 |
+
|
126 |
+
# Decode the resized image from base64 data directly
|
127 |
+
img = cv2.imdecode(np.frombuffer(input_resized_image_bytes, np.uint8), cv2.IMREAD_COLOR)
|
128 |
+
|
129 |
+
if img is None:
|
130 |
+
return jsonify({'error': 'Failed to decode resized image'}), 419
|
131 |
+
|
132 |
+
H, W, _ = img.shape
|
133 |
+
x_point = 0
|
134 |
+
y_point = 0
|
135 |
+
width = 1
|
136 |
+
height = 1
|
137 |
+
|
138 |
+
# Load a model
|
139 |
+
model = YOLO('pretrained-model/yolov8m-seg.pt') # pretrained YOLOv8m-seg model
|
140 |
+
|
141 |
+
# Run batched inference on a list of images
|
142 |
+
results = model(img, imgsz=(W,H), conf=0.5) # chair class 56 with confidence >= 0.5
|
143 |
+
names = model.names
|
144 |
+
# print(names)
|
145 |
+
|
146 |
+
class_found = False
|
147 |
+
for result in results:
|
148 |
+
for i, label in enumerate(result.boxes.cls):
|
149 |
+
# Check if the label matches the chair label
|
150 |
+
if names[int(label)] == default_class:
|
151 |
+
class_found = True
|
152 |
+
# Convert the tensor to a numpy array
|
153 |
+
chair_mask_np = result.masks.data[i].numpy()
|
154 |
+
|
155 |
+
kernel = np.ones((5, 5), np.uint8) # Create a 5x5 kernel for dilation
|
156 |
+
chair_mask_np = cv2.dilate(chair_mask_np, kernel, iterations=2) # Apply dilation
|
157 |
+
|
158 |
+
# Find contours to get bounding box
|
159 |
+
contours, _ = cv2.findContours((chair_mask_np == 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
160 |
+
|
161 |
+
# Iterate over contours to find the bounding box of each object
|
162 |
+
for contour in contours:
|
163 |
+
x, y, w, h = cv2.boundingRect(contour)
|
164 |
+
x_point = x
|
165 |
+
y_point = y
|
166 |
+
width = w
|
167 |
+
height = h
|
168 |
+
|
169 |
+
# Get the corresponding mask
|
170 |
+
mask = result.masks.data[i].numpy() * 255
|
171 |
+
dilated_mask = cv2.dilate(mask, kernel, iterations=2) # Apply dilation
|
172 |
+
# Resize the mask to match the dimensions of the original image
|
173 |
+
resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
|
174 |
+
# Convert mask to base64
|
175 |
+
mask_base64 = convert_image_to_base64(resized_mask)
|
176 |
+
|
177 |
+
# call repainting and merge function
|
178 |
+
output_base64 = repaitingAndMerge(append_base64,str(model_path), str(config_path),width, height, x_point, y_point, input_resized_base64, mask_base64)
|
179 |
+
# Return the output base64 image in the API response
|
180 |
+
return jsonify({'output_base64': output_base64}), 200
|
181 |
+
|
182 |
+
# return class not found in prediction
|
183 |
+
if not class_found:
|
184 |
+
return jsonify({'message': f'{default_class} object not found in the image'}), 200
|
185 |
+
|
186 |
+
def repaitingAndMerge(append_image_base64_image, model_path, config_path, width, height, xposition, yposition, input_base64, mask_base64):
|
187 |
+
config = get_config(config_path)
|
188 |
+
device = torch.device("cpu")
|
189 |
+
trainer = Trainer(config)
|
190 |
+
trainer.load_state_dict(load_weights(model_path, device), strict=False)
|
191 |
+
trainer.eval()
|
192 |
+
|
193 |
+
# lama inpainting start
|
194 |
+
print("lama inpainting start")
|
195 |
+
inpaint_result_base64 = batch_inpaint('lama', 'cpu', input_base64, mask_base64)
|
196 |
+
print("lama inpainting end")
|
197 |
+
|
198 |
+
# Decode base64 to bytes
|
199 |
+
inpaint_result_bytes = base64.b64decode(inpaint_result_base64)
|
200 |
+
|
201 |
+
# Convert bytes to NumPy array
|
202 |
+
inpaint_result_np = np.array(Image.open(io.BytesIO(inpaint_result_bytes)))
|
203 |
+
|
204 |
+
# Create PIL Image from NumPy array
|
205 |
+
final_image = Image.fromarray(inpaint_result_np)
|
206 |
+
|
207 |
+
print("merge start")
|
208 |
+
# Decode base64 to binary data
|
209 |
+
decoded_image_data = base64.b64decode(append_image_base64_image)
|
210 |
+
# Convert binary data to a NumPy array
|
211 |
+
append_image = cv2.imdecode(np.frombuffer(decoded_image_data, np.uint8), cv2.IMREAD_UNCHANGED)
|
212 |
+
# Resize the append image while preserving transparency
|
213 |
+
resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
|
214 |
+
# Convert the resized image to RGBA format (assuming it's in BGRA format)
|
215 |
+
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
|
216 |
+
# Create a PIL Image from the resized image with transparent background
|
217 |
+
append_image_pil = Image.fromarray(resized_image)
|
218 |
+
# Paste the append image onto the final image
|
219 |
+
final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
|
220 |
+
# Save the resulting image
|
221 |
+
print("merge end")
|
222 |
+
# Convert the final image to base64
|
223 |
+
with io.BytesIO() as output_buffer:
|
224 |
+
final_image.save(output_buffer, format='PNG')
|
225 |
+
output_base64 = base64.b64encode(output_buffer.getvalue()).decode('utf-8')
|
226 |
+
|
227 |
+
return output_base64
|
228 |
+
|
229 |
+
|
230 |
+
if __name__ == '__main__':
|
231 |
+
app.run(host='0.0.0.0',debug=True)
|
iopaint/cli.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import webbrowser
|
2 |
+
from contextlib import asynccontextmanager
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, Optional
|
5 |
+
|
6 |
+
import typer
|
7 |
+
from fastapi import FastAPI
|
8 |
+
from loguru import logger
|
9 |
+
from typer import Option
|
10 |
+
from typer_config import use_json_config
|
11 |
+
|
12 |
+
from iopaint.const import *
|
13 |
+
from iopaint.runtime import setup_model_dir, dump_environment_info, check_device
|
14 |
+
from iopaint.schema import InteractiveSegModel, Device, RealESRGANModel, RemoveBGModel
|
15 |
+
|
16 |
+
typer_app = typer.Typer(pretty_exceptions_show_locals=False, add_completion=False)
|
17 |
+
|
18 |
+
|
19 |
+
@typer_app.command(help="Install all plugins dependencies")
|
20 |
+
def install_plugins_packages():
|
21 |
+
from iopaint.installer import install_plugins_package
|
22 |
+
|
23 |
+
install_plugins_package()
|
24 |
+
|
25 |
+
|
26 |
+
@typer_app.command(help="Download SD/SDXL normal/inpainting model from HuggingFace")
|
27 |
+
def download(
|
28 |
+
model: str = Option(
|
29 |
+
..., help="Model id on HuggingFace e.g: runwayml/stable-diffusion-inpainting"
|
30 |
+
),
|
31 |
+
model_dir: Path = Option(
|
32 |
+
DEFAULT_MODEL_DIR,
|
33 |
+
help=MODEL_DIR_HELP,
|
34 |
+
file_okay=False,
|
35 |
+
callback=setup_model_dir,
|
36 |
+
),
|
37 |
+
):
|
38 |
+
from iopaint.download import cli_download_model
|
39 |
+
|
40 |
+
cli_download_model(model)
|
41 |
+
|
42 |
+
|
43 |
+
@typer_app.command(name="list", help="List downloaded models")
|
44 |
+
def list_model(
|
45 |
+
model_dir: Path = Option(
|
46 |
+
DEFAULT_MODEL_DIR,
|
47 |
+
help=MODEL_DIR_HELP,
|
48 |
+
file_okay=False,
|
49 |
+
callback=setup_model_dir,
|
50 |
+
),
|
51 |
+
):
|
52 |
+
from iopaint.download import scan_models
|
53 |
+
|
54 |
+
scanned_models = scan_models()
|
55 |
+
for it in scanned_models:
|
56 |
+
print(it.name)
|
57 |
+
|
58 |
+
|
59 |
+
@typer_app.command(help="Batch processing images")
|
60 |
+
def run(
|
61 |
+
model: str = Option("lama"),
|
62 |
+
device: Device = Option(Device.cpu),
|
63 |
+
image: Path = Option(..., help="Image folders or file path"),
|
64 |
+
mask: Path = Option(
|
65 |
+
...,
|
66 |
+
help="Mask folders or file path. "
|
67 |
+
"If it is a directory, the mask images in the directory should have the same name as the original image."
|
68 |
+
"If it is a file, all images will use this mask."
|
69 |
+
"Mask will automatically resize to the same size as the original image.",
|
70 |
+
),
|
71 |
+
output: Path = Option(..., help="Output directory or file path"),
|
72 |
+
config: Path = Option(
|
73 |
+
None, help="Config file path. You can use dump command to create a base config."
|
74 |
+
),
|
75 |
+
concat: bool = Option(
|
76 |
+
False, help="Concat original image, mask and output images into one image"
|
77 |
+
),
|
78 |
+
model_dir: Path = Option(
|
79 |
+
DEFAULT_MODEL_DIR,
|
80 |
+
help=MODEL_DIR_HELP,
|
81 |
+
file_okay=False,
|
82 |
+
callback=setup_model_dir,
|
83 |
+
),
|
84 |
+
):
|
85 |
+
from iopaint.download import cli_download_model, scan_models
|
86 |
+
|
87 |
+
scanned_models = scan_models()
|
88 |
+
if model not in [it.name for it in scanned_models]:
|
89 |
+
logger.info(f"{model} not found in {model_dir}, try to downloading")
|
90 |
+
cli_download_model(model)
|
91 |
+
|
92 |
+
from iopaint.batch_processing import batch_inpaint
|
93 |
+
|
94 |
+
batch_inpaint(model, device, image, mask, output, config, concat)
|
95 |
+
|
96 |
+
|
97 |
+
@typer_app.command(help="Start IOPaint server")
|
98 |
+
@use_json_config()
|
99 |
+
def start(
|
100 |
+
host: str = Option("127.0.0.1"),
|
101 |
+
port: int = Option(8080),
|
102 |
+
inbrowser: bool = Option(False, help=INBROWSER_HELP),
|
103 |
+
model: str = Option(
|
104 |
+
DEFAULT_MODEL,
|
105 |
+
help=f"Erase models: [{', '.join(AVAILABLE_MODELS)}].\n"
|
106 |
+
f"Diffusion models: [{', '.join(DIFFUSION_MODELS)}] or any SD/SDXL normal/inpainting models on HuggingFace.",
|
107 |
+
),
|
108 |
+
model_dir: Path = Option(
|
109 |
+
DEFAULT_MODEL_DIR,
|
110 |
+
help=MODEL_DIR_HELP,
|
111 |
+
dir_okay=True,
|
112 |
+
file_okay=False,
|
113 |
+
callback=setup_model_dir,
|
114 |
+
),
|
115 |
+
low_mem: bool = Option(False, help=LOW_MEM_HELP),
|
116 |
+
no_half: bool = Option(False, help=NO_HALF_HELP),
|
117 |
+
cpu_offload: bool = Option(False, help=CPU_OFFLOAD_HELP),
|
118 |
+
disable_nsfw_checker: bool = Option(False, help=DISABLE_NSFW_HELP),
|
119 |
+
cpu_textencoder: bool = Option(False, help=CPU_TEXTENCODER_HELP),
|
120 |
+
local_files_only: bool = Option(False, help=LOCAL_FILES_ONLY_HELP),
|
121 |
+
device: Device = Option(Device.cpu),
|
122 |
+
input: Optional[Path] = Option(None, help=INPUT_HELP),
|
123 |
+
output_dir: Optional[Path] = Option(
|
124 |
+
None, help=OUTPUT_DIR_HELP, dir_okay=True, file_okay=False
|
125 |
+
),
|
126 |
+
quality: int = Option(95, help=QUALITY_HELP),
|
127 |
+
enable_interactive_seg: bool = Option(False, help=INTERACTIVE_SEG_HELP),
|
128 |
+
interactive_seg_model: InteractiveSegModel = Option(
|
129 |
+
InteractiveSegModel.vit_b, help=INTERACTIVE_SEG_MODEL_HELP
|
130 |
+
),
|
131 |
+
interactive_seg_device: Device = Option(Device.cpu),
|
132 |
+
enable_remove_bg: bool = Option(False, help=REMOVE_BG_HELP),
|
133 |
+
remove_bg_model: RemoveBGModel = Option(RemoveBGModel.briaai_rmbg_1_4),
|
134 |
+
enable_anime_seg: bool = Option(False, help=ANIMESEG_HELP),
|
135 |
+
enable_realesrgan: bool = Option(False),
|
136 |
+
realesrgan_device: Device = Option(Device.cpu),
|
137 |
+
realesrgan_model: RealESRGANModel = Option(RealESRGANModel.realesr_general_x4v3),
|
138 |
+
enable_gfpgan: bool = Option(False),
|
139 |
+
gfpgan_device: Device = Option(Device.cpu),
|
140 |
+
enable_restoreformer: bool = Option(False),
|
141 |
+
restoreformer_device: Device = Option(Device.cpu),
|
142 |
+
):
|
143 |
+
dump_environment_info()
|
144 |
+
device = check_device(device)
|
145 |
+
if input and not input.exists():
|
146 |
+
logger.error(f"invalid --input: {input} not exists")
|
147 |
+
exit(-1)
|
148 |
+
if input and input.is_dir() and not output_dir:
|
149 |
+
logger.error(f"invalid --output-dir: must be set when --input is a directory")
|
150 |
+
exit(-1)
|
151 |
+
if output_dir:
|
152 |
+
output_dir = output_dir.expanduser().absolute()
|
153 |
+
logger.info(f"Image will be saved to {output_dir}")
|
154 |
+
if not output_dir.exists():
|
155 |
+
logger.info(f"Create output directory {output_dir}")
|
156 |
+
output_dir.mkdir(parents=True)
|
157 |
+
|
158 |
+
model_dir = model_dir.expanduser().absolute()
|
159 |
+
|
160 |
+
if local_files_only:
|
161 |
+
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
162 |
+
os.environ["HF_HUB_OFFLINE"] = "1"
|
163 |
+
|
164 |
+
from iopaint.download import cli_download_model, scan_models
|
165 |
+
|
166 |
+
scanned_models = scan_models()
|
167 |
+
if model not in [it.name for it in scanned_models]:
|
168 |
+
logger.info(f"{model} not found in {model_dir}, try to downloading")
|
169 |
+
cli_download_model(model)
|
170 |
+
|
171 |
+
from iopaint.api import Api
|
172 |
+
from iopaint.schema import ApiConfig
|
173 |
+
|
174 |
+
@asynccontextmanager
|
175 |
+
async def lifespan(app: FastAPI):
|
176 |
+
if inbrowser:
|
177 |
+
webbrowser.open(f"http://localhost:{port}", new=0, autoraise=True)
|
178 |
+
yield
|
179 |
+
|
180 |
+
app = FastAPI(lifespan=lifespan)
|
181 |
+
|
182 |
+
api_config = ApiConfig(
|
183 |
+
host=host,
|
184 |
+
port=port,
|
185 |
+
inbrowser=inbrowser,
|
186 |
+
model=model,
|
187 |
+
no_half=no_half,
|
188 |
+
low_mem=low_mem,
|
189 |
+
cpu_offload=cpu_offload,
|
190 |
+
disable_nsfw_checker=disable_nsfw_checker,
|
191 |
+
local_files_only=local_files_only,
|
192 |
+
cpu_textencoder=cpu_textencoder if device == Device.cuda else False,
|
193 |
+
device=device,
|
194 |
+
input=input,
|
195 |
+
output_dir=output_dir,
|
196 |
+
quality=quality,
|
197 |
+
enable_interactive_seg=enable_interactive_seg,
|
198 |
+
interactive_seg_model=interactive_seg_model,
|
199 |
+
interactive_seg_device=interactive_seg_device,
|
200 |
+
enable_remove_bg=enable_remove_bg,
|
201 |
+
remove_bg_model=remove_bg_model,
|
202 |
+
enable_anime_seg=enable_anime_seg,
|
203 |
+
enable_realesrgan=enable_realesrgan,
|
204 |
+
realesrgan_device=realesrgan_device,
|
205 |
+
realesrgan_model=realesrgan_model,
|
206 |
+
enable_gfpgan=enable_gfpgan,
|
207 |
+
gfpgan_device=gfpgan_device,
|
208 |
+
enable_restoreformer=enable_restoreformer,
|
209 |
+
restoreformer_device=restoreformer_device,
|
210 |
+
)
|
211 |
+
print(api_config.model_dump_json(indent=4))
|
212 |
+
api = Api(app, api_config)
|
213 |
+
api.launch()
|
214 |
+
|
215 |
+
|
216 |
+
@typer_app.command(help="Start IOPaint web config page")
|
217 |
+
def start_web_config(
|
218 |
+
config_file: Path = Option("config.json"),
|
219 |
+
):
|
220 |
+
dump_environment_info()
|
221 |
+
from iopaint.web_config import main
|
222 |
+
|
223 |
+
main(config_file)
|
iopaint/const.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
INSTRUCT_PIX2PIX_NAME = "timbrooks/instruct-pix2pix"
|
5 |
+
KANDINSKY22_NAME = "kandinsky-community/kandinsky-2-2-decoder-inpaint"
|
6 |
+
POWERPAINT_NAME = "Sanster/PowerPaint-V1-stable-diffusion-inpainting"
|
7 |
+
ANYTEXT_NAME = "Sanster/AnyText"
|
8 |
+
|
9 |
+
|
10 |
+
DIFFUSERS_SD_CLASS_NAME = "StableDiffusionPipeline"
|
11 |
+
DIFFUSERS_SD_INPAINT_CLASS_NAME = "StableDiffusionInpaintPipeline"
|
12 |
+
DIFFUSERS_SDXL_CLASS_NAME = "StableDiffusionXLPipeline"
|
13 |
+
DIFFUSERS_SDXL_INPAINT_CLASS_NAME = "StableDiffusionXLInpaintPipeline"
|
14 |
+
|
15 |
+
MPS_UNSUPPORT_MODELS = [
|
16 |
+
"lama",
|
17 |
+
"ldm",
|
18 |
+
"zits",
|
19 |
+
"mat",
|
20 |
+
"fcf",
|
21 |
+
"cv2",
|
22 |
+
"manga",
|
23 |
+
]
|
24 |
+
|
25 |
+
DEFAULT_MODEL = "lama"
|
26 |
+
AVAILABLE_MODELS = ["lama", "ldm", "zits", "mat", "fcf", "manga", "cv2", "migan"]
|
27 |
+
DIFFUSION_MODELS = [
|
28 |
+
"runwayml/stable-diffusion-inpainting",
|
29 |
+
"Uminosachi/realisticVisionV51_v51VAE-inpainting",
|
30 |
+
"redstonehero/dreamshaper-inpainting",
|
31 |
+
"Sanster/anything-4.0-inpainting",
|
32 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
33 |
+
"Fantasy-Studio/Paint-by-Example",
|
34 |
+
POWERPAINT_NAME,
|
35 |
+
ANYTEXT_NAME,
|
36 |
+
]
|
37 |
+
|
38 |
+
NO_HALF_HELP = """
|
39 |
+
Using full precision(fp32) model.
|
40 |
+
If your diffusion model generate result is always black or green, use this argument.
|
41 |
+
"""
|
42 |
+
|
43 |
+
CPU_OFFLOAD_HELP = """
|
44 |
+
Offloads diffusion model's weight to CPU RAM, significantly reducing vRAM usage.
|
45 |
+
"""
|
46 |
+
|
47 |
+
LOW_MEM_HELP = "Enable attention slicing and vae tiling to save memory."
|
48 |
+
|
49 |
+
DISABLE_NSFW_HELP = """
|
50 |
+
Disable NSFW checker for diffusion model.
|
51 |
+
"""
|
52 |
+
|
53 |
+
CPU_TEXTENCODER_HELP = """
|
54 |
+
Run diffusion models text encoder on CPU to reduce vRAM usage.
|
55 |
+
"""
|
56 |
+
|
57 |
+
SD_CONTROLNET_CHOICES: List[str] = [
|
58 |
+
"lllyasviel/control_v11p_sd15_canny",
|
59 |
+
# "lllyasviel/control_v11p_sd15_seg",
|
60 |
+
"lllyasviel/control_v11p_sd15_openpose",
|
61 |
+
"lllyasviel/control_v11p_sd15_inpaint",
|
62 |
+
"lllyasviel/control_v11f1p_sd15_depth",
|
63 |
+
]
|
64 |
+
|
65 |
+
SD2_CONTROLNET_CHOICES = [
|
66 |
+
"thibaud/controlnet-sd21-canny-diffusers",
|
67 |
+
"thibaud/controlnet-sd21-depth-diffusers",
|
68 |
+
"thibaud/controlnet-sd21-openpose-diffusers",
|
69 |
+
]
|
70 |
+
|
71 |
+
SDXL_CONTROLNET_CHOICES = [
|
72 |
+
"thibaud/controlnet-openpose-sdxl-1.0",
|
73 |
+
"destitech/controlnet-inpaint-dreamer-sdxl",
|
74 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
75 |
+
"diffusers/controlnet-canny-sdxl-1.0-mid",
|
76 |
+
"diffusers/controlnet-canny-sdxl-1.0-small",
|
77 |
+
"diffusers/controlnet-depth-sdxl-1.0",
|
78 |
+
"diffusers/controlnet-depth-sdxl-1.0-mid",
|
79 |
+
"diffusers/controlnet-depth-sdxl-1.0-small",
|
80 |
+
]
|
81 |
+
|
82 |
+
LOCAL_FILES_ONLY_HELP = """
|
83 |
+
When loading diffusion models, using local files only, not connect to HuggingFace server.
|
84 |
+
"""
|
85 |
+
|
86 |
+
DEFAULT_MODEL_DIR = os.path.abspath(
|
87 |
+
os.getenv("XDG_CACHE_HOME", os.path.join(os.path.expanduser("~"), ".cache"))
|
88 |
+
)
|
89 |
+
#DEFAULT_MODEL_DIR = os.path.abspath("pretrained-models")
|
90 |
+
|
91 |
+
MODEL_DIR_HELP = f"""
|
92 |
+
Model download directory (by setting XDG_CACHE_HOME environment variable), by default model download to {DEFAULT_MODEL_DIR}
|
93 |
+
"""
|
94 |
+
|
95 |
+
OUTPUT_DIR_HELP = """
|
96 |
+
Result images will be saved to output directory automatically.
|
97 |
+
"""
|
98 |
+
|
99 |
+
INPUT_HELP = """
|
100 |
+
If input is image, it will be loaded by default.
|
101 |
+
If input is directory, you can browse and select image in file manager.
|
102 |
+
"""
|
103 |
+
|
104 |
+
GUI_HELP = """
|
105 |
+
Launch Lama Cleaner as desktop app
|
106 |
+
"""
|
107 |
+
|
108 |
+
QUALITY_HELP = """
|
109 |
+
Quality of image encoding, 0-100. Default is 95, higher quality will generate larger file size.
|
110 |
+
"""
|
111 |
+
|
112 |
+
INTERACTIVE_SEG_HELP = "Enable interactive segmentation using Segment Anything."
|
113 |
+
INTERACTIVE_SEG_MODEL_HELP = "Model size: mobile_sam < vit_b < vit_l < vit_h. Bigger model size means better segmentation but slower speed."
|
114 |
+
REMOVE_BG_HELP = "Enable remove background plugin. Always run on CPU"
|
115 |
+
ANIMESEG_HELP = "Enable anime segmentation plugin. Always run on CPU"
|
116 |
+
REALESRGAN_HELP = "Enable realesrgan super resolution"
|
117 |
+
GFPGAN_HELP = "Enable GFPGAN face restore. To also enhance background, use with --enable-realesrgan"
|
118 |
+
RESTOREFORMER_HELP = "Enable RestoreFormer face restore. To also enhance background, use with --enable-realesrgan"
|
119 |
+
GIF_HELP = "Enable GIF plugin. Make GIF to compare original and cleaned image"
|
120 |
+
|
121 |
+
INBROWSER_HELP = "Automatically launch IOPaint in a new tab on the default browser"
|
iopaint/download.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
from iopaint.schema import ModelType, ModelInfo
|
7 |
+
from loguru import logger
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
from iopaint.const import (
|
11 |
+
DEFAULT_MODEL_DIR,
|
12 |
+
DIFFUSERS_SD_CLASS_NAME,
|
13 |
+
DIFFUSERS_SD_INPAINT_CLASS_NAME,
|
14 |
+
DIFFUSERS_SDXL_CLASS_NAME,
|
15 |
+
DIFFUSERS_SDXL_INPAINT_CLASS_NAME,
|
16 |
+
ANYTEXT_NAME,
|
17 |
+
)
|
18 |
+
from iopaint.model.original_sd_configs import get_config_files
|
19 |
+
|
20 |
+
|
21 |
+
def cli_download_model(model: str):
|
22 |
+
from iopaint.model import models
|
23 |
+
from iopaint.model.utils import handle_from_pretrained_exceptions
|
24 |
+
|
25 |
+
if model in models and models[model].is_erase_model:
|
26 |
+
logger.info(f"Downloading {model}...")
|
27 |
+
models[model].download()
|
28 |
+
logger.info(f"Done.")
|
29 |
+
elif model == ANYTEXT_NAME:
|
30 |
+
logger.info(f"Downloading {model}...")
|
31 |
+
models[model].download()
|
32 |
+
logger.info(f"Done.")
|
33 |
+
else:
|
34 |
+
logger.info(f"Downloading model from Huggingface: {model}")
|
35 |
+
from diffusers import DiffusionPipeline
|
36 |
+
|
37 |
+
downloaded_path = handle_from_pretrained_exceptions(
|
38 |
+
DiffusionPipeline.download,
|
39 |
+
pretrained_model_name=model,
|
40 |
+
variant="fp16",
|
41 |
+
resume_download=True,
|
42 |
+
)
|
43 |
+
logger.info(f"Done. Downloaded to {downloaded_path}")
|
44 |
+
|
45 |
+
|
46 |
+
def folder_name_to_show_name(name: str) -> str:
|
47 |
+
return name.replace("models--", "").replace("--", "/")
|
48 |
+
|
49 |
+
|
50 |
+
@lru_cache(maxsize=512)
|
51 |
+
def get_sd_model_type(model_abs_path: str) -> ModelType:
|
52 |
+
if "inpaint" in Path(model_abs_path).name.lower():
|
53 |
+
model_type = ModelType.DIFFUSERS_SD_INPAINT
|
54 |
+
else:
|
55 |
+
# load once to check num_in_channels
|
56 |
+
from diffusers import StableDiffusionInpaintPipeline
|
57 |
+
|
58 |
+
try:
|
59 |
+
StableDiffusionInpaintPipeline.from_single_file(
|
60 |
+
model_abs_path,
|
61 |
+
load_safety_checker=False,
|
62 |
+
num_in_channels=9,
|
63 |
+
config_files=get_config_files(),
|
64 |
+
)
|
65 |
+
model_type = ModelType.DIFFUSERS_SD_INPAINT
|
66 |
+
except ValueError as e:
|
67 |
+
if "Trying to set a tensor of shape torch.Size([320, 4, 3, 3])" in str(e):
|
68 |
+
model_type = ModelType.DIFFUSERS_SD
|
69 |
+
else:
|
70 |
+
raise e
|
71 |
+
return model_type
|
72 |
+
|
73 |
+
|
74 |
+
@lru_cache()
|
75 |
+
def get_sdxl_model_type(model_abs_path: str) -> ModelType:
|
76 |
+
if "inpaint" in model_abs_path:
|
77 |
+
model_type = ModelType.DIFFUSERS_SDXL_INPAINT
|
78 |
+
else:
|
79 |
+
# load once to check num_in_channels
|
80 |
+
from diffusers import StableDiffusionXLInpaintPipeline
|
81 |
+
|
82 |
+
try:
|
83 |
+
model = StableDiffusionXLInpaintPipeline.from_single_file(
|
84 |
+
model_abs_path,
|
85 |
+
load_safety_checker=False,
|
86 |
+
num_in_channels=9,
|
87 |
+
config_files=get_config_files(),
|
88 |
+
)
|
89 |
+
if model.unet.config.in_channels == 9:
|
90 |
+
# https://github.com/huggingface/diffusers/issues/6610
|
91 |
+
model_type = ModelType.DIFFUSERS_SDXL_INPAINT
|
92 |
+
else:
|
93 |
+
model_type = ModelType.DIFFUSERS_SDXL
|
94 |
+
except ValueError as e:
|
95 |
+
if "Trying to set a tensor of shape torch.Size([320, 4, 3, 3])" in str(e):
|
96 |
+
model_type = ModelType.DIFFUSERS_SDXL
|
97 |
+
else:
|
98 |
+
raise e
|
99 |
+
return model_type
|
100 |
+
|
101 |
+
|
102 |
+
def scan_single_file_diffusion_models(cache_dir) -> List[ModelInfo]:
|
103 |
+
cache_dir = Path(cache_dir)
|
104 |
+
stable_diffusion_dir = cache_dir / "stable_diffusion"
|
105 |
+
cache_file = stable_diffusion_dir / "iopaint_cache.json"
|
106 |
+
model_type_cache = {}
|
107 |
+
if cache_file.exists():
|
108 |
+
try:
|
109 |
+
with open(cache_file, "r", encoding="utf-8") as f:
|
110 |
+
model_type_cache = json.load(f)
|
111 |
+
assert isinstance(model_type_cache, dict)
|
112 |
+
except:
|
113 |
+
pass
|
114 |
+
|
115 |
+
res = []
|
116 |
+
for it in stable_diffusion_dir.glob(f"*.*"):
|
117 |
+
if it.suffix not in [".safetensors", ".ckpt"]:
|
118 |
+
continue
|
119 |
+
model_abs_path = str(it.absolute())
|
120 |
+
model_type = model_type_cache.get(it.name)
|
121 |
+
if model_type is None:
|
122 |
+
model_type = get_sd_model_type(model_abs_path)
|
123 |
+
model_type_cache[it.name] = model_type
|
124 |
+
res.append(
|
125 |
+
ModelInfo(
|
126 |
+
name=it.name,
|
127 |
+
path=model_abs_path,
|
128 |
+
model_type=model_type,
|
129 |
+
is_single_file_diffusers=True,
|
130 |
+
)
|
131 |
+
)
|
132 |
+
if stable_diffusion_dir.exists():
|
133 |
+
with open(cache_file, "w", encoding="utf-8") as fw:
|
134 |
+
json.dump(model_type_cache, fw, indent=2, ensure_ascii=False)
|
135 |
+
|
136 |
+
stable_diffusion_xl_dir = cache_dir / "stable_diffusion_xl"
|
137 |
+
sdxl_cache_file = stable_diffusion_xl_dir / "iopaint_cache.json"
|
138 |
+
sdxl_model_type_cache = {}
|
139 |
+
if sdxl_cache_file.exists():
|
140 |
+
try:
|
141 |
+
with open(sdxl_cache_file, "r", encoding="utf-8") as f:
|
142 |
+
sdxl_model_type_cache = json.load(f)
|
143 |
+
assert isinstance(sdxl_model_type_cache, dict)
|
144 |
+
except:
|
145 |
+
pass
|
146 |
+
|
147 |
+
for it in stable_diffusion_xl_dir.glob(f"*.*"):
|
148 |
+
if it.suffix not in [".safetensors", ".ckpt"]:
|
149 |
+
continue
|
150 |
+
model_abs_path = str(it.absolute())
|
151 |
+
model_type = sdxl_model_type_cache.get(it.name)
|
152 |
+
if model_type is None:
|
153 |
+
model_type = get_sdxl_model_type(model_abs_path)
|
154 |
+
sdxl_model_type_cache[it.name] = model_type
|
155 |
+
if stable_diffusion_xl_dir.exists():
|
156 |
+
with open(sdxl_cache_file, "w", encoding="utf-8") as fw:
|
157 |
+
json.dump(sdxl_model_type_cache, fw, indent=2, ensure_ascii=False)
|
158 |
+
|
159 |
+
res.append(
|
160 |
+
ModelInfo(
|
161 |
+
name=it.name,
|
162 |
+
path=model_abs_path,
|
163 |
+
model_type=model_type,
|
164 |
+
is_single_file_diffusers=True,
|
165 |
+
)
|
166 |
+
)
|
167 |
+
return res
|
168 |
+
|
169 |
+
|
170 |
+
def scan_inpaint_models(model_dir: Path) -> List[ModelInfo]:
|
171 |
+
res = []
|
172 |
+
from iopaint.model import models
|
173 |
+
|
174 |
+
# logger.info(f"Scanning inpaint models in {model_dir}")
|
175 |
+
|
176 |
+
for name, m in models.items():
|
177 |
+
if m.is_erase_model and m.is_downloaded():
|
178 |
+
res.append(
|
179 |
+
ModelInfo(
|
180 |
+
name=name,
|
181 |
+
path=name,
|
182 |
+
model_type=ModelType.INPAINT,
|
183 |
+
)
|
184 |
+
)
|
185 |
+
return res
|
186 |
+
|
187 |
+
|
188 |
+
def scan_diffusers_models() -> List[ModelInfo]:
|
189 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
190 |
+
|
191 |
+
available_models = []
|
192 |
+
cache_dir = Path(HF_HUB_CACHE)
|
193 |
+
# logger.info(f"Scanning diffusers models in {cache_dir}")
|
194 |
+
diffusers_model_names = []
|
195 |
+
for it in cache_dir.glob("**/*/model_index.json"):
|
196 |
+
with open(it, "r", encoding="utf-8") as f:
|
197 |
+
try:
|
198 |
+
data = json.load(f)
|
199 |
+
except:
|
200 |
+
continue
|
201 |
+
|
202 |
+
_class_name = data["_class_name"]
|
203 |
+
name = folder_name_to_show_name(it.parent.parent.parent.name)
|
204 |
+
if name in diffusers_model_names:
|
205 |
+
continue
|
206 |
+
if "PowerPaint" in name:
|
207 |
+
model_type = ModelType.DIFFUSERS_OTHER
|
208 |
+
elif _class_name == DIFFUSERS_SD_CLASS_NAME:
|
209 |
+
model_type = ModelType.DIFFUSERS_SD
|
210 |
+
elif _class_name == DIFFUSERS_SD_INPAINT_CLASS_NAME:
|
211 |
+
model_type = ModelType.DIFFUSERS_SD_INPAINT
|
212 |
+
elif _class_name == DIFFUSERS_SDXL_CLASS_NAME:
|
213 |
+
model_type = ModelType.DIFFUSERS_SDXL
|
214 |
+
elif _class_name == DIFFUSERS_SDXL_INPAINT_CLASS_NAME:
|
215 |
+
model_type = ModelType.DIFFUSERS_SDXL_INPAINT
|
216 |
+
elif _class_name in [
|
217 |
+
"StableDiffusionInstructPix2PixPipeline",
|
218 |
+
"PaintByExamplePipeline",
|
219 |
+
"KandinskyV22InpaintPipeline",
|
220 |
+
"AnyText",
|
221 |
+
]:
|
222 |
+
model_type = ModelType.DIFFUSERS_OTHER
|
223 |
+
else:
|
224 |
+
continue
|
225 |
+
|
226 |
+
diffusers_model_names.append(name)
|
227 |
+
available_models.append(
|
228 |
+
ModelInfo(
|
229 |
+
name=name,
|
230 |
+
path=name,
|
231 |
+
model_type=model_type,
|
232 |
+
)
|
233 |
+
)
|
234 |
+
return available_models
|
235 |
+
|
236 |
+
|
237 |
+
def _scan_converted_diffusers_models(cache_dir) -> List[ModelInfo]:
|
238 |
+
cache_dir = Path(cache_dir)
|
239 |
+
available_models = []
|
240 |
+
diffusers_model_names = []
|
241 |
+
for it in cache_dir.glob("**/*/model_index.json"):
|
242 |
+
with open(it, "r", encoding="utf-8") as f:
|
243 |
+
try:
|
244 |
+
data = json.load(f)
|
245 |
+
except:
|
246 |
+
logger.error(
|
247 |
+
f"Failed to load {it}, please try revert from original model or fix model_index.json by hand."
|
248 |
+
)
|
249 |
+
continue
|
250 |
+
|
251 |
+
_class_name = data["_class_name"]
|
252 |
+
name = folder_name_to_show_name(it.parent.name)
|
253 |
+
if name in diffusers_model_names:
|
254 |
+
continue
|
255 |
+
elif _class_name == DIFFUSERS_SD_CLASS_NAME:
|
256 |
+
model_type = ModelType.DIFFUSERS_SD
|
257 |
+
elif _class_name == DIFFUSERS_SD_INPAINT_CLASS_NAME:
|
258 |
+
model_type = ModelType.DIFFUSERS_SD_INPAINT
|
259 |
+
elif _class_name == DIFFUSERS_SDXL_CLASS_NAME:
|
260 |
+
model_type = ModelType.DIFFUSERS_SDXL
|
261 |
+
elif _class_name == DIFFUSERS_SDXL_INPAINT_CLASS_NAME:
|
262 |
+
model_type = ModelType.DIFFUSERS_SDXL_INPAINT
|
263 |
+
else:
|
264 |
+
continue
|
265 |
+
|
266 |
+
diffusers_model_names.append(name)
|
267 |
+
available_models.append(
|
268 |
+
ModelInfo(
|
269 |
+
name=name,
|
270 |
+
path=str(it.parent.absolute()),
|
271 |
+
model_type=model_type,
|
272 |
+
)
|
273 |
+
)
|
274 |
+
return available_models
|
275 |
+
|
276 |
+
|
277 |
+
def scan_converted_diffusers_models(cache_dir) -> List[ModelInfo]:
|
278 |
+
cache_dir = Path(cache_dir)
|
279 |
+
available_models = []
|
280 |
+
stable_diffusion_dir = cache_dir / "stable_diffusion"
|
281 |
+
stable_diffusion_xl_dir = cache_dir / "stable_diffusion_xl"
|
282 |
+
available_models.extend(_scan_converted_diffusers_models(stable_diffusion_dir))
|
283 |
+
available_models.extend(_scan_converted_diffusers_models(stable_diffusion_xl_dir))
|
284 |
+
return available_models
|
285 |
+
|
286 |
+
|
287 |
+
def scan_models() -> List[ModelInfo]:
|
288 |
+
model_dir = os.getenv("XDG_CACHE_HOME", DEFAULT_MODEL_DIR)
|
289 |
+
available_models = []
|
290 |
+
available_models.extend(scan_inpaint_models(model_dir))
|
291 |
+
available_models.extend(scan_single_file_diffusion_models(model_dir))
|
292 |
+
available_models.extend(scan_diffusers_models())
|
293 |
+
available_models.extend(scan_converted_diffusers_models(model_dir))
|
294 |
+
return available_models
|
iopaint/file_manager/file_manager.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from io import BytesIO
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
from PIL import Image, ImageOps, PngImagePlugin
|
7 |
+
from fastapi import FastAPI, UploadFile, HTTPException
|
8 |
+
from starlette.responses import FileResponse
|
9 |
+
|
10 |
+
from ..schema import MediasResponse, MediaTab
|
11 |
+
|
12 |
+
LARGE_ENOUGH_NUMBER = 100
|
13 |
+
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
|
14 |
+
from .storage_backends import FilesystemStorageBackend
|
15 |
+
from .utils import aspect_to_string, generate_filename, glob_img
|
16 |
+
|
17 |
+
|
18 |
+
class FileManager:
|
19 |
+
def __init__(self, app: FastAPI, input_dir: Path, output_dir: Path):
|
20 |
+
self.app = app
|
21 |
+
self.input_dir: Path = input_dir
|
22 |
+
self.output_dir: Path = output_dir
|
23 |
+
|
24 |
+
self.image_dir_filenames = []
|
25 |
+
self.output_dir_filenames = []
|
26 |
+
if not self.thumbnail_directory.exists():
|
27 |
+
self.thumbnail_directory.mkdir(parents=True)
|
28 |
+
|
29 |
+
# fmt: off
|
30 |
+
self.app.add_api_route("/api/v1/medias", self.api_medias, methods=["GET"], response_model=List[MediasResponse])
|
31 |
+
self.app.add_api_route("/api/v1/media_file", self.api_media_file, methods=["GET"])
|
32 |
+
self.app.add_api_route("/api/v1/media_thumbnail_file", self.api_media_thumbnail_file, methods=["GET"])
|
33 |
+
# fmt: on
|
34 |
+
|
35 |
+
def api_medias(self, tab: MediaTab) -> List[MediasResponse]:
|
36 |
+
img_dir = self._get_dir(tab)
|
37 |
+
return self._media_names(img_dir)
|
38 |
+
|
39 |
+
def api_media_file(self, tab: MediaTab, filename: str) -> FileResponse:
|
40 |
+
file_path = self._get_file(tab, filename)
|
41 |
+
return FileResponse(file_path, media_type="image/png")
|
42 |
+
|
43 |
+
# tab=${tab}?filename=${filename.name}?width=${width}&height=${height}
|
44 |
+
def api_media_thumbnail_file(
|
45 |
+
self, tab: MediaTab, filename: str, width: int, height: int
|
46 |
+
) -> FileResponse:
|
47 |
+
img_dir = self._get_dir(tab)
|
48 |
+
thumb_filename, (width, height) = self.get_thumbnail(
|
49 |
+
img_dir, filename, width=width, height=height
|
50 |
+
)
|
51 |
+
thumbnail_filepath = self.thumbnail_directory / thumb_filename
|
52 |
+
return FileResponse(
|
53 |
+
thumbnail_filepath,
|
54 |
+
headers={
|
55 |
+
"X-Width": str(width),
|
56 |
+
"X-Height": str(height),
|
57 |
+
},
|
58 |
+
media_type="image/jpeg",
|
59 |
+
)
|
60 |
+
|
61 |
+
def _get_dir(self, tab: MediaTab) -> Path:
|
62 |
+
if tab == "input":
|
63 |
+
return self.input_dir
|
64 |
+
elif tab == "output":
|
65 |
+
return self.output_dir
|
66 |
+
else:
|
67 |
+
raise HTTPException(status_code=422, detail=f"tab not found: {tab}")
|
68 |
+
|
69 |
+
def _get_file(self, tab: MediaTab, filename: str) -> Path:
|
70 |
+
file_path = self._get_dir(tab) / filename
|
71 |
+
if not file_path.exists():
|
72 |
+
raise HTTPException(status_code=422, detail=f"file not found: {file_path}")
|
73 |
+
return file_path
|
74 |
+
|
75 |
+
@property
|
76 |
+
def thumbnail_directory(self) -> Path:
|
77 |
+
return self.output_dir / "thumbnails"
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def _media_names(directory: Path) -> List[MediasResponse]:
|
81 |
+
names = sorted([it.name for it in glob_img(directory)])
|
82 |
+
res = []
|
83 |
+
for name in names:
|
84 |
+
path = os.path.join(directory, name)
|
85 |
+
img = Image.open(path)
|
86 |
+
res.append(
|
87 |
+
MediasResponse(
|
88 |
+
name=name,
|
89 |
+
height=img.height,
|
90 |
+
width=img.width,
|
91 |
+
ctime=os.path.getctime(path),
|
92 |
+
mtime=os.path.getmtime(path),
|
93 |
+
)
|
94 |
+
)
|
95 |
+
return res
|
96 |
+
|
97 |
+
def get_thumbnail(
|
98 |
+
self, directory: Path, original_filename: str, width, height, **options
|
99 |
+
):
|
100 |
+
directory = Path(directory)
|
101 |
+
storage = FilesystemStorageBackend(self.app)
|
102 |
+
crop = options.get("crop", "fit")
|
103 |
+
background = options.get("background")
|
104 |
+
quality = options.get("quality", 90)
|
105 |
+
|
106 |
+
original_path, original_filename = os.path.split(original_filename)
|
107 |
+
original_filepath = os.path.join(directory, original_path, original_filename)
|
108 |
+
image = Image.open(BytesIO(storage.read(original_filepath)))
|
109 |
+
|
110 |
+
# keep ratio resize
|
111 |
+
if not width and not height:
|
112 |
+
width = 256
|
113 |
+
|
114 |
+
if width != 0:
|
115 |
+
height = int(image.height * width / image.width)
|
116 |
+
else:
|
117 |
+
width = int(image.width * height / image.height)
|
118 |
+
|
119 |
+
thumbnail_size = (width, height)
|
120 |
+
|
121 |
+
thumbnail_filename = generate_filename(
|
122 |
+
directory,
|
123 |
+
original_filename,
|
124 |
+
aspect_to_string(thumbnail_size),
|
125 |
+
crop,
|
126 |
+
background,
|
127 |
+
quality,
|
128 |
+
)
|
129 |
+
|
130 |
+
thumbnail_filepath = os.path.join(
|
131 |
+
self.thumbnail_directory, original_path, thumbnail_filename
|
132 |
+
)
|
133 |
+
|
134 |
+
if storage.exists(thumbnail_filepath):
|
135 |
+
return thumbnail_filepath, (width, height)
|
136 |
+
|
137 |
+
try:
|
138 |
+
image.load()
|
139 |
+
except (IOError, OSError):
|
140 |
+
self.app.logger.warning("Thumbnail not load image: %s", original_filepath)
|
141 |
+
return thumbnail_filepath, (width, height)
|
142 |
+
|
143 |
+
# get original image format
|
144 |
+
options["format"] = options.get("format", image.format)
|
145 |
+
|
146 |
+
image = self._create_thumbnail(
|
147 |
+
image, thumbnail_size, crop, background=background
|
148 |
+
)
|
149 |
+
|
150 |
+
raw_data = self.get_raw_data(image, **options)
|
151 |
+
storage.save(thumbnail_filepath, raw_data)
|
152 |
+
|
153 |
+
return thumbnail_filepath, (width, height)
|
154 |
+
|
155 |
+
def get_raw_data(self, image, **options):
|
156 |
+
data = {
|
157 |
+
"format": self._get_format(image, **options),
|
158 |
+
"quality": options.get("quality", 90),
|
159 |
+
}
|
160 |
+
|
161 |
+
_file = BytesIO()
|
162 |
+
image.save(_file, **data)
|
163 |
+
return _file.getvalue()
|
164 |
+
|
165 |
+
@staticmethod
|
166 |
+
def colormode(image, colormode="RGB"):
|
167 |
+
if colormode == "RGB" or colormode == "RGBA":
|
168 |
+
if image.mode == "RGBA":
|
169 |
+
return image
|
170 |
+
if image.mode == "LA":
|
171 |
+
return image.convert("RGBA")
|
172 |
+
return image.convert(colormode)
|
173 |
+
|
174 |
+
if colormode == "GRAY":
|
175 |
+
return image.convert("L")
|
176 |
+
|
177 |
+
return image.convert(colormode)
|
178 |
+
|
179 |
+
@staticmethod
|
180 |
+
def background(original_image, color=0xFF):
|
181 |
+
size = (max(original_image.size),) * 2
|
182 |
+
image = Image.new("L", size, color)
|
183 |
+
image.paste(
|
184 |
+
original_image,
|
185 |
+
tuple(map(lambda x: (x[0] - x[1]) / 2, zip(size, original_image.size))),
|
186 |
+
)
|
187 |
+
|
188 |
+
return image
|
189 |
+
|
190 |
+
def _get_format(self, image, **options):
|
191 |
+
if options.get("format"):
|
192 |
+
return options.get("format")
|
193 |
+
if image.format:
|
194 |
+
return image.format
|
195 |
+
|
196 |
+
return "JPEG"
|
197 |
+
|
198 |
+
def _create_thumbnail(self, image, size, crop="fit", background=None):
|
199 |
+
try:
|
200 |
+
resample = Image.Resampling.LANCZOS
|
201 |
+
except AttributeError: # pylint: disable=raise-missing-from
|
202 |
+
resample = Image.ANTIALIAS
|
203 |
+
|
204 |
+
if crop == "fit":
|
205 |
+
image = ImageOps.fit(image, size, resample)
|
206 |
+
else:
|
207 |
+
image = image.copy()
|
208 |
+
image.thumbnail(size, resample=resample)
|
209 |
+
|
210 |
+
if background is not None:
|
211 |
+
image = self.background(image)
|
212 |
+
|
213 |
+
image = self.colormode(image)
|
214 |
+
|
215 |
+
return image
|
iopaint/helper.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import imghdr
|
3 |
+
import io
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
from typing import List, Optional, Dict, Tuple
|
7 |
+
|
8 |
+
from urllib.parse import urlparse
|
9 |
+
import cv2
|
10 |
+
from PIL import Image, ImageOps, PngImagePlugin
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from iopaint.const import MPS_UNSUPPORT_MODELS
|
14 |
+
from loguru import logger
|
15 |
+
from torch.hub import download_url_to_file, get_dir
|
16 |
+
import hashlib
|
17 |
+
|
18 |
+
|
19 |
+
def md5sum(filename):
|
20 |
+
md5 = hashlib.md5()
|
21 |
+
with open(filename, "rb") as f:
|
22 |
+
for chunk in iter(lambda: f.read(128 * md5.block_size), b""):
|
23 |
+
md5.update(chunk)
|
24 |
+
return md5.hexdigest()
|
25 |
+
|
26 |
+
|
27 |
+
def switch_mps_device(model_name, device):
|
28 |
+
if model_name in MPS_UNSUPPORT_MODELS and str(device) == "mps":
|
29 |
+
logger.info(f"{model_name} not support mps, switch to cpu")
|
30 |
+
return torch.device("cpu")
|
31 |
+
return device
|
32 |
+
|
33 |
+
|
34 |
+
def get_cache_path_by_url(url):
|
35 |
+
parts = urlparse(url)
|
36 |
+
hub_dir = get_dir()
|
37 |
+
model_dir = os.path.join(hub_dir, "checkpoints")
|
38 |
+
if not os.path.isdir(model_dir):
|
39 |
+
os.makedirs(model_dir)
|
40 |
+
filename = os.path.basename(parts.path)
|
41 |
+
cached_file = os.path.join(model_dir, filename)
|
42 |
+
return cached_file
|
43 |
+
|
44 |
+
def get_cache_path_by_local(url):
|
45 |
+
root_path = os.getcwd()
|
46 |
+
model_path = os.path.join(root_path, 'pretrained-model', 'big-lama.pt')
|
47 |
+
return model_path
|
48 |
+
|
49 |
+
def download_model(url, model_md5: str = None):
|
50 |
+
cached_file = get_cache_path_by_url(url)
|
51 |
+
# cached_file = get_cache_path_by_local(url)
|
52 |
+
if not os.path.exists(cached_file):
|
53 |
+
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
|
54 |
+
hash_prefix = None
|
55 |
+
download_url_to_file(url, cached_file, hash_prefix, progress=True)
|
56 |
+
if model_md5:
|
57 |
+
_md5 = md5sum(cached_file)
|
58 |
+
if model_md5 == _md5:
|
59 |
+
logger.info(f"Download model success, md5: {_md5}")
|
60 |
+
else:
|
61 |
+
try:
|
62 |
+
os.remove(cached_file)
|
63 |
+
logger.error(
|
64 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart iopaint."
|
65 |
+
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
|
66 |
+
)
|
67 |
+
except:
|
68 |
+
logger.error(
|
69 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {cached_file} and restart iopaint."
|
70 |
+
)
|
71 |
+
exit(-1)
|
72 |
+
|
73 |
+
return cached_file
|
74 |
+
|
75 |
+
|
76 |
+
def ceil_modulo(x, mod):
|
77 |
+
if x % mod == 0:
|
78 |
+
return x
|
79 |
+
return (x // mod + 1) * mod
|
80 |
+
|
81 |
+
|
82 |
+
def handle_error(model_path, model_md5, e):
|
83 |
+
_md5 = md5sum(model_path)
|
84 |
+
if _md5 != model_md5:
|
85 |
+
try:
|
86 |
+
os.remove(model_path)
|
87 |
+
logger.error(
|
88 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, wrong model deleted. Please restart iopaint."
|
89 |
+
f"If you still have errors, please try download model manually first https://lama-cleaner-docs.vercel.app/install/download_model_manually.\n"
|
90 |
+
)
|
91 |
+
except:
|
92 |
+
logger.error(
|
93 |
+
f"Model md5: {_md5}, expected md5: {model_md5}, please delete {model_path} and restart iopaint."
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
logger.error(
|
97 |
+
f"Failed to load model {model_path},"
|
98 |
+
f"please submit an issue at https://github.com/Sanster/lama-cleaner/issues and include a screenshot of the error:\n{e}"
|
99 |
+
)
|
100 |
+
exit(-1)
|
101 |
+
|
102 |
+
|
103 |
+
def load_jit_model(url_or_path, device, model_md5: str):
|
104 |
+
if os.path.exists(url_or_path):
|
105 |
+
model_path = url_or_path
|
106 |
+
else:
|
107 |
+
model_path = download_model(url_or_path, model_md5)
|
108 |
+
|
109 |
+
logger.info(f"Loading model from: {model_path}")
|
110 |
+
try:
|
111 |
+
model = torch.jit.load(model_path, map_location="cpu").to(device)
|
112 |
+
except Exception as e:
|
113 |
+
handle_error(model_path, model_md5, e)
|
114 |
+
model.eval()
|
115 |
+
return model
|
116 |
+
|
117 |
+
|
118 |
+
def load_model(model: torch.nn.Module, url_or_path, device, model_md5):
|
119 |
+
if os.path.exists(url_or_path):
|
120 |
+
model_path = url_or_path
|
121 |
+
else:
|
122 |
+
model_path = download_model(url_or_path, model_md5)
|
123 |
+
|
124 |
+
try:
|
125 |
+
logger.info(f"Loading model from: {model_path}")
|
126 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
127 |
+
model.load_state_dict(state_dict, strict=True)
|
128 |
+
model.to(device)
|
129 |
+
except Exception as e:
|
130 |
+
handle_error(model_path, model_md5, e)
|
131 |
+
model.eval()
|
132 |
+
return model
|
133 |
+
|
134 |
+
|
135 |
+
def numpy_to_bytes(image_numpy: np.ndarray, ext: str) -> bytes:
|
136 |
+
data = cv2.imencode(
|
137 |
+
f".{ext}",
|
138 |
+
image_numpy,
|
139 |
+
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0],
|
140 |
+
)[1]
|
141 |
+
image_bytes = data.tobytes()
|
142 |
+
return image_bytes
|
143 |
+
|
144 |
+
|
145 |
+
def pil_to_bytes(pil_img, ext: str, quality: int = 95, infos={}) -> bytes:
|
146 |
+
with io.BytesIO() as output:
|
147 |
+
kwargs = {k: v for k, v in infos.items() if v is not None}
|
148 |
+
if ext == "jpg":
|
149 |
+
ext = "jpeg"
|
150 |
+
if "png" == ext.lower() and "parameters" in kwargs:
|
151 |
+
pnginfo_data = PngImagePlugin.PngInfo()
|
152 |
+
pnginfo_data.add_text("parameters", kwargs["parameters"])
|
153 |
+
kwargs["pnginfo"] = pnginfo_data
|
154 |
+
|
155 |
+
pil_img.save(output, format=ext, quality=quality, **kwargs)
|
156 |
+
image_bytes = output.getvalue()
|
157 |
+
return image_bytes
|
158 |
+
|
159 |
+
def pil_to_bytes_single(pil_img, ext: str, quality: int = 95, infos=None) -> bytes:
|
160 |
+
infos = infos or {} # Use an empty dictionary if infos is None
|
161 |
+
with io.BytesIO() as output:
|
162 |
+
kwargs = {k: v for k, v in infos.items() if v is not None}
|
163 |
+
if ext == "jpg":
|
164 |
+
ext = "jpeg"
|
165 |
+
if "png" == ext.lower() and "parameters" in kwargs:
|
166 |
+
pnginfo_data = PngImagePlugin.PngInfo()
|
167 |
+
pnginfo_data.add_text("parameters", kwargs["parameters"])
|
168 |
+
kwargs["pnginfo"] = pnginfo_data
|
169 |
+
|
170 |
+
pil_img.save(output, format=ext, quality=quality, **kwargs)
|
171 |
+
image_bytes = output.getvalue()
|
172 |
+
return image_bytes
|
173 |
+
|
174 |
+
|
175 |
+
def load_img(img_bytes, gray: bool = False, return_info: bool = False):
|
176 |
+
alpha_channel = None
|
177 |
+
image = Image.open(io.BytesIO(img_bytes))
|
178 |
+
|
179 |
+
if return_info:
|
180 |
+
infos = image.info
|
181 |
+
|
182 |
+
try:
|
183 |
+
image = ImageOps.exif_transpose(image)
|
184 |
+
except:
|
185 |
+
pass
|
186 |
+
|
187 |
+
if gray:
|
188 |
+
image = image.convert("L")
|
189 |
+
np_img = np.array(image)
|
190 |
+
else:
|
191 |
+
if image.mode == "RGBA":
|
192 |
+
np_img = np.array(image)
|
193 |
+
alpha_channel = np_img[:, :, -1]
|
194 |
+
np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
|
195 |
+
else:
|
196 |
+
image = image.convert("RGB")
|
197 |
+
np_img = np.array(image)
|
198 |
+
|
199 |
+
if return_info:
|
200 |
+
return np_img, alpha_channel, infos
|
201 |
+
return np_img, alpha_channel
|
202 |
+
|
203 |
+
|
204 |
+
def norm_img(np_img):
|
205 |
+
if len(np_img.shape) == 2:
|
206 |
+
np_img = np_img[:, :, np.newaxis]
|
207 |
+
np_img = np.transpose(np_img, (2, 0, 1))
|
208 |
+
np_img = np_img.astype("float32") / 255
|
209 |
+
return np_img
|
210 |
+
|
211 |
+
|
212 |
+
def resize_max_size(
|
213 |
+
np_img, size_limit: int, interpolation=cv2.INTER_CUBIC
|
214 |
+
) -> np.ndarray:
|
215 |
+
# Resize image's longer size to size_limit if longer size larger than size_limit
|
216 |
+
h, w = np_img.shape[:2]
|
217 |
+
if max(h, w) > size_limit:
|
218 |
+
ratio = size_limit / max(h, w)
|
219 |
+
new_w = int(w * ratio + 0.5)
|
220 |
+
new_h = int(h * ratio + 0.5)
|
221 |
+
return cv2.resize(np_img, dsize=(new_w, new_h), interpolation=interpolation)
|
222 |
+
else:
|
223 |
+
return np_img
|
224 |
+
|
225 |
+
|
226 |
+
def pad_img_to_modulo(
|
227 |
+
img: np.ndarray, mod: int, square: bool = False, min_size: Optional[int] = None
|
228 |
+
):
|
229 |
+
"""
|
230 |
+
|
231 |
+
Args:
|
232 |
+
img: [H, W, C]
|
233 |
+
mod:
|
234 |
+
square: 是否为正方形
|
235 |
+
min_size:
|
236 |
+
|
237 |
+
Returns:
|
238 |
+
|
239 |
+
"""
|
240 |
+
if len(img.shape) == 2:
|
241 |
+
img = img[:, :, np.newaxis]
|
242 |
+
height, width = img.shape[:2]
|
243 |
+
out_height = ceil_modulo(height, mod)
|
244 |
+
out_width = ceil_modulo(width, mod)
|
245 |
+
|
246 |
+
if min_size is not None:
|
247 |
+
assert min_size % mod == 0
|
248 |
+
out_width = max(min_size, out_width)
|
249 |
+
out_height = max(min_size, out_height)
|
250 |
+
|
251 |
+
if square:
|
252 |
+
max_size = max(out_height, out_width)
|
253 |
+
out_height = max_size
|
254 |
+
out_width = max_size
|
255 |
+
|
256 |
+
return np.pad(
|
257 |
+
img,
|
258 |
+
((0, out_height - height), (0, out_width - width), (0, 0)),
|
259 |
+
mode="symmetric",
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
def boxes_from_mask(mask: np.ndarray) -> List[np.ndarray]:
|
264 |
+
"""
|
265 |
+
Args:
|
266 |
+
mask: (h, w, 1) 0~255
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
|
270 |
+
"""
|
271 |
+
height, width = mask.shape[:2]
|
272 |
+
_, thresh = cv2.threshold(mask, 127, 255, 0)
|
273 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
274 |
+
|
275 |
+
boxes = []
|
276 |
+
for cnt in contours:
|
277 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
278 |
+
box = np.array([x, y, x + w, y + h]).astype(int)
|
279 |
+
|
280 |
+
box[::2] = np.clip(box[::2], 0, width)
|
281 |
+
box[1::2] = np.clip(box[1::2], 0, height)
|
282 |
+
boxes.append(box)
|
283 |
+
|
284 |
+
return boxes
|
285 |
+
|
286 |
+
|
287 |
+
def only_keep_largest_contour(mask: np.ndarray) -> List[np.ndarray]:
|
288 |
+
"""
|
289 |
+
Args:
|
290 |
+
mask: (h, w) 0~255
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
|
294 |
+
"""
|
295 |
+
_, thresh = cv2.threshold(mask, 127, 255, 0)
|
296 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
297 |
+
|
298 |
+
max_area = 0
|
299 |
+
max_index = -1
|
300 |
+
for i, cnt in enumerate(contours):
|
301 |
+
area = cv2.contourArea(cnt)
|
302 |
+
if area > max_area:
|
303 |
+
max_area = area
|
304 |
+
max_index = i
|
305 |
+
|
306 |
+
if max_index != -1:
|
307 |
+
new_mask = np.zeros_like(mask)
|
308 |
+
return cv2.drawContours(new_mask, contours, max_index, 255, -1)
|
309 |
+
else:
|
310 |
+
return mask
|
311 |
+
|
312 |
+
|
313 |
+
def is_mac():
|
314 |
+
return sys.platform == "darwin"
|
315 |
+
|
316 |
+
|
317 |
+
def get_image_ext(img_bytes):
|
318 |
+
w = imghdr.what("", img_bytes)
|
319 |
+
if w is None:
|
320 |
+
w = "jpeg"
|
321 |
+
return w
|
322 |
+
|
323 |
+
|
324 |
+
def decode_base64_to_image(
|
325 |
+
encoding: str, gray=False
|
326 |
+
) -> Tuple[np.array, Optional[np.array], Dict]:
|
327 |
+
if encoding.startswith("data:image/") or encoding.startswith(
|
328 |
+
"data:application/octet-stream;base64,"
|
329 |
+
):
|
330 |
+
encoding = encoding.split(";")[1].split(",")[1]
|
331 |
+
image = Image.open(io.BytesIO(base64.b64decode(encoding)))
|
332 |
+
|
333 |
+
alpha_channel = None
|
334 |
+
try:
|
335 |
+
image = ImageOps.exif_transpose(image)
|
336 |
+
except:
|
337 |
+
pass
|
338 |
+
# exif_transpose will remove exif rotate info,we must call image.info after exif_transpose
|
339 |
+
infos = image.info
|
340 |
+
|
341 |
+
if gray:
|
342 |
+
image = image.convert("L")
|
343 |
+
np_img = np.array(image)
|
344 |
+
else:
|
345 |
+
if image.mode == "RGBA":
|
346 |
+
np_img = np.array(image)
|
347 |
+
alpha_channel = np_img[:, :, -1]
|
348 |
+
np_img = cv2.cvtColor(np_img, cv2.COLOR_RGBA2RGB)
|
349 |
+
else:
|
350 |
+
image = image.convert("RGB")
|
351 |
+
np_img = np.array(image)
|
352 |
+
|
353 |
+
return np_img, alpha_channel, infos
|
354 |
+
|
355 |
+
|
356 |
+
def encode_pil_to_base64(image: Image, quality: int, infos: Dict) -> bytes:
|
357 |
+
img_bytes = pil_to_bytes(
|
358 |
+
image,
|
359 |
+
"png",
|
360 |
+
quality=quality,
|
361 |
+
infos=infos,
|
362 |
+
)
|
363 |
+
return base64.b64encode(img_bytes)
|
364 |
+
|
365 |
+
|
366 |
+
def concat_alpha_channel(rgb_np_img, alpha_channel) -> np.ndarray:
|
367 |
+
if alpha_channel is not None:
|
368 |
+
if alpha_channel.shape[:2] != rgb_np_img.shape[:2]:
|
369 |
+
alpha_channel = cv2.resize(
|
370 |
+
alpha_channel, dsize=(rgb_np_img.shape[1], rgb_np_img.shape[0])
|
371 |
+
)
|
372 |
+
rgb_np_img = np.concatenate(
|
373 |
+
(rgb_np_img, alpha_channel[:, :, np.newaxis]), axis=-1
|
374 |
+
)
|
375 |
+
return rgb_np_img
|
376 |
+
|
377 |
+
|
378 |
+
def adjust_mask(mask: np.ndarray, kernel_size: int, operate):
|
379 |
+
# fronted brush color "ffcc00bb"
|
380 |
+
# kernel_size = kernel_size*2+1
|
381 |
+
mask[mask >= 127] = 255
|
382 |
+
mask[mask < 127] = 0
|
383 |
+
|
384 |
+
if operate == "reverse":
|
385 |
+
mask = 255 - mask
|
386 |
+
else:
|
387 |
+
kernel = cv2.getStructuringElement(
|
388 |
+
cv2.MORPH_ELLIPSE, (2 * kernel_size + 1, 2 * kernel_size + 1)
|
389 |
+
)
|
390 |
+
if operate == "expand":
|
391 |
+
mask = cv2.dilate(
|
392 |
+
mask,
|
393 |
+
kernel,
|
394 |
+
iterations=1,
|
395 |
+
)
|
396 |
+
else:
|
397 |
+
mask = cv2.erode(
|
398 |
+
mask,
|
399 |
+
kernel,
|
400 |
+
iterations=1,
|
401 |
+
)
|
402 |
+
res_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
403 |
+
res_mask[mask > 128] = [255, 203, 0, int(255 * 0.73)]
|
404 |
+
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
|
405 |
+
return res_mask
|
406 |
+
|
407 |
+
|
408 |
+
def gen_frontend_mask(bgr_or_gray_mask):
|
409 |
+
if len(bgr_or_gray_mask.shape) == 3 and bgr_or_gray_mask.shape[2] != 1:
|
410 |
+
bgr_or_gray_mask = cv2.cvtColor(bgr_or_gray_mask, cv2.COLOR_BGR2GRAY)
|
411 |
+
|
412 |
+
# fronted brush color "ffcc00bb"
|
413 |
+
# TODO: how to set kernel size?
|
414 |
+
kernel_size = 9
|
415 |
+
bgr_or_gray_mask = cv2.dilate(
|
416 |
+
bgr_or_gray_mask,
|
417 |
+
np.ones((kernel_size, kernel_size), np.uint8),
|
418 |
+
iterations=1,
|
419 |
+
)
|
420 |
+
res_mask = np.zeros(
|
421 |
+
(bgr_or_gray_mask.shape[0], bgr_or_gray_mask.shape[1], 4), dtype=np.uint8
|
422 |
+
)
|
423 |
+
res_mask[bgr_or_gray_mask > 128] = [255, 203, 0, int(255 * 0.73)]
|
424 |
+
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
|
425 |
+
return res_mask
|
iopaint/installer.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
|
4 |
+
|
5 |
+
def install(package):
|
6 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
7 |
+
|
8 |
+
|
9 |
+
def install_plugins_package():
|
10 |
+
install("rembg")
|
11 |
+
install("realesrgan")
|
12 |
+
install("gfpgan")
|
iopaint/model/anytext/cldm/cldm.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import einops
|
5 |
+
import torch
|
6 |
+
import torch as th
|
7 |
+
import torch.nn as nn
|
8 |
+
import copy
|
9 |
+
from easydict import EasyDict as edict
|
10 |
+
|
11 |
+
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
|
12 |
+
conv_nd,
|
13 |
+
linear,
|
14 |
+
zero_module,
|
15 |
+
timestep_embedding,
|
16 |
+
)
|
17 |
+
|
18 |
+
from einops import rearrange, repeat
|
19 |
+
from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer
|
20 |
+
from iopaint.model.anytext.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
|
21 |
+
from iopaint.model.anytext.ldm.models.diffusion.ddpm import LatentDiffusion
|
22 |
+
from iopaint.model.anytext.ldm.util import log_txt_as_img, exists, instantiate_from_config
|
23 |
+
from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler
|
24 |
+
from iopaint.model.anytext.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
25 |
+
from .recognizer import TextRecognizer, create_predictor
|
26 |
+
|
27 |
+
CURRENT_DIR = Path(os.path.dirname(os.path.abspath(__file__)))
|
28 |
+
|
29 |
+
|
30 |
+
def count_parameters(model):
|
31 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
32 |
+
|
33 |
+
|
34 |
+
class ControlledUnetModel(UNetModel):
|
35 |
+
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
|
36 |
+
hs = []
|
37 |
+
with torch.no_grad():
|
38 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
39 |
+
if self.use_fp16:
|
40 |
+
t_emb = t_emb.half()
|
41 |
+
emb = self.time_embed(t_emb)
|
42 |
+
h = x.type(self.dtype)
|
43 |
+
for module in self.input_blocks:
|
44 |
+
h = module(h, emb, context)
|
45 |
+
hs.append(h)
|
46 |
+
h = self.middle_block(h, emb, context)
|
47 |
+
|
48 |
+
if control is not None:
|
49 |
+
h += control.pop()
|
50 |
+
|
51 |
+
for i, module in enumerate(self.output_blocks):
|
52 |
+
if only_mid_control or control is None:
|
53 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
54 |
+
else:
|
55 |
+
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
|
56 |
+
h = module(h, emb, context)
|
57 |
+
|
58 |
+
h = h.type(x.dtype)
|
59 |
+
return self.out(h)
|
60 |
+
|
61 |
+
|
62 |
+
class ControlNet(nn.Module):
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
image_size,
|
66 |
+
in_channels,
|
67 |
+
model_channels,
|
68 |
+
glyph_channels,
|
69 |
+
position_channels,
|
70 |
+
num_res_blocks,
|
71 |
+
attention_resolutions,
|
72 |
+
dropout=0,
|
73 |
+
channel_mult=(1, 2, 4, 8),
|
74 |
+
conv_resample=True,
|
75 |
+
dims=2,
|
76 |
+
use_checkpoint=False,
|
77 |
+
use_fp16=False,
|
78 |
+
num_heads=-1,
|
79 |
+
num_head_channels=-1,
|
80 |
+
num_heads_upsample=-1,
|
81 |
+
use_scale_shift_norm=False,
|
82 |
+
resblock_updown=False,
|
83 |
+
use_new_attention_order=False,
|
84 |
+
use_spatial_transformer=False, # custom transformer support
|
85 |
+
transformer_depth=1, # custom transformer support
|
86 |
+
context_dim=None, # custom transformer support
|
87 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
88 |
+
legacy=True,
|
89 |
+
disable_self_attentions=None,
|
90 |
+
num_attention_blocks=None,
|
91 |
+
disable_middle_self_attn=False,
|
92 |
+
use_linear_in_transformer=False,
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
if use_spatial_transformer:
|
96 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
97 |
+
|
98 |
+
if context_dim is not None:
|
99 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
100 |
+
from omegaconf.listconfig import ListConfig
|
101 |
+
if type(context_dim) == ListConfig:
|
102 |
+
context_dim = list(context_dim)
|
103 |
+
|
104 |
+
if num_heads_upsample == -1:
|
105 |
+
num_heads_upsample = num_heads
|
106 |
+
|
107 |
+
if num_heads == -1:
|
108 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
109 |
+
|
110 |
+
if num_head_channels == -1:
|
111 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
112 |
+
self.dims = dims
|
113 |
+
self.image_size = image_size
|
114 |
+
self.in_channels = in_channels
|
115 |
+
self.model_channels = model_channels
|
116 |
+
if isinstance(num_res_blocks, int):
|
117 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
118 |
+
else:
|
119 |
+
if len(num_res_blocks) != len(channel_mult):
|
120 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
121 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
122 |
+
self.num_res_blocks = num_res_blocks
|
123 |
+
if disable_self_attentions is not None:
|
124 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
125 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
126 |
+
if num_attention_blocks is not None:
|
127 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
128 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
129 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
130 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
131 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
132 |
+
f"attention will still not be set.")
|
133 |
+
self.attention_resolutions = attention_resolutions
|
134 |
+
self.dropout = dropout
|
135 |
+
self.channel_mult = channel_mult
|
136 |
+
self.conv_resample = conv_resample
|
137 |
+
self.use_checkpoint = use_checkpoint
|
138 |
+
self.use_fp16 = use_fp16
|
139 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
140 |
+
self.num_heads = num_heads
|
141 |
+
self.num_head_channels = num_head_channels
|
142 |
+
self.num_heads_upsample = num_heads_upsample
|
143 |
+
self.predict_codebook_ids = n_embed is not None
|
144 |
+
|
145 |
+
time_embed_dim = model_channels * 4
|
146 |
+
self.time_embed = nn.Sequential(
|
147 |
+
linear(model_channels, time_embed_dim),
|
148 |
+
nn.SiLU(),
|
149 |
+
linear(time_embed_dim, time_embed_dim),
|
150 |
+
)
|
151 |
+
|
152 |
+
self.input_blocks = nn.ModuleList(
|
153 |
+
[
|
154 |
+
TimestepEmbedSequential(
|
155 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
156 |
+
)
|
157 |
+
]
|
158 |
+
)
|
159 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
160 |
+
|
161 |
+
self.glyph_block = TimestepEmbedSequential(
|
162 |
+
conv_nd(dims, glyph_channels, 8, 3, padding=1),
|
163 |
+
nn.SiLU(),
|
164 |
+
conv_nd(dims, 8, 8, 3, padding=1),
|
165 |
+
nn.SiLU(),
|
166 |
+
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
|
167 |
+
nn.SiLU(),
|
168 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
169 |
+
nn.SiLU(),
|
170 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
171 |
+
nn.SiLU(),
|
172 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
173 |
+
nn.SiLU(),
|
174 |
+
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
175 |
+
nn.SiLU(),
|
176 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
177 |
+
nn.SiLU(),
|
178 |
+
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
179 |
+
nn.SiLU(),
|
180 |
+
)
|
181 |
+
|
182 |
+
self.position_block = TimestepEmbedSequential(
|
183 |
+
conv_nd(dims, position_channels, 8, 3, padding=1),
|
184 |
+
nn.SiLU(),
|
185 |
+
conv_nd(dims, 8, 8, 3, padding=1),
|
186 |
+
nn.SiLU(),
|
187 |
+
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
|
188 |
+
nn.SiLU(),
|
189 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
190 |
+
nn.SiLU(),
|
191 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
192 |
+
nn.SiLU(),
|
193 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
194 |
+
nn.SiLU(),
|
195 |
+
conv_nd(dims, 32, 64, 3, padding=1, stride=2),
|
196 |
+
nn.SiLU(),
|
197 |
+
)
|
198 |
+
|
199 |
+
self.fuse_block = zero_module(conv_nd(dims, 256+64+4, model_channels, 3, padding=1))
|
200 |
+
|
201 |
+
self._feature_size = model_channels
|
202 |
+
input_block_chans = [model_channels]
|
203 |
+
ch = model_channels
|
204 |
+
ds = 1
|
205 |
+
for level, mult in enumerate(channel_mult):
|
206 |
+
for nr in range(self.num_res_blocks[level]):
|
207 |
+
layers = [
|
208 |
+
ResBlock(
|
209 |
+
ch,
|
210 |
+
time_embed_dim,
|
211 |
+
dropout,
|
212 |
+
out_channels=mult * model_channels,
|
213 |
+
dims=dims,
|
214 |
+
use_checkpoint=use_checkpoint,
|
215 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
216 |
+
)
|
217 |
+
]
|
218 |
+
ch = mult * model_channels
|
219 |
+
if ds in attention_resolutions:
|
220 |
+
if num_head_channels == -1:
|
221 |
+
dim_head = ch // num_heads
|
222 |
+
else:
|
223 |
+
num_heads = ch // num_head_channels
|
224 |
+
dim_head = num_head_channels
|
225 |
+
if legacy:
|
226 |
+
# num_heads = 1
|
227 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
228 |
+
if exists(disable_self_attentions):
|
229 |
+
disabled_sa = disable_self_attentions[level]
|
230 |
+
else:
|
231 |
+
disabled_sa = False
|
232 |
+
|
233 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
234 |
+
layers.append(
|
235 |
+
AttentionBlock(
|
236 |
+
ch,
|
237 |
+
use_checkpoint=use_checkpoint,
|
238 |
+
num_heads=num_heads,
|
239 |
+
num_head_channels=dim_head,
|
240 |
+
use_new_attention_order=use_new_attention_order,
|
241 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
242 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
243 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
244 |
+
use_checkpoint=use_checkpoint
|
245 |
+
)
|
246 |
+
)
|
247 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
248 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
249 |
+
self._feature_size += ch
|
250 |
+
input_block_chans.append(ch)
|
251 |
+
if level != len(channel_mult) - 1:
|
252 |
+
out_ch = ch
|
253 |
+
self.input_blocks.append(
|
254 |
+
TimestepEmbedSequential(
|
255 |
+
ResBlock(
|
256 |
+
ch,
|
257 |
+
time_embed_dim,
|
258 |
+
dropout,
|
259 |
+
out_channels=out_ch,
|
260 |
+
dims=dims,
|
261 |
+
use_checkpoint=use_checkpoint,
|
262 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
263 |
+
down=True,
|
264 |
+
)
|
265 |
+
if resblock_updown
|
266 |
+
else Downsample(
|
267 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
268 |
+
)
|
269 |
+
)
|
270 |
+
)
|
271 |
+
ch = out_ch
|
272 |
+
input_block_chans.append(ch)
|
273 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
274 |
+
ds *= 2
|
275 |
+
self._feature_size += ch
|
276 |
+
|
277 |
+
if num_head_channels == -1:
|
278 |
+
dim_head = ch // num_heads
|
279 |
+
else:
|
280 |
+
num_heads = ch // num_head_channels
|
281 |
+
dim_head = num_head_channels
|
282 |
+
if legacy:
|
283 |
+
# num_heads = 1
|
284 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
285 |
+
self.middle_block = TimestepEmbedSequential(
|
286 |
+
ResBlock(
|
287 |
+
ch,
|
288 |
+
time_embed_dim,
|
289 |
+
dropout,
|
290 |
+
dims=dims,
|
291 |
+
use_checkpoint=use_checkpoint,
|
292 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
293 |
+
),
|
294 |
+
AttentionBlock(
|
295 |
+
ch,
|
296 |
+
use_checkpoint=use_checkpoint,
|
297 |
+
num_heads=num_heads,
|
298 |
+
num_head_channels=dim_head,
|
299 |
+
use_new_attention_order=use_new_attention_order,
|
300 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
301 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
302 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
303 |
+
use_checkpoint=use_checkpoint
|
304 |
+
),
|
305 |
+
ResBlock(
|
306 |
+
ch,
|
307 |
+
time_embed_dim,
|
308 |
+
dropout,
|
309 |
+
dims=dims,
|
310 |
+
use_checkpoint=use_checkpoint,
|
311 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
312 |
+
),
|
313 |
+
)
|
314 |
+
self.middle_block_out = self.make_zero_conv(ch)
|
315 |
+
self._feature_size += ch
|
316 |
+
|
317 |
+
def make_zero_conv(self, channels):
|
318 |
+
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
319 |
+
|
320 |
+
def forward(self, x, hint, text_info, timesteps, context, **kwargs):
|
321 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
322 |
+
if self.use_fp16:
|
323 |
+
t_emb = t_emb.half()
|
324 |
+
emb = self.time_embed(t_emb)
|
325 |
+
|
326 |
+
# guided_hint from text_info
|
327 |
+
B, C, H, W = x.shape
|
328 |
+
glyphs = torch.cat(text_info['glyphs'], dim=1).sum(dim=1, keepdim=True)
|
329 |
+
positions = torch.cat(text_info['positions'], dim=1).sum(dim=1, keepdim=True)
|
330 |
+
enc_glyph = self.glyph_block(glyphs, emb, context)
|
331 |
+
enc_pos = self.position_block(positions, emb, context)
|
332 |
+
guided_hint = self.fuse_block(torch.cat([enc_glyph, enc_pos, text_info['masked_x']], dim=1))
|
333 |
+
|
334 |
+
outs = []
|
335 |
+
|
336 |
+
h = x.type(self.dtype)
|
337 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
338 |
+
if guided_hint is not None:
|
339 |
+
h = module(h, emb, context)
|
340 |
+
h += guided_hint
|
341 |
+
guided_hint = None
|
342 |
+
else:
|
343 |
+
h = module(h, emb, context)
|
344 |
+
outs.append(zero_conv(h, emb, context))
|
345 |
+
|
346 |
+
h = self.middle_block(h, emb, context)
|
347 |
+
outs.append(self.middle_block_out(h, emb, context))
|
348 |
+
|
349 |
+
return outs
|
350 |
+
|
351 |
+
|
352 |
+
class ControlLDM(LatentDiffusion):
|
353 |
+
|
354 |
+
def __init__(self, control_stage_config, control_key, glyph_key, position_key, only_mid_control, loss_alpha=0, loss_beta=0, with_step_weight=False, use_vae_upsample=False, latin_weight=1.0, embedding_manager_config=None, *args, **kwargs):
|
355 |
+
self.use_fp16 = kwargs.pop('use_fp16', False)
|
356 |
+
super().__init__(*args, **kwargs)
|
357 |
+
self.control_model = instantiate_from_config(control_stage_config)
|
358 |
+
self.control_key = control_key
|
359 |
+
self.glyph_key = glyph_key
|
360 |
+
self.position_key = position_key
|
361 |
+
self.only_mid_control = only_mid_control
|
362 |
+
self.control_scales = [1.0] * 13
|
363 |
+
self.loss_alpha = loss_alpha
|
364 |
+
self.loss_beta = loss_beta
|
365 |
+
self.with_step_weight = with_step_weight
|
366 |
+
self.use_vae_upsample = use_vae_upsample
|
367 |
+
self.latin_weight = latin_weight
|
368 |
+
|
369 |
+
if embedding_manager_config is not None and embedding_manager_config.params.valid:
|
370 |
+
self.embedding_manager = self.instantiate_embedding_manager(embedding_manager_config, self.cond_stage_model)
|
371 |
+
for param in self.embedding_manager.embedding_parameters():
|
372 |
+
param.requires_grad = True
|
373 |
+
else:
|
374 |
+
self.embedding_manager = None
|
375 |
+
if self.loss_alpha > 0 or self.loss_beta > 0 or self.embedding_manager:
|
376 |
+
if embedding_manager_config.params.emb_type == 'ocr':
|
377 |
+
self.text_predictor = create_predictor().eval()
|
378 |
+
args = edict()
|
379 |
+
args.rec_image_shape = "3, 48, 320"
|
380 |
+
args.rec_batch_num = 6
|
381 |
+
args.rec_char_dict_path = str(CURRENT_DIR.parent / "ocr_recog" / "ppocr_keys_v1.txt")
|
382 |
+
args.use_fp16 = self.use_fp16
|
383 |
+
self.cn_recognizer = TextRecognizer(args, self.text_predictor)
|
384 |
+
for param in self.text_predictor.parameters():
|
385 |
+
param.requires_grad = False
|
386 |
+
if self.embedding_manager:
|
387 |
+
self.embedding_manager.recog = self.cn_recognizer
|
388 |
+
|
389 |
+
@torch.no_grad()
|
390 |
+
def get_input(self, batch, k, bs=None, *args, **kwargs):
|
391 |
+
if self.embedding_manager is None: # fill in full caption
|
392 |
+
self.fill_caption(batch)
|
393 |
+
x, c, mx = super().get_input(batch, self.first_stage_key, mask_k='masked_img', *args, **kwargs)
|
394 |
+
control = batch[self.control_key] # for log_images and loss_alpha, not real control
|
395 |
+
if bs is not None:
|
396 |
+
control = control[:bs]
|
397 |
+
control = control.to(self.device)
|
398 |
+
control = einops.rearrange(control, 'b h w c -> b c h w')
|
399 |
+
control = control.to(memory_format=torch.contiguous_format).float()
|
400 |
+
|
401 |
+
inv_mask = batch['inv_mask']
|
402 |
+
if bs is not None:
|
403 |
+
inv_mask = inv_mask[:bs]
|
404 |
+
inv_mask = inv_mask.to(self.device)
|
405 |
+
inv_mask = einops.rearrange(inv_mask, 'b h w c -> b c h w')
|
406 |
+
inv_mask = inv_mask.to(memory_format=torch.contiguous_format).float()
|
407 |
+
|
408 |
+
glyphs = batch[self.glyph_key]
|
409 |
+
gly_line = batch['gly_line']
|
410 |
+
positions = batch[self.position_key]
|
411 |
+
n_lines = batch['n_lines']
|
412 |
+
language = batch['language']
|
413 |
+
texts = batch['texts']
|
414 |
+
assert len(glyphs) == len(positions)
|
415 |
+
for i in range(len(glyphs)):
|
416 |
+
if bs is not None:
|
417 |
+
glyphs[i] = glyphs[i][:bs]
|
418 |
+
gly_line[i] = gly_line[i][:bs]
|
419 |
+
positions[i] = positions[i][:bs]
|
420 |
+
n_lines = n_lines[:bs]
|
421 |
+
glyphs[i] = glyphs[i].to(self.device)
|
422 |
+
gly_line[i] = gly_line[i].to(self.device)
|
423 |
+
positions[i] = positions[i].to(self.device)
|
424 |
+
glyphs[i] = einops.rearrange(glyphs[i], 'b h w c -> b c h w')
|
425 |
+
gly_line[i] = einops.rearrange(gly_line[i], 'b h w c -> b c h w')
|
426 |
+
positions[i] = einops.rearrange(positions[i], 'b h w c -> b c h w')
|
427 |
+
glyphs[i] = glyphs[i].to(memory_format=torch.contiguous_format).float()
|
428 |
+
gly_line[i] = gly_line[i].to(memory_format=torch.contiguous_format).float()
|
429 |
+
positions[i] = positions[i].to(memory_format=torch.contiguous_format).float()
|
430 |
+
info = {}
|
431 |
+
info['glyphs'] = glyphs
|
432 |
+
info['positions'] = positions
|
433 |
+
info['n_lines'] = n_lines
|
434 |
+
info['language'] = language
|
435 |
+
info['texts'] = texts
|
436 |
+
info['img'] = batch['img'] # nhwc, (-1,1)
|
437 |
+
info['masked_x'] = mx
|
438 |
+
info['gly_line'] = gly_line
|
439 |
+
info['inv_mask'] = inv_mask
|
440 |
+
return x, dict(c_crossattn=[c], c_concat=[control], text_info=info)
|
441 |
+
|
442 |
+
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
|
443 |
+
assert isinstance(cond, dict)
|
444 |
+
diffusion_model = self.model.diffusion_model
|
445 |
+
_cond = torch.cat(cond['c_crossattn'], 1)
|
446 |
+
_hint = torch.cat(cond['c_concat'], 1)
|
447 |
+
if self.use_fp16:
|
448 |
+
x_noisy = x_noisy.half()
|
449 |
+
control = self.control_model(x=x_noisy, timesteps=t, context=_cond, hint=_hint, text_info=cond['text_info'])
|
450 |
+
control = [c * scale for c, scale in zip(control, self.control_scales)]
|
451 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=_cond, control=control, only_mid_control=self.only_mid_control)
|
452 |
+
|
453 |
+
return eps
|
454 |
+
|
455 |
+
def instantiate_embedding_manager(self, config, embedder):
|
456 |
+
model = instantiate_from_config(config, embedder=embedder)
|
457 |
+
return model
|
458 |
+
|
459 |
+
@torch.no_grad()
|
460 |
+
def get_unconditional_conditioning(self, N):
|
461 |
+
return self.get_learned_conditioning(dict(c_crossattn=[[""] * N], text_info=None))
|
462 |
+
|
463 |
+
def get_learned_conditioning(self, c):
|
464 |
+
if self.cond_stage_forward is None:
|
465 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
466 |
+
if self.embedding_manager is not None and c['text_info'] is not None:
|
467 |
+
self.embedding_manager.encode_text(c['text_info'])
|
468 |
+
if isinstance(c, dict):
|
469 |
+
cond_txt = c['c_crossattn'][0]
|
470 |
+
else:
|
471 |
+
cond_txt = c
|
472 |
+
if self.embedding_manager is not None:
|
473 |
+
cond_txt = self.cond_stage_model.encode(cond_txt, embedding_manager=self.embedding_manager)
|
474 |
+
else:
|
475 |
+
cond_txt = self.cond_stage_model.encode(cond_txt)
|
476 |
+
if isinstance(c, dict):
|
477 |
+
c['c_crossattn'][0] = cond_txt
|
478 |
+
else:
|
479 |
+
c = cond_txt
|
480 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
481 |
+
c = c.mode()
|
482 |
+
else:
|
483 |
+
c = self.cond_stage_model(c)
|
484 |
+
else:
|
485 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
486 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
487 |
+
return c
|
488 |
+
|
489 |
+
def fill_caption(self, batch, place_holder='*'):
|
490 |
+
bs = len(batch['n_lines'])
|
491 |
+
cond_list = copy.deepcopy(batch[self.cond_stage_key])
|
492 |
+
for i in range(bs):
|
493 |
+
n_lines = batch['n_lines'][i]
|
494 |
+
if n_lines == 0:
|
495 |
+
continue
|
496 |
+
cur_cap = cond_list[i]
|
497 |
+
for j in range(n_lines):
|
498 |
+
r_txt = batch['texts'][j][i]
|
499 |
+
cur_cap = cur_cap.replace(place_holder, f'"{r_txt}"', 1)
|
500 |
+
cond_list[i] = cur_cap
|
501 |
+
batch[self.cond_stage_key] = cond_list
|
502 |
+
|
503 |
+
@torch.no_grad()
|
504 |
+
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
|
505 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
506 |
+
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
|
507 |
+
use_ema_scope=True,
|
508 |
+
**kwargs):
|
509 |
+
use_ddim = ddim_steps is not None
|
510 |
+
|
511 |
+
log = dict()
|
512 |
+
z, c = self.get_input(batch, self.first_stage_key, bs=N)
|
513 |
+
if self.cond_stage_trainable:
|
514 |
+
with torch.no_grad():
|
515 |
+
c = self.get_learned_conditioning(c)
|
516 |
+
c_crossattn = c["c_crossattn"][0][:N]
|
517 |
+
c_cat = c["c_concat"][0][:N]
|
518 |
+
text_info = c["text_info"]
|
519 |
+
text_info['glyphs'] = [i[:N] for i in text_info['glyphs']]
|
520 |
+
text_info['gly_line'] = [i[:N] for i in text_info['gly_line']]
|
521 |
+
text_info['positions'] = [i[:N] for i in text_info['positions']]
|
522 |
+
text_info['n_lines'] = text_info['n_lines'][:N]
|
523 |
+
text_info['masked_x'] = text_info['masked_x'][:N]
|
524 |
+
text_info['img'] = text_info['img'][:N]
|
525 |
+
|
526 |
+
N = min(z.shape[0], N)
|
527 |
+
n_row = min(z.shape[0], n_row)
|
528 |
+
log["reconstruction"] = self.decode_first_stage(z)
|
529 |
+
log["masked_image"] = self.decode_first_stage(text_info['masked_x'])
|
530 |
+
log["control"] = c_cat * 2.0 - 1.0
|
531 |
+
log["img"] = text_info['img'].permute(0, 3, 1, 2) # log source image if needed
|
532 |
+
# get glyph
|
533 |
+
glyph_bs = torch.stack(text_info['glyphs'])
|
534 |
+
glyph_bs = torch.sum(glyph_bs, dim=0) * 2.0 - 1.0
|
535 |
+
log["glyph"] = torch.nn.functional.interpolate(glyph_bs, size=(512, 512), mode='bilinear', align_corners=True,)
|
536 |
+
# fill caption
|
537 |
+
if not self.embedding_manager:
|
538 |
+
self.fill_caption(batch)
|
539 |
+
captions = batch[self.cond_stage_key]
|
540 |
+
log["conditioning"] = log_txt_as_img((512, 512), captions, size=16)
|
541 |
+
|
542 |
+
if plot_diffusion_rows:
|
543 |
+
# get diffusion row
|
544 |
+
diffusion_row = list()
|
545 |
+
z_start = z[:n_row]
|
546 |
+
for t in range(self.num_timesteps):
|
547 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
548 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
549 |
+
t = t.to(self.device).long()
|
550 |
+
noise = torch.randn_like(z_start)
|
551 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
552 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
553 |
+
|
554 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
555 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
556 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
557 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
558 |
+
log["diffusion_row"] = diffusion_grid
|
559 |
+
|
560 |
+
if sample:
|
561 |
+
# get denoise row
|
562 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], "text_info": text_info},
|
563 |
+
batch_size=N, ddim=use_ddim,
|
564 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
565 |
+
x_samples = self.decode_first_stage(samples)
|
566 |
+
log["samples"] = x_samples
|
567 |
+
if plot_denoise_rows:
|
568 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
569 |
+
log["denoise_row"] = denoise_grid
|
570 |
+
|
571 |
+
if unconditional_guidance_scale > 1.0:
|
572 |
+
uc_cross = self.get_unconditional_conditioning(N)
|
573 |
+
uc_cat = c_cat # torch.zeros_like(c_cat)
|
574 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross['c_crossattn'][0]], "text_info": text_info}
|
575 |
+
samples_cfg, tmps = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c_crossattn], "text_info": text_info},
|
576 |
+
batch_size=N, ddim=use_ddim,
|
577 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
578 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
579 |
+
unconditional_conditioning=uc_full,
|
580 |
+
)
|
581 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
582 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
583 |
+
pred_x0 = False # wether log pred_x0
|
584 |
+
if pred_x0:
|
585 |
+
for idx in range(len(tmps['pred_x0'])):
|
586 |
+
pred_x0 = self.decode_first_stage(tmps['pred_x0'][idx])
|
587 |
+
log[f"pred_x0_{tmps['index'][idx]}"] = pred_x0
|
588 |
+
|
589 |
+
return log
|
590 |
+
|
591 |
+
@torch.no_grad()
|
592 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
593 |
+
ddim_sampler = DDIMSampler(self)
|
594 |
+
b, c, h, w = cond["c_concat"][0].shape
|
595 |
+
shape = (self.channels, h // 8, w // 8)
|
596 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, log_every_t=5, **kwargs)
|
597 |
+
return samples, intermediates
|
598 |
+
|
599 |
+
def configure_optimizers(self):
|
600 |
+
lr = self.learning_rate
|
601 |
+
params = list(self.control_model.parameters())
|
602 |
+
if self.embedding_manager:
|
603 |
+
params += list(self.embedding_manager.embedding_parameters())
|
604 |
+
if not self.sd_locked:
|
605 |
+
# params += list(self.model.diffusion_model.input_blocks.parameters())
|
606 |
+
# params += list(self.model.diffusion_model.middle_block.parameters())
|
607 |
+
params += list(self.model.diffusion_model.output_blocks.parameters())
|
608 |
+
params += list(self.model.diffusion_model.out.parameters())
|
609 |
+
if self.unlockKV:
|
610 |
+
nCount = 0
|
611 |
+
for name, param in self.model.diffusion_model.named_parameters():
|
612 |
+
if 'attn2.to_k' in name or 'attn2.to_v' in name:
|
613 |
+
params += [param]
|
614 |
+
nCount += 1
|
615 |
+
print(f'Cross attention is unlocked, and {nCount} Wk or Wv are added to potimizers!!!')
|
616 |
+
|
617 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
618 |
+
return opt
|
619 |
+
|
620 |
+
def low_vram_shift(self, is_diffusing):
|
621 |
+
if is_diffusing:
|
622 |
+
self.model = self.model.cuda()
|
623 |
+
self.control_model = self.control_model.cuda()
|
624 |
+
self.first_stage_model = self.first_stage_model.cpu()
|
625 |
+
self.cond_stage_model = self.cond_stage_model.cpu()
|
626 |
+
else:
|
627 |
+
self.model = self.model.cpu()
|
628 |
+
self.control_model = self.control_model.cpu()
|
629 |
+
self.first_stage_model = self.first_stage_model.cuda()
|
630 |
+
self.cond_stage_model = self.cond_stage_model.cuda()
|
iopaint/model/anytext/cldm/ddim_hacked.py
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
|
8 |
+
make_ddim_sampling_parameters,
|
9 |
+
make_ddim_timesteps,
|
10 |
+
noise_like,
|
11 |
+
extract_into_tensor,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
class DDIMSampler(object):
|
16 |
+
def __init__(self, model, device, schedule="linear", **kwargs):
|
17 |
+
super().__init__()
|
18 |
+
self.device = device
|
19 |
+
self.model = model
|
20 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
21 |
+
self.schedule = schedule
|
22 |
+
|
23 |
+
def register_buffer(self, name, attr):
|
24 |
+
if type(attr) == torch.Tensor:
|
25 |
+
if attr.device != torch.device(self.device):
|
26 |
+
attr = attr.to(torch.device(self.device))
|
27 |
+
setattr(self, name, attr)
|
28 |
+
|
29 |
+
def make_schedule(
|
30 |
+
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
31 |
+
):
|
32 |
+
self.ddim_timesteps = make_ddim_timesteps(
|
33 |
+
ddim_discr_method=ddim_discretize,
|
34 |
+
num_ddim_timesteps=ddim_num_steps,
|
35 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
36 |
+
verbose=verbose,
|
37 |
+
)
|
38 |
+
alphas_cumprod = self.model.alphas_cumprod
|
39 |
+
assert (
|
40 |
+
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
41 |
+
), "alphas have to be defined for each timestep"
|
42 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
|
43 |
+
|
44 |
+
self.register_buffer("betas", to_torch(self.model.betas))
|
45 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
46 |
+
self.register_buffer(
|
47 |
+
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
48 |
+
)
|
49 |
+
|
50 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
51 |
+
self.register_buffer(
|
52 |
+
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
53 |
+
)
|
54 |
+
self.register_buffer(
|
55 |
+
"sqrt_one_minus_alphas_cumprod",
|
56 |
+
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
57 |
+
)
|
58 |
+
self.register_buffer(
|
59 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
60 |
+
)
|
61 |
+
self.register_buffer(
|
62 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
63 |
+
)
|
64 |
+
self.register_buffer(
|
65 |
+
"sqrt_recipm1_alphas_cumprod",
|
66 |
+
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
67 |
+
)
|
68 |
+
|
69 |
+
# ddim sampling parameters
|
70 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
71 |
+
alphacums=alphas_cumprod.cpu(),
|
72 |
+
ddim_timesteps=self.ddim_timesteps,
|
73 |
+
eta=ddim_eta,
|
74 |
+
verbose=verbose,
|
75 |
+
)
|
76 |
+
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
77 |
+
self.register_buffer("ddim_alphas", ddim_alphas)
|
78 |
+
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
79 |
+
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
80 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
81 |
+
(1 - self.alphas_cumprod_prev)
|
82 |
+
/ (1 - self.alphas_cumprod)
|
83 |
+
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
84 |
+
)
|
85 |
+
self.register_buffer(
|
86 |
+
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
87 |
+
)
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def sample(
|
91 |
+
self,
|
92 |
+
S,
|
93 |
+
batch_size,
|
94 |
+
shape,
|
95 |
+
conditioning=None,
|
96 |
+
callback=None,
|
97 |
+
normals_sequence=None,
|
98 |
+
img_callback=None,
|
99 |
+
quantize_x0=False,
|
100 |
+
eta=0.0,
|
101 |
+
mask=None,
|
102 |
+
x0=None,
|
103 |
+
temperature=1.0,
|
104 |
+
noise_dropout=0.0,
|
105 |
+
score_corrector=None,
|
106 |
+
corrector_kwargs=None,
|
107 |
+
verbose=True,
|
108 |
+
x_T=None,
|
109 |
+
log_every_t=100,
|
110 |
+
unconditional_guidance_scale=1.0,
|
111 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
112 |
+
dynamic_threshold=None,
|
113 |
+
ucg_schedule=None,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
if conditioning is not None:
|
117 |
+
if isinstance(conditioning, dict):
|
118 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
119 |
+
while isinstance(ctmp, list):
|
120 |
+
ctmp = ctmp[0]
|
121 |
+
cbs = ctmp.shape[0]
|
122 |
+
if cbs != batch_size:
|
123 |
+
print(
|
124 |
+
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
125 |
+
)
|
126 |
+
|
127 |
+
elif isinstance(conditioning, list):
|
128 |
+
for ctmp in conditioning:
|
129 |
+
if ctmp.shape[0] != batch_size:
|
130 |
+
print(
|
131 |
+
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
132 |
+
)
|
133 |
+
|
134 |
+
else:
|
135 |
+
if conditioning.shape[0] != batch_size:
|
136 |
+
print(
|
137 |
+
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
138 |
+
)
|
139 |
+
|
140 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
141 |
+
# sampling
|
142 |
+
C, H, W = shape
|
143 |
+
size = (batch_size, C, H, W)
|
144 |
+
print(f"Data shape for DDIM sampling is {size}, eta {eta}")
|
145 |
+
|
146 |
+
samples, intermediates = self.ddim_sampling(
|
147 |
+
conditioning,
|
148 |
+
size,
|
149 |
+
callback=callback,
|
150 |
+
img_callback=img_callback,
|
151 |
+
quantize_denoised=quantize_x0,
|
152 |
+
mask=mask,
|
153 |
+
x0=x0,
|
154 |
+
ddim_use_original_steps=False,
|
155 |
+
noise_dropout=noise_dropout,
|
156 |
+
temperature=temperature,
|
157 |
+
score_corrector=score_corrector,
|
158 |
+
corrector_kwargs=corrector_kwargs,
|
159 |
+
x_T=x_T,
|
160 |
+
log_every_t=log_every_t,
|
161 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
162 |
+
unconditional_conditioning=unconditional_conditioning,
|
163 |
+
dynamic_threshold=dynamic_threshold,
|
164 |
+
ucg_schedule=ucg_schedule,
|
165 |
+
)
|
166 |
+
return samples, intermediates
|
167 |
+
|
168 |
+
@torch.no_grad()
|
169 |
+
def ddim_sampling(
|
170 |
+
self,
|
171 |
+
cond,
|
172 |
+
shape,
|
173 |
+
x_T=None,
|
174 |
+
ddim_use_original_steps=False,
|
175 |
+
callback=None,
|
176 |
+
timesteps=None,
|
177 |
+
quantize_denoised=False,
|
178 |
+
mask=None,
|
179 |
+
x0=None,
|
180 |
+
img_callback=None,
|
181 |
+
log_every_t=100,
|
182 |
+
temperature=1.0,
|
183 |
+
noise_dropout=0.0,
|
184 |
+
score_corrector=None,
|
185 |
+
corrector_kwargs=None,
|
186 |
+
unconditional_guidance_scale=1.0,
|
187 |
+
unconditional_conditioning=None,
|
188 |
+
dynamic_threshold=None,
|
189 |
+
ucg_schedule=None,
|
190 |
+
):
|
191 |
+
device = self.model.betas.device
|
192 |
+
b = shape[0]
|
193 |
+
if x_T is None:
|
194 |
+
img = torch.randn(shape, device=device)
|
195 |
+
else:
|
196 |
+
img = x_T
|
197 |
+
|
198 |
+
if timesteps is None:
|
199 |
+
timesteps = (
|
200 |
+
self.ddpm_num_timesteps
|
201 |
+
if ddim_use_original_steps
|
202 |
+
else self.ddim_timesteps
|
203 |
+
)
|
204 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
205 |
+
subset_end = (
|
206 |
+
int(
|
207 |
+
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
208 |
+
* self.ddim_timesteps.shape[0]
|
209 |
+
)
|
210 |
+
- 1
|
211 |
+
)
|
212 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
213 |
+
|
214 |
+
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
215 |
+
time_range = (
|
216 |
+
reversed(range(0, timesteps))
|
217 |
+
if ddim_use_original_steps
|
218 |
+
else np.flip(timesteps)
|
219 |
+
)
|
220 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
221 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
222 |
+
|
223 |
+
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
224 |
+
|
225 |
+
for i, step in enumerate(iterator):
|
226 |
+
index = total_steps - i - 1
|
227 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
228 |
+
|
229 |
+
if mask is not None:
|
230 |
+
assert x0 is not None
|
231 |
+
img_orig = self.model.q_sample(
|
232 |
+
x0, ts
|
233 |
+
) # TODO: deterministic forward pass?
|
234 |
+
img = img_orig * mask + (1.0 - mask) * img
|
235 |
+
|
236 |
+
if ucg_schedule is not None:
|
237 |
+
assert len(ucg_schedule) == len(time_range)
|
238 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
239 |
+
|
240 |
+
outs = self.p_sample_ddim(
|
241 |
+
img,
|
242 |
+
cond,
|
243 |
+
ts,
|
244 |
+
index=index,
|
245 |
+
use_original_steps=ddim_use_original_steps,
|
246 |
+
quantize_denoised=quantize_denoised,
|
247 |
+
temperature=temperature,
|
248 |
+
noise_dropout=noise_dropout,
|
249 |
+
score_corrector=score_corrector,
|
250 |
+
corrector_kwargs=corrector_kwargs,
|
251 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
252 |
+
unconditional_conditioning=unconditional_conditioning,
|
253 |
+
dynamic_threshold=dynamic_threshold,
|
254 |
+
)
|
255 |
+
img, pred_x0 = outs
|
256 |
+
if callback:
|
257 |
+
callback(None, i, None, None)
|
258 |
+
if img_callback:
|
259 |
+
img_callback(pred_x0, i)
|
260 |
+
|
261 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
262 |
+
intermediates["x_inter"].append(img)
|
263 |
+
intermediates["pred_x0"].append(pred_x0)
|
264 |
+
|
265 |
+
return img, intermediates
|
266 |
+
|
267 |
+
@torch.no_grad()
|
268 |
+
def p_sample_ddim(
|
269 |
+
self,
|
270 |
+
x,
|
271 |
+
c,
|
272 |
+
t,
|
273 |
+
index,
|
274 |
+
repeat_noise=False,
|
275 |
+
use_original_steps=False,
|
276 |
+
quantize_denoised=False,
|
277 |
+
temperature=1.0,
|
278 |
+
noise_dropout=0.0,
|
279 |
+
score_corrector=None,
|
280 |
+
corrector_kwargs=None,
|
281 |
+
unconditional_guidance_scale=1.0,
|
282 |
+
unconditional_conditioning=None,
|
283 |
+
dynamic_threshold=None,
|
284 |
+
):
|
285 |
+
b, *_, device = *x.shape, x.device
|
286 |
+
|
287 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
288 |
+
model_output = self.model.apply_model(x, t, c)
|
289 |
+
else:
|
290 |
+
model_t = self.model.apply_model(x, t, c)
|
291 |
+
model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
|
292 |
+
model_output = model_uncond + unconditional_guidance_scale * (
|
293 |
+
model_t - model_uncond
|
294 |
+
)
|
295 |
+
|
296 |
+
if self.model.parameterization == "v":
|
297 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
298 |
+
else:
|
299 |
+
e_t = model_output
|
300 |
+
|
301 |
+
if score_corrector is not None:
|
302 |
+
assert self.model.parameterization == "eps", "not implemented"
|
303 |
+
e_t = score_corrector.modify_score(
|
304 |
+
self.model, e_t, x, t, c, **corrector_kwargs
|
305 |
+
)
|
306 |
+
|
307 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
308 |
+
alphas_prev = (
|
309 |
+
self.model.alphas_cumprod_prev
|
310 |
+
if use_original_steps
|
311 |
+
else self.ddim_alphas_prev
|
312 |
+
)
|
313 |
+
sqrt_one_minus_alphas = (
|
314 |
+
self.model.sqrt_one_minus_alphas_cumprod
|
315 |
+
if use_original_steps
|
316 |
+
else self.ddim_sqrt_one_minus_alphas
|
317 |
+
)
|
318 |
+
sigmas = (
|
319 |
+
self.model.ddim_sigmas_for_original_num_steps
|
320 |
+
if use_original_steps
|
321 |
+
else self.ddim_sigmas
|
322 |
+
)
|
323 |
+
# select parameters corresponding to the currently considered timestep
|
324 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
325 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
326 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
327 |
+
sqrt_one_minus_at = torch.full(
|
328 |
+
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
329 |
+
)
|
330 |
+
|
331 |
+
# current prediction for x_0
|
332 |
+
if self.model.parameterization != "v":
|
333 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
334 |
+
else:
|
335 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
336 |
+
|
337 |
+
if quantize_denoised:
|
338 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
339 |
+
|
340 |
+
if dynamic_threshold is not None:
|
341 |
+
raise NotImplementedError()
|
342 |
+
|
343 |
+
# direction pointing to x_t
|
344 |
+
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
345 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
346 |
+
if noise_dropout > 0.0:
|
347 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
348 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
349 |
+
return x_prev, pred_x0
|
350 |
+
|
351 |
+
@torch.no_grad()
|
352 |
+
def encode(
|
353 |
+
self,
|
354 |
+
x0,
|
355 |
+
c,
|
356 |
+
t_enc,
|
357 |
+
use_original_steps=False,
|
358 |
+
return_intermediates=None,
|
359 |
+
unconditional_guidance_scale=1.0,
|
360 |
+
unconditional_conditioning=None,
|
361 |
+
callback=None,
|
362 |
+
):
|
363 |
+
timesteps = (
|
364 |
+
np.arange(self.ddpm_num_timesteps)
|
365 |
+
if use_original_steps
|
366 |
+
else self.ddim_timesteps
|
367 |
+
)
|
368 |
+
num_reference_steps = timesteps.shape[0]
|
369 |
+
|
370 |
+
assert t_enc <= num_reference_steps
|
371 |
+
num_steps = t_enc
|
372 |
+
|
373 |
+
if use_original_steps:
|
374 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
375 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
376 |
+
else:
|
377 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
378 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
379 |
+
|
380 |
+
x_next = x0
|
381 |
+
intermediates = []
|
382 |
+
inter_steps = []
|
383 |
+
for i in tqdm(range(num_steps), desc="Encoding Image"):
|
384 |
+
t = torch.full(
|
385 |
+
(x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long
|
386 |
+
)
|
387 |
+
if unconditional_guidance_scale == 1.0:
|
388 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
389 |
+
else:
|
390 |
+
assert unconditional_conditioning is not None
|
391 |
+
e_t_uncond, noise_pred = torch.chunk(
|
392 |
+
self.model.apply_model(
|
393 |
+
torch.cat((x_next, x_next)),
|
394 |
+
torch.cat((t, t)),
|
395 |
+
torch.cat((unconditional_conditioning, c)),
|
396 |
+
),
|
397 |
+
2,
|
398 |
+
)
|
399 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (
|
400 |
+
noise_pred - e_t_uncond
|
401 |
+
)
|
402 |
+
|
403 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
404 |
+
weighted_noise_pred = (
|
405 |
+
alphas_next[i].sqrt()
|
406 |
+
* ((1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt())
|
407 |
+
* noise_pred
|
408 |
+
)
|
409 |
+
x_next = xt_weighted + weighted_noise_pred
|
410 |
+
if (
|
411 |
+
return_intermediates
|
412 |
+
and i % (num_steps // return_intermediates) == 0
|
413 |
+
and i < num_steps - 1
|
414 |
+
):
|
415 |
+
intermediates.append(x_next)
|
416 |
+
inter_steps.append(i)
|
417 |
+
elif return_intermediates and i >= num_steps - 2:
|
418 |
+
intermediates.append(x_next)
|
419 |
+
inter_steps.append(i)
|
420 |
+
if callback:
|
421 |
+
callback(i)
|
422 |
+
|
423 |
+
out = {"x_encoded": x_next, "intermediate_steps": inter_steps}
|
424 |
+
if return_intermediates:
|
425 |
+
out.update({"intermediates": intermediates})
|
426 |
+
return x_next, out
|
427 |
+
|
428 |
+
@torch.no_grad()
|
429 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
430 |
+
# fast, but does not allow for exact reconstruction
|
431 |
+
# t serves as an index to gather the correct alphas
|
432 |
+
if use_original_steps:
|
433 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
434 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
435 |
+
else:
|
436 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
437 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
438 |
+
|
439 |
+
if noise is None:
|
440 |
+
noise = torch.randn_like(x0)
|
441 |
+
return (
|
442 |
+
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
443 |
+
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
444 |
+
)
|
445 |
+
|
446 |
+
@torch.no_grad()
|
447 |
+
def decode(
|
448 |
+
self,
|
449 |
+
x_latent,
|
450 |
+
cond,
|
451 |
+
t_start,
|
452 |
+
unconditional_guidance_scale=1.0,
|
453 |
+
unconditional_conditioning=None,
|
454 |
+
use_original_steps=False,
|
455 |
+
callback=None,
|
456 |
+
):
|
457 |
+
timesteps = (
|
458 |
+
np.arange(self.ddpm_num_timesteps)
|
459 |
+
if use_original_steps
|
460 |
+
else self.ddim_timesteps
|
461 |
+
)
|
462 |
+
timesteps = timesteps[:t_start]
|
463 |
+
|
464 |
+
time_range = np.flip(timesteps)
|
465 |
+
total_steps = timesteps.shape[0]
|
466 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
467 |
+
|
468 |
+
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
469 |
+
x_dec = x_latent
|
470 |
+
for i, step in enumerate(iterator):
|
471 |
+
index = total_steps - i - 1
|
472 |
+
ts = torch.full(
|
473 |
+
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
474 |
+
)
|
475 |
+
x_dec, _ = self.p_sample_ddim(
|
476 |
+
x_dec,
|
477 |
+
cond,
|
478 |
+
ts,
|
479 |
+
index=index,
|
480 |
+
use_original_steps=use_original_steps,
|
481 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
482 |
+
unconditional_conditioning=unconditional_conditioning,
|
483 |
+
)
|
484 |
+
if callback:
|
485 |
+
callback(i)
|
486 |
+
return x_dec
|
iopaint/model/anytext/cldm/embedding_manager.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
'''
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from functools import partial
|
8 |
+
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import conv_nd, linear
|
9 |
+
|
10 |
+
|
11 |
+
def get_clip_token_for_string(tokenizer, string):
|
12 |
+
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
|
13 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
14 |
+
tokens = batch_encoding["input_ids"]
|
15 |
+
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
|
16 |
+
return tokens[0, 1]
|
17 |
+
|
18 |
+
|
19 |
+
def get_bert_token_for_string(tokenizer, string):
|
20 |
+
token = tokenizer(string)
|
21 |
+
assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
|
22 |
+
token = token[0, 1]
|
23 |
+
return token
|
24 |
+
|
25 |
+
|
26 |
+
def get_clip_vision_emb(encoder, processor, img):
|
27 |
+
_img = img.repeat(1, 3, 1, 1)*255
|
28 |
+
inputs = processor(images=_img, return_tensors="pt")
|
29 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(img.device)
|
30 |
+
outputs = encoder(**inputs)
|
31 |
+
emb = outputs.image_embeds
|
32 |
+
return emb
|
33 |
+
|
34 |
+
|
35 |
+
def get_recog_emb(encoder, img_list):
|
36 |
+
_img_list = [(img.repeat(1, 3, 1, 1)*255)[0] for img in img_list]
|
37 |
+
encoder.predictor.eval()
|
38 |
+
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False)
|
39 |
+
return preds_neck
|
40 |
+
|
41 |
+
|
42 |
+
def pad_H(x):
|
43 |
+
_, _, H, W = x.shape
|
44 |
+
p_top = (W - H) // 2
|
45 |
+
p_bot = W - H - p_top
|
46 |
+
return F.pad(x, (0, 0, p_top, p_bot))
|
47 |
+
|
48 |
+
|
49 |
+
class EncodeNet(nn.Module):
|
50 |
+
def __init__(self, in_channels, out_channels):
|
51 |
+
super(EncodeNet, self).__init__()
|
52 |
+
chan = 16
|
53 |
+
n_layer = 4 # downsample
|
54 |
+
|
55 |
+
self.conv1 = conv_nd(2, in_channels, chan, 3, padding=1)
|
56 |
+
self.conv_list = nn.ModuleList([])
|
57 |
+
_c = chan
|
58 |
+
for i in range(n_layer):
|
59 |
+
self.conv_list.append(conv_nd(2, _c, _c*2, 3, padding=1, stride=2))
|
60 |
+
_c *= 2
|
61 |
+
self.conv2 = conv_nd(2, _c, out_channels, 3, padding=1)
|
62 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
63 |
+
self.act = nn.SiLU()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.act(self.conv1(x))
|
67 |
+
for layer in self.conv_list:
|
68 |
+
x = self.act(layer(x))
|
69 |
+
x = self.act(self.conv2(x))
|
70 |
+
x = self.avgpool(x)
|
71 |
+
x = x.view(x.size(0), -1)
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
class EmbeddingManager(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
embedder,
|
79 |
+
valid=True,
|
80 |
+
glyph_channels=20,
|
81 |
+
position_channels=1,
|
82 |
+
placeholder_string='*',
|
83 |
+
add_pos=False,
|
84 |
+
emb_type='ocr',
|
85 |
+
**kwargs
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
|
89 |
+
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
|
90 |
+
token_dim = 768
|
91 |
+
if hasattr(embedder, 'vit'):
|
92 |
+
assert emb_type == 'vit'
|
93 |
+
self.get_vision_emb = partial(get_clip_vision_emb, embedder.vit, embedder.processor)
|
94 |
+
self.get_recog_emb = None
|
95 |
+
else: # using LDM's BERT encoder
|
96 |
+
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
|
97 |
+
token_dim = 1280
|
98 |
+
self.token_dim = token_dim
|
99 |
+
self.emb_type = emb_type
|
100 |
+
|
101 |
+
self.add_pos = add_pos
|
102 |
+
if add_pos:
|
103 |
+
self.position_encoder = EncodeNet(position_channels, token_dim)
|
104 |
+
if emb_type == 'ocr':
|
105 |
+
self.proj = linear(40*64, token_dim)
|
106 |
+
if emb_type == 'conv':
|
107 |
+
self.glyph_encoder = EncodeNet(glyph_channels, token_dim)
|
108 |
+
|
109 |
+
self.placeholder_token = get_token_for_string(placeholder_string)
|
110 |
+
|
111 |
+
def encode_text(self, text_info):
|
112 |
+
if self.get_recog_emb is None and self.emb_type == 'ocr':
|
113 |
+
self.get_recog_emb = partial(get_recog_emb, self.recog)
|
114 |
+
|
115 |
+
gline_list = []
|
116 |
+
pos_list = []
|
117 |
+
for i in range(len(text_info['n_lines'])): # sample index in a batch
|
118 |
+
n_lines = text_info['n_lines'][i]
|
119 |
+
for j in range(n_lines): # line
|
120 |
+
gline_list += [text_info['gly_line'][j][i:i+1]]
|
121 |
+
if self.add_pos:
|
122 |
+
pos_list += [text_info['positions'][j][i:i+1]]
|
123 |
+
|
124 |
+
if len(gline_list) > 0:
|
125 |
+
if self.emb_type == 'ocr':
|
126 |
+
recog_emb = self.get_recog_emb(gline_list)
|
127 |
+
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1))
|
128 |
+
elif self.emb_type == 'vit':
|
129 |
+
enc_glyph = self.get_vision_emb(pad_H(torch.cat(gline_list, dim=0)))
|
130 |
+
elif self.emb_type == 'conv':
|
131 |
+
enc_glyph = self.glyph_encoder(pad_H(torch.cat(gline_list, dim=0)))
|
132 |
+
if self.add_pos:
|
133 |
+
enc_pos = self.position_encoder(torch.cat(gline_list, dim=0))
|
134 |
+
enc_glyph = enc_glyph+enc_pos
|
135 |
+
|
136 |
+
self.text_embs_all = []
|
137 |
+
n_idx = 0
|
138 |
+
for i in range(len(text_info['n_lines'])): # sample index in a batch
|
139 |
+
n_lines = text_info['n_lines'][i]
|
140 |
+
text_embs = []
|
141 |
+
for j in range(n_lines): # line
|
142 |
+
text_embs += [enc_glyph[n_idx:n_idx+1]]
|
143 |
+
n_idx += 1
|
144 |
+
self.text_embs_all += [text_embs]
|
145 |
+
|
146 |
+
def forward(
|
147 |
+
self,
|
148 |
+
tokenized_text,
|
149 |
+
embedded_text,
|
150 |
+
):
|
151 |
+
b, device = tokenized_text.shape[0], tokenized_text.device
|
152 |
+
for i in range(b):
|
153 |
+
idx = tokenized_text[i] == self.placeholder_token.to(device)
|
154 |
+
if sum(idx) > 0:
|
155 |
+
if i >= len(self.text_embs_all):
|
156 |
+
print('truncation for log images...')
|
157 |
+
break
|
158 |
+
text_emb = torch.cat(self.text_embs_all[i], dim=0)
|
159 |
+
if sum(idx) != len(text_emb):
|
160 |
+
print('truncation for long caption...')
|
161 |
+
embedded_text[i][idx] = text_emb[:sum(idx)]
|
162 |
+
return embedded_text
|
163 |
+
|
164 |
+
def embedding_parameters(self):
|
165 |
+
return self.parameters()
|
iopaint/model/anytext/cldm/hack.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import einops
|
3 |
+
|
4 |
+
import iopaint.model.anytext.ldm.modules.encoders.modules
|
5 |
+
import iopaint.model.anytext.ldm.modules.attention
|
6 |
+
|
7 |
+
from transformers import logging
|
8 |
+
from iopaint.model.anytext.ldm.modules.attention import default
|
9 |
+
|
10 |
+
|
11 |
+
def disable_verbosity():
|
12 |
+
logging.set_verbosity_error()
|
13 |
+
print('logging improved.')
|
14 |
+
return
|
15 |
+
|
16 |
+
|
17 |
+
def enable_sliced_attention():
|
18 |
+
iopaint.model.anytext.ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
|
19 |
+
print('Enabled sliced_attention.')
|
20 |
+
return
|
21 |
+
|
22 |
+
|
23 |
+
def hack_everything(clip_skip=0):
|
24 |
+
disable_verbosity()
|
25 |
+
iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
|
26 |
+
iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
|
27 |
+
print('Enabled clip hacks.')
|
28 |
+
return
|
29 |
+
|
30 |
+
|
31 |
+
# Written by Lvmin
|
32 |
+
def _hacked_clip_forward(self, text):
|
33 |
+
PAD = self.tokenizer.pad_token_id
|
34 |
+
EOS = self.tokenizer.eos_token_id
|
35 |
+
BOS = self.tokenizer.bos_token_id
|
36 |
+
|
37 |
+
def tokenize(t):
|
38 |
+
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
|
39 |
+
|
40 |
+
def transformer_encode(t):
|
41 |
+
if self.clip_skip > 1:
|
42 |
+
rt = self.transformer(input_ids=t, output_hidden_states=True)
|
43 |
+
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
|
44 |
+
else:
|
45 |
+
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
|
46 |
+
|
47 |
+
def split(x):
|
48 |
+
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
|
49 |
+
|
50 |
+
def pad(x, p, i):
|
51 |
+
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
|
52 |
+
|
53 |
+
raw_tokens_list = tokenize(text)
|
54 |
+
tokens_list = []
|
55 |
+
|
56 |
+
for raw_tokens in raw_tokens_list:
|
57 |
+
raw_tokens_123 = split(raw_tokens)
|
58 |
+
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
|
59 |
+
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
|
60 |
+
tokens_list.append(raw_tokens_123)
|
61 |
+
|
62 |
+
tokens_list = torch.IntTensor(tokens_list).to(self.device)
|
63 |
+
|
64 |
+
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
|
65 |
+
y = transformer_encode(feed)
|
66 |
+
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
|
67 |
+
|
68 |
+
return z
|
69 |
+
|
70 |
+
|
71 |
+
# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
|
72 |
+
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
|
73 |
+
h = self.heads
|
74 |
+
|
75 |
+
q = self.to_q(x)
|
76 |
+
context = default(context, x)
|
77 |
+
k = self.to_k(context)
|
78 |
+
v = self.to_v(context)
|
79 |
+
del context, x
|
80 |
+
|
81 |
+
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
82 |
+
|
83 |
+
limit = k.shape[0]
|
84 |
+
att_step = 1
|
85 |
+
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
|
86 |
+
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
|
87 |
+
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
|
88 |
+
|
89 |
+
q_chunks.reverse()
|
90 |
+
k_chunks.reverse()
|
91 |
+
v_chunks.reverse()
|
92 |
+
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
93 |
+
del k, q, v
|
94 |
+
for i in range(0, limit, att_step):
|
95 |
+
q_buffer = q_chunks.pop()
|
96 |
+
k_buffer = k_chunks.pop()
|
97 |
+
v_buffer = v_chunks.pop()
|
98 |
+
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
|
99 |
+
|
100 |
+
del k_buffer, q_buffer
|
101 |
+
# attention, what we cannot get enough of, by chunks
|
102 |
+
|
103 |
+
sim_buffer = sim_buffer.softmax(dim=-1)
|
104 |
+
|
105 |
+
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
|
106 |
+
del v_buffer
|
107 |
+
sim[i:i + att_step, :, :] = sim_buffer
|
108 |
+
|
109 |
+
del sim_buffer
|
110 |
+
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
|
111 |
+
return self.to_out(sim)
|
iopaint/model/anytext/cldm/model.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from iopaint.model.anytext.ldm.util import instantiate_from_config
|
6 |
+
|
7 |
+
|
8 |
+
def get_state_dict(d):
|
9 |
+
return d.get("state_dict", d)
|
10 |
+
|
11 |
+
|
12 |
+
def load_state_dict(ckpt_path, location="cpu"):
|
13 |
+
_, extension = os.path.splitext(ckpt_path)
|
14 |
+
if extension.lower() == ".safetensors":
|
15 |
+
import safetensors.torch
|
16 |
+
|
17 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
18 |
+
else:
|
19 |
+
state_dict = get_state_dict(
|
20 |
+
torch.load(ckpt_path, map_location=torch.device(location))
|
21 |
+
)
|
22 |
+
state_dict = get_state_dict(state_dict)
|
23 |
+
print(f"Loaded state_dict from [{ckpt_path}]")
|
24 |
+
return state_dict
|
25 |
+
|
26 |
+
|
27 |
+
def create_model(config_path, device, cond_stage_path=None, use_fp16=False):
|
28 |
+
config = OmegaConf.load(config_path)
|
29 |
+
# if cond_stage_path:
|
30 |
+
# config.model.params.cond_stage_config.params.version = (
|
31 |
+
# cond_stage_path # use pre-downloaded ckpts, in case blocked
|
32 |
+
# )
|
33 |
+
config.model.params.cond_stage_config.params.device = str(device)
|
34 |
+
if use_fp16:
|
35 |
+
config.model.params.use_fp16 = True
|
36 |
+
config.model.params.control_stage_config.params.use_fp16 = True
|
37 |
+
config.model.params.unet_config.params.use_fp16 = True
|
38 |
+
model = instantiate_from_config(config.model).cpu()
|
39 |
+
print(f"Loaded model config from [{config_path}]")
|
40 |
+
return model
|
iopaint/model/anytext/ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
+
|
9 |
+
|
10 |
+
class DDIMSampler(object):
|
11 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
12 |
+
super().__init__()
|
13 |
+
self.model = model
|
14 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
15 |
+
self.schedule = schedule
|
16 |
+
|
17 |
+
def register_buffer(self, name, attr):
|
18 |
+
if type(attr) == torch.Tensor:
|
19 |
+
if attr.device != torch.device("cuda"):
|
20 |
+
attr = attr.to(torch.device("cuda"))
|
21 |
+
setattr(self, name, attr)
|
22 |
+
|
23 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
24 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
25 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
26 |
+
alphas_cumprod = self.model.alphas_cumprod
|
27 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
28 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
29 |
+
|
30 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
31 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
32 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
33 |
+
|
34 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
35 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
36 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
37 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
38 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
40 |
+
|
41 |
+
# ddim sampling parameters
|
42 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
43 |
+
ddim_timesteps=self.ddim_timesteps,
|
44 |
+
eta=ddim_eta,verbose=verbose)
|
45 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
46 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
47 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
48 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
49 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
50 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
51 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
52 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
53 |
+
|
54 |
+
@torch.no_grad()
|
55 |
+
def sample(self,
|
56 |
+
S,
|
57 |
+
batch_size,
|
58 |
+
shape,
|
59 |
+
conditioning=None,
|
60 |
+
callback=None,
|
61 |
+
normals_sequence=None,
|
62 |
+
img_callback=None,
|
63 |
+
quantize_x0=False,
|
64 |
+
eta=0.,
|
65 |
+
mask=None,
|
66 |
+
x0=None,
|
67 |
+
temperature=1.,
|
68 |
+
noise_dropout=0.,
|
69 |
+
score_corrector=None,
|
70 |
+
corrector_kwargs=None,
|
71 |
+
verbose=True,
|
72 |
+
x_T=None,
|
73 |
+
log_every_t=100,
|
74 |
+
unconditional_guidance_scale=1.,
|
75 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
76 |
+
dynamic_threshold=None,
|
77 |
+
ucg_schedule=None,
|
78 |
+
**kwargs
|
79 |
+
):
|
80 |
+
if conditioning is not None:
|
81 |
+
if isinstance(conditioning, dict):
|
82 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
83 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
84 |
+
cbs = ctmp.shape[0]
|
85 |
+
# cbs = len(ctmp[0])
|
86 |
+
if cbs != batch_size:
|
87 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
88 |
+
|
89 |
+
elif isinstance(conditioning, list):
|
90 |
+
for ctmp in conditioning:
|
91 |
+
if ctmp.shape[0] != batch_size:
|
92 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
93 |
+
|
94 |
+
else:
|
95 |
+
if conditioning.shape[0] != batch_size:
|
96 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
97 |
+
|
98 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
99 |
+
# sampling
|
100 |
+
C, H, W = shape
|
101 |
+
size = (batch_size, C, H, W)
|
102 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
103 |
+
|
104 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
105 |
+
callback=callback,
|
106 |
+
img_callback=img_callback,
|
107 |
+
quantize_denoised=quantize_x0,
|
108 |
+
mask=mask, x0=x0,
|
109 |
+
ddim_use_original_steps=False,
|
110 |
+
noise_dropout=noise_dropout,
|
111 |
+
temperature=temperature,
|
112 |
+
score_corrector=score_corrector,
|
113 |
+
corrector_kwargs=corrector_kwargs,
|
114 |
+
x_T=x_T,
|
115 |
+
log_every_t=log_every_t,
|
116 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
117 |
+
unconditional_conditioning=unconditional_conditioning,
|
118 |
+
dynamic_threshold=dynamic_threshold,
|
119 |
+
ucg_schedule=ucg_schedule
|
120 |
+
)
|
121 |
+
return samples, intermediates
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def ddim_sampling(self, cond, shape,
|
125 |
+
x_T=None, ddim_use_original_steps=False,
|
126 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
127 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
128 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
129 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
130 |
+
ucg_schedule=None):
|
131 |
+
device = self.model.betas.device
|
132 |
+
b = shape[0]
|
133 |
+
if x_T is None:
|
134 |
+
img = torch.randn(shape, device=device)
|
135 |
+
else:
|
136 |
+
img = x_T
|
137 |
+
|
138 |
+
if timesteps is None:
|
139 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
140 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
141 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
142 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
143 |
+
|
144 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img], "index": [10000]}
|
145 |
+
time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
146 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
147 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
148 |
+
|
149 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
150 |
+
|
151 |
+
for i, step in enumerate(iterator):
|
152 |
+
index = total_steps - i - 1
|
153 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
154 |
+
|
155 |
+
if mask is not None:
|
156 |
+
assert x0 is not None
|
157 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
158 |
+
img = img_orig * mask + (1. - mask) * img
|
159 |
+
|
160 |
+
if ucg_schedule is not None:
|
161 |
+
assert len(ucg_schedule) == len(time_range)
|
162 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
163 |
+
|
164 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
165 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
166 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
167 |
+
corrector_kwargs=corrector_kwargs,
|
168 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
169 |
+
unconditional_conditioning=unconditional_conditioning,
|
170 |
+
dynamic_threshold=dynamic_threshold)
|
171 |
+
img, pred_x0 = outs
|
172 |
+
if callback:
|
173 |
+
callback(i)
|
174 |
+
if img_callback:
|
175 |
+
img_callback(pred_x0, i)
|
176 |
+
|
177 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
178 |
+
intermediates['x_inter'].append(img)
|
179 |
+
intermediates['pred_x0'].append(pred_x0)
|
180 |
+
intermediates['index'].append(index)
|
181 |
+
|
182 |
+
return img, intermediates
|
183 |
+
|
184 |
+
@torch.no_grad()
|
185 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
186 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
187 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
188 |
+
dynamic_threshold=None):
|
189 |
+
b, *_, device = *x.shape, x.device
|
190 |
+
|
191 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
192 |
+
model_output = self.model.apply_model(x, t, c)
|
193 |
+
else:
|
194 |
+
x_in = torch.cat([x] * 2)
|
195 |
+
t_in = torch.cat([t] * 2)
|
196 |
+
if isinstance(c, dict):
|
197 |
+
assert isinstance(unconditional_conditioning, dict)
|
198 |
+
c_in = dict()
|
199 |
+
for k in c:
|
200 |
+
if isinstance(c[k], list):
|
201 |
+
c_in[k] = [torch.cat([
|
202 |
+
unconditional_conditioning[k][i],
|
203 |
+
c[k][i]]) for i in range(len(c[k]))]
|
204 |
+
elif isinstance(c[k], dict):
|
205 |
+
c_in[k] = dict()
|
206 |
+
for key in c[k]:
|
207 |
+
if isinstance(c[k][key], list):
|
208 |
+
if not isinstance(c[k][key][0], torch.Tensor):
|
209 |
+
continue
|
210 |
+
c_in[k][key] = [torch.cat([
|
211 |
+
unconditional_conditioning[k][key][i],
|
212 |
+
c[k][key][i]]) for i in range(len(c[k][key]))]
|
213 |
+
else:
|
214 |
+
c_in[k][key] = torch.cat([
|
215 |
+
unconditional_conditioning[k][key],
|
216 |
+
c[k][key]])
|
217 |
+
|
218 |
+
else:
|
219 |
+
c_in[k] = torch.cat([
|
220 |
+
unconditional_conditioning[k],
|
221 |
+
c[k]])
|
222 |
+
elif isinstance(c, list):
|
223 |
+
c_in = list()
|
224 |
+
assert isinstance(unconditional_conditioning, list)
|
225 |
+
for i in range(len(c)):
|
226 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
227 |
+
else:
|
228 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
229 |
+
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
230 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
231 |
+
|
232 |
+
if self.model.parameterization == "v":
|
233 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
234 |
+
else:
|
235 |
+
e_t = model_output
|
236 |
+
|
237 |
+
if score_corrector is not None:
|
238 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
239 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
240 |
+
|
241 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
242 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
243 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
244 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
245 |
+
# select parameters corresponding to the currently considered timestep
|
246 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
247 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
248 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
249 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
250 |
+
|
251 |
+
# current prediction for x_0
|
252 |
+
if self.model.parameterization != "v":
|
253 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
254 |
+
else:
|
255 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
256 |
+
|
257 |
+
if quantize_denoised:
|
258 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
259 |
+
|
260 |
+
if dynamic_threshold is not None:
|
261 |
+
raise NotImplementedError()
|
262 |
+
|
263 |
+
# direction pointing to x_t
|
264 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
265 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
266 |
+
if noise_dropout > 0.:
|
267 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
268 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
269 |
+
return x_prev, pred_x0
|
270 |
+
|
271 |
+
@torch.no_grad()
|
272 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
273 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
274 |
+
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
275 |
+
|
276 |
+
assert t_enc <= num_reference_steps
|
277 |
+
num_steps = t_enc
|
278 |
+
|
279 |
+
if use_original_steps:
|
280 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
281 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
282 |
+
else:
|
283 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
284 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
285 |
+
|
286 |
+
x_next = x0
|
287 |
+
intermediates = []
|
288 |
+
inter_steps = []
|
289 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
290 |
+
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
291 |
+
if unconditional_guidance_scale == 1.:
|
292 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
293 |
+
else:
|
294 |
+
assert unconditional_conditioning is not None
|
295 |
+
e_t_uncond, noise_pred = torch.chunk(
|
296 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
297 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
298 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
299 |
+
|
300 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
301 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
302 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
303 |
+
x_next = xt_weighted + weighted_noise_pred
|
304 |
+
if return_intermediates and i % (
|
305 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
306 |
+
intermediates.append(x_next)
|
307 |
+
inter_steps.append(i)
|
308 |
+
elif return_intermediates and i >= num_steps - 2:
|
309 |
+
intermediates.append(x_next)
|
310 |
+
inter_steps.append(i)
|
311 |
+
if callback: callback(i)
|
312 |
+
|
313 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
314 |
+
if return_intermediates:
|
315 |
+
out.update({'intermediates': intermediates})
|
316 |
+
return x_next, out
|
317 |
+
|
318 |
+
@torch.no_grad()
|
319 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
320 |
+
# fast, but does not allow for exact reconstruction
|
321 |
+
# t serves as an index to gather the correct alphas
|
322 |
+
if use_original_steps:
|
323 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
324 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
325 |
+
else:
|
326 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
327 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
328 |
+
|
329 |
+
if noise is None:
|
330 |
+
noise = torch.randn_like(x0)
|
331 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
332 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
333 |
+
|
334 |
+
@torch.no_grad()
|
335 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
336 |
+
use_original_steps=False, callback=None):
|
337 |
+
|
338 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
339 |
+
timesteps = timesteps[:t_start]
|
340 |
+
|
341 |
+
time_range = np.flip(timesteps)
|
342 |
+
total_steps = timesteps.shape[0]
|
343 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
344 |
+
|
345 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
346 |
+
x_dec = x_latent
|
347 |
+
for i, step in enumerate(iterator):
|
348 |
+
index = total_steps - i - 1
|
349 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
350 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
351 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
352 |
+
unconditional_conditioning=unconditional_conditioning)
|
353 |
+
if callback: callback(i)
|
354 |
+
return x_dec
|
iopaint/model/anytext/ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,2380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Part of the implementation is borrowed and modified from ControlNet, publicly available at https://github.com/lllyasviel/ControlNet/blob/main/ldm/models/diffusion/ddpm.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import numpy as np
|
8 |
+
from torch.optim.lr_scheduler import LambdaLR
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
from contextlib import contextmanager, nullcontext
|
11 |
+
from functools import partial
|
12 |
+
import itertools
|
13 |
+
from tqdm import tqdm
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from omegaconf import ListConfig
|
16 |
+
|
17 |
+
from iopaint.model.anytext.ldm.util import (
|
18 |
+
log_txt_as_img,
|
19 |
+
exists,
|
20 |
+
default,
|
21 |
+
ismap,
|
22 |
+
isimage,
|
23 |
+
mean_flat,
|
24 |
+
count_params,
|
25 |
+
instantiate_from_config,
|
26 |
+
)
|
27 |
+
from iopaint.model.anytext.ldm.modules.ema import LitEma
|
28 |
+
from iopaint.model.anytext.ldm.modules.distributions.distributions import (
|
29 |
+
normal_kl,
|
30 |
+
DiagonalGaussianDistribution,
|
31 |
+
)
|
32 |
+
from iopaint.model.anytext.ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
|
33 |
+
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
|
34 |
+
make_beta_schedule,
|
35 |
+
extract_into_tensor,
|
36 |
+
noise_like,
|
37 |
+
)
|
38 |
+
from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler
|
39 |
+
import cv2
|
40 |
+
|
41 |
+
|
42 |
+
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
|
43 |
+
|
44 |
+
PRINT_DEBUG = False
|
45 |
+
|
46 |
+
|
47 |
+
def print_grad(grad):
|
48 |
+
# print('Gradient:', grad)
|
49 |
+
# print(grad.shape)
|
50 |
+
a = grad.max()
|
51 |
+
b = grad.min()
|
52 |
+
# print(f'mean={grad.mean():.4f}, max={a:.4f}, min={b:.4f}')
|
53 |
+
s = 255.0 / (a - b)
|
54 |
+
c = 255 * (-b / (a - b))
|
55 |
+
grad = grad * s + c
|
56 |
+
# print(f'mean={grad.mean():.4f}, max={grad.max():.4f}, min={grad.min():.4f}')
|
57 |
+
img = grad[0].permute(1, 2, 0).detach().cpu().numpy()
|
58 |
+
if img.shape[0] == 512:
|
59 |
+
cv2.imwrite("grad-img.jpg", img)
|
60 |
+
elif img.shape[0] == 64:
|
61 |
+
cv2.imwrite("grad-latent.jpg", img)
|
62 |
+
|
63 |
+
|
64 |
+
def disabled_train(self, mode=True):
|
65 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
66 |
+
does not change anymore."""
|
67 |
+
return self
|
68 |
+
|
69 |
+
|
70 |
+
def uniform_on_device(r1, r2, shape, device):
|
71 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
72 |
+
|
73 |
+
|
74 |
+
class DDPM(torch.nn.Module):
|
75 |
+
# classic DDPM with Gaussian diffusion, in image space
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
unet_config,
|
79 |
+
timesteps=1000,
|
80 |
+
beta_schedule="linear",
|
81 |
+
loss_type="l2",
|
82 |
+
ckpt_path=None,
|
83 |
+
ignore_keys=[],
|
84 |
+
load_only_unet=False,
|
85 |
+
monitor="val/loss",
|
86 |
+
use_ema=True,
|
87 |
+
first_stage_key="image",
|
88 |
+
image_size=256,
|
89 |
+
channels=3,
|
90 |
+
log_every_t=100,
|
91 |
+
clip_denoised=True,
|
92 |
+
linear_start=1e-4,
|
93 |
+
linear_end=2e-2,
|
94 |
+
cosine_s=8e-3,
|
95 |
+
given_betas=None,
|
96 |
+
original_elbo_weight=0.0,
|
97 |
+
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
98 |
+
l_simple_weight=1.0,
|
99 |
+
conditioning_key=None,
|
100 |
+
parameterization="eps", # all assuming fixed variance schedules
|
101 |
+
scheduler_config=None,
|
102 |
+
use_positional_encodings=False,
|
103 |
+
learn_logvar=False,
|
104 |
+
logvar_init=0.0,
|
105 |
+
make_it_fit=False,
|
106 |
+
ucg_training=None,
|
107 |
+
reset_ema=False,
|
108 |
+
reset_num_ema_updates=False,
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
assert parameterization in [
|
112 |
+
"eps",
|
113 |
+
"x0",
|
114 |
+
"v",
|
115 |
+
], 'currently only supporting "eps" and "x0" and "v"'
|
116 |
+
self.parameterization = parameterization
|
117 |
+
print(
|
118 |
+
f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode"
|
119 |
+
)
|
120 |
+
self.cond_stage_model = None
|
121 |
+
self.clip_denoised = clip_denoised
|
122 |
+
self.log_every_t = log_every_t
|
123 |
+
self.first_stage_key = first_stage_key
|
124 |
+
self.image_size = image_size # try conv?
|
125 |
+
self.channels = channels
|
126 |
+
self.use_positional_encodings = use_positional_encodings
|
127 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
128 |
+
count_params(self.model, verbose=True)
|
129 |
+
self.use_ema = use_ema
|
130 |
+
if self.use_ema:
|
131 |
+
self.model_ema = LitEma(self.model)
|
132 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
133 |
+
|
134 |
+
self.use_scheduler = scheduler_config is not None
|
135 |
+
if self.use_scheduler:
|
136 |
+
self.scheduler_config = scheduler_config
|
137 |
+
|
138 |
+
self.v_posterior = v_posterior
|
139 |
+
self.original_elbo_weight = original_elbo_weight
|
140 |
+
self.l_simple_weight = l_simple_weight
|
141 |
+
|
142 |
+
if monitor is not None:
|
143 |
+
self.monitor = monitor
|
144 |
+
self.make_it_fit = make_it_fit
|
145 |
+
if reset_ema:
|
146 |
+
assert exists(ckpt_path)
|
147 |
+
if ckpt_path is not None:
|
148 |
+
self.init_from_ckpt(
|
149 |
+
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
|
150 |
+
)
|
151 |
+
if reset_ema:
|
152 |
+
assert self.use_ema
|
153 |
+
print(
|
154 |
+
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint."
|
155 |
+
)
|
156 |
+
self.model_ema = LitEma(self.model)
|
157 |
+
if reset_num_ema_updates:
|
158 |
+
print(
|
159 |
+
" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ "
|
160 |
+
)
|
161 |
+
assert self.use_ema
|
162 |
+
self.model_ema.reset_num_updates()
|
163 |
+
|
164 |
+
self.register_schedule(
|
165 |
+
given_betas=given_betas,
|
166 |
+
beta_schedule=beta_schedule,
|
167 |
+
timesteps=timesteps,
|
168 |
+
linear_start=linear_start,
|
169 |
+
linear_end=linear_end,
|
170 |
+
cosine_s=cosine_s,
|
171 |
+
)
|
172 |
+
|
173 |
+
self.loss_type = loss_type
|
174 |
+
|
175 |
+
self.learn_logvar = learn_logvar
|
176 |
+
logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
177 |
+
if self.learn_logvar:
|
178 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
179 |
+
else:
|
180 |
+
self.register_buffer("logvar", logvar)
|
181 |
+
|
182 |
+
self.ucg_training = ucg_training or dict()
|
183 |
+
if self.ucg_training:
|
184 |
+
self.ucg_prng = np.random.RandomState()
|
185 |
+
|
186 |
+
def register_schedule(
|
187 |
+
self,
|
188 |
+
given_betas=None,
|
189 |
+
beta_schedule="linear",
|
190 |
+
timesteps=1000,
|
191 |
+
linear_start=1e-4,
|
192 |
+
linear_end=2e-2,
|
193 |
+
cosine_s=8e-3,
|
194 |
+
):
|
195 |
+
if exists(given_betas):
|
196 |
+
betas = given_betas
|
197 |
+
else:
|
198 |
+
betas = make_beta_schedule(
|
199 |
+
beta_schedule,
|
200 |
+
timesteps,
|
201 |
+
linear_start=linear_start,
|
202 |
+
linear_end=linear_end,
|
203 |
+
cosine_s=cosine_s,
|
204 |
+
)
|
205 |
+
alphas = 1.0 - betas
|
206 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
207 |
+
# np.save('1.npy', alphas_cumprod)
|
208 |
+
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
209 |
+
|
210 |
+
(timesteps,) = betas.shape
|
211 |
+
self.num_timesteps = int(timesteps)
|
212 |
+
self.linear_start = linear_start
|
213 |
+
self.linear_end = linear_end
|
214 |
+
assert (
|
215 |
+
alphas_cumprod.shape[0] == self.num_timesteps
|
216 |
+
), "alphas have to be defined for each timestep"
|
217 |
+
|
218 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
219 |
+
|
220 |
+
self.register_buffer("betas", to_torch(betas))
|
221 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
222 |
+
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
223 |
+
|
224 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
225 |
+
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
226 |
+
self.register_buffer(
|
227 |
+
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
228 |
+
)
|
229 |
+
self.register_buffer(
|
230 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
231 |
+
)
|
232 |
+
self.register_buffer(
|
233 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
234 |
+
)
|
235 |
+
self.register_buffer(
|
236 |
+
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
237 |
+
)
|
238 |
+
|
239 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
240 |
+
posterior_variance = (1 - self.v_posterior) * betas * (
|
241 |
+
1.0 - alphas_cumprod_prev
|
242 |
+
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
243 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
244 |
+
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
245 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
246 |
+
self.register_buffer(
|
247 |
+
"posterior_log_variance_clipped",
|
248 |
+
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
|
249 |
+
)
|
250 |
+
self.register_buffer(
|
251 |
+
"posterior_mean_coef1",
|
252 |
+
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
|
253 |
+
)
|
254 |
+
self.register_buffer(
|
255 |
+
"posterior_mean_coef2",
|
256 |
+
to_torch(
|
257 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
258 |
+
),
|
259 |
+
)
|
260 |
+
|
261 |
+
if self.parameterization == "eps":
|
262 |
+
lvlb_weights = self.betas**2 / (
|
263 |
+
2
|
264 |
+
* self.posterior_variance
|
265 |
+
* to_torch(alphas)
|
266 |
+
* (1 - self.alphas_cumprod)
|
267 |
+
)
|
268 |
+
elif self.parameterization == "x0":
|
269 |
+
lvlb_weights = (
|
270 |
+
0.5
|
271 |
+
* np.sqrt(torch.Tensor(alphas_cumprod))
|
272 |
+
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
273 |
+
)
|
274 |
+
elif self.parameterization == "v":
|
275 |
+
lvlb_weights = torch.ones_like(
|
276 |
+
self.betas**2
|
277 |
+
/ (
|
278 |
+
2
|
279 |
+
* self.posterior_variance
|
280 |
+
* to_torch(alphas)
|
281 |
+
* (1 - self.alphas_cumprod)
|
282 |
+
)
|
283 |
+
)
|
284 |
+
else:
|
285 |
+
raise NotImplementedError("mu not supported")
|
286 |
+
lvlb_weights[0] = lvlb_weights[1]
|
287 |
+
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
|
288 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
289 |
+
|
290 |
+
@contextmanager
|
291 |
+
def ema_scope(self, context=None):
|
292 |
+
if self.use_ema:
|
293 |
+
self.model_ema.store(self.model.parameters())
|
294 |
+
self.model_ema.copy_to(self.model)
|
295 |
+
if context is not None:
|
296 |
+
print(f"{context}: Switched to EMA weights")
|
297 |
+
try:
|
298 |
+
yield None
|
299 |
+
finally:
|
300 |
+
if self.use_ema:
|
301 |
+
self.model_ema.restore(self.model.parameters())
|
302 |
+
if context is not None:
|
303 |
+
print(f"{context}: Restored training weights")
|
304 |
+
|
305 |
+
@torch.no_grad()
|
306 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
307 |
+
sd = torch.load(path, map_location="cpu")
|
308 |
+
if "state_dict" in list(sd.keys()):
|
309 |
+
sd = sd["state_dict"]
|
310 |
+
keys = list(sd.keys())
|
311 |
+
for k in keys:
|
312 |
+
for ik in ignore_keys:
|
313 |
+
if k.startswith(ik):
|
314 |
+
print("Deleting key {} from state_dict.".format(k))
|
315 |
+
del sd[k]
|
316 |
+
if self.make_it_fit:
|
317 |
+
n_params = len(
|
318 |
+
[
|
319 |
+
name
|
320 |
+
for name, _ in itertools.chain(
|
321 |
+
self.named_parameters(), self.named_buffers()
|
322 |
+
)
|
323 |
+
]
|
324 |
+
)
|
325 |
+
for name, param in tqdm(
|
326 |
+
itertools.chain(self.named_parameters(), self.named_buffers()),
|
327 |
+
desc="Fitting old weights to new weights",
|
328 |
+
total=n_params,
|
329 |
+
):
|
330 |
+
if not name in sd:
|
331 |
+
continue
|
332 |
+
old_shape = sd[name].shape
|
333 |
+
new_shape = param.shape
|
334 |
+
assert len(old_shape) == len(new_shape)
|
335 |
+
if len(new_shape) > 2:
|
336 |
+
# we only modify first two axes
|
337 |
+
assert new_shape[2:] == old_shape[2:]
|
338 |
+
# assumes first axis corresponds to output dim
|
339 |
+
if not new_shape == old_shape:
|
340 |
+
new_param = param.clone()
|
341 |
+
old_param = sd[name]
|
342 |
+
if len(new_shape) == 1:
|
343 |
+
for i in range(new_param.shape[0]):
|
344 |
+
new_param[i] = old_param[i % old_shape[0]]
|
345 |
+
elif len(new_shape) >= 2:
|
346 |
+
for i in range(new_param.shape[0]):
|
347 |
+
for j in range(new_param.shape[1]):
|
348 |
+
new_param[i, j] = old_param[
|
349 |
+
i % old_shape[0], j % old_shape[1]
|
350 |
+
]
|
351 |
+
|
352 |
+
n_used_old = torch.ones(old_shape[1])
|
353 |
+
for j in range(new_param.shape[1]):
|
354 |
+
n_used_old[j % old_shape[1]] += 1
|
355 |
+
n_used_new = torch.zeros(new_shape[1])
|
356 |
+
for j in range(new_param.shape[1]):
|
357 |
+
n_used_new[j] = n_used_old[j % old_shape[1]]
|
358 |
+
|
359 |
+
n_used_new = n_used_new[None, :]
|
360 |
+
while len(n_used_new.shape) < len(new_shape):
|
361 |
+
n_used_new = n_used_new.unsqueeze(-1)
|
362 |
+
new_param /= n_used_new
|
363 |
+
|
364 |
+
sd[name] = new_param
|
365 |
+
|
366 |
+
missing, unexpected = (
|
367 |
+
self.load_state_dict(sd, strict=False)
|
368 |
+
if not only_model
|
369 |
+
else self.model.load_state_dict(sd, strict=False)
|
370 |
+
)
|
371 |
+
print(
|
372 |
+
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
|
373 |
+
)
|
374 |
+
if len(missing) > 0:
|
375 |
+
print(f"Missing Keys:\n {missing}")
|
376 |
+
if len(unexpected) > 0:
|
377 |
+
print(f"\nUnexpected Keys:\n {unexpected}")
|
378 |
+
|
379 |
+
def q_mean_variance(self, x_start, t):
|
380 |
+
"""
|
381 |
+
Get the distribution q(x_t | x_0).
|
382 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
383 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
384 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
385 |
+
"""
|
386 |
+
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
387 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
388 |
+
log_variance = extract_into_tensor(
|
389 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
390 |
+
)
|
391 |
+
return mean, variance, log_variance
|
392 |
+
|
393 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
394 |
+
return (
|
395 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
396 |
+
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
397 |
+
* noise
|
398 |
+
)
|
399 |
+
|
400 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
401 |
+
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
402 |
+
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
403 |
+
return (
|
404 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
|
405 |
+
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
406 |
+
)
|
407 |
+
|
408 |
+
def predict_eps_from_z_and_v(self, x_t, t, v):
|
409 |
+
return (
|
410 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v
|
411 |
+
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
|
412 |
+
* x_t
|
413 |
+
)
|
414 |
+
|
415 |
+
def q_posterior(self, x_start, x_t, t):
|
416 |
+
posterior_mean = (
|
417 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
418 |
+
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
419 |
+
)
|
420 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
421 |
+
posterior_log_variance_clipped = extract_into_tensor(
|
422 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
423 |
+
)
|
424 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
425 |
+
|
426 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
427 |
+
model_out = self.model(x, t)
|
428 |
+
if self.parameterization == "eps":
|
429 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
430 |
+
elif self.parameterization == "x0":
|
431 |
+
x_recon = model_out
|
432 |
+
if clip_denoised:
|
433 |
+
x_recon.clamp_(-1.0, 1.0)
|
434 |
+
|
435 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
436 |
+
x_start=x_recon, x_t=x, t=t
|
437 |
+
)
|
438 |
+
return model_mean, posterior_variance, posterior_log_variance
|
439 |
+
|
440 |
+
@torch.no_grad()
|
441 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
442 |
+
b, *_, device = *x.shape, x.device
|
443 |
+
model_mean, _, model_log_variance = self.p_mean_variance(
|
444 |
+
x=x, t=t, clip_denoised=clip_denoised
|
445 |
+
)
|
446 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
447 |
+
# no noise when t == 0
|
448 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
449 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
450 |
+
|
451 |
+
@torch.no_grad()
|
452 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
453 |
+
device = self.betas.device
|
454 |
+
b = shape[0]
|
455 |
+
img = torch.randn(shape, device=device)
|
456 |
+
intermediates = [img]
|
457 |
+
for i in tqdm(
|
458 |
+
reversed(range(0, self.num_timesteps)),
|
459 |
+
desc="Sampling t",
|
460 |
+
total=self.num_timesteps,
|
461 |
+
):
|
462 |
+
img = self.p_sample(
|
463 |
+
img,
|
464 |
+
torch.full((b,), i, device=device, dtype=torch.long),
|
465 |
+
clip_denoised=self.clip_denoised,
|
466 |
+
)
|
467 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
468 |
+
intermediates.append(img)
|
469 |
+
if return_intermediates:
|
470 |
+
return img, intermediates
|
471 |
+
return img
|
472 |
+
|
473 |
+
@torch.no_grad()
|
474 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
475 |
+
image_size = self.image_size
|
476 |
+
channels = self.channels
|
477 |
+
return self.p_sample_loop(
|
478 |
+
(batch_size, channels, image_size, image_size),
|
479 |
+
return_intermediates=return_intermediates,
|
480 |
+
)
|
481 |
+
|
482 |
+
def q_sample(self, x_start, t, noise=None):
|
483 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
484 |
+
return (
|
485 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
486 |
+
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
487 |
+
* noise
|
488 |
+
)
|
489 |
+
|
490 |
+
def get_v(self, x, noise, t):
|
491 |
+
return (
|
492 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
|
493 |
+
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
494 |
+
)
|
495 |
+
|
496 |
+
def get_loss(self, pred, target, mean=True):
|
497 |
+
if self.loss_type == "l1":
|
498 |
+
loss = (target - pred).abs()
|
499 |
+
if mean:
|
500 |
+
loss = loss.mean()
|
501 |
+
elif self.loss_type == "l2":
|
502 |
+
if mean:
|
503 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
504 |
+
else:
|
505 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction="none")
|
506 |
+
else:
|
507 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
508 |
+
|
509 |
+
return loss
|
510 |
+
|
511 |
+
def p_losses(self, x_start, t, noise=None):
|
512 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
513 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
514 |
+
model_out = self.model(x_noisy, t)
|
515 |
+
|
516 |
+
loss_dict = {}
|
517 |
+
if self.parameterization == "eps":
|
518 |
+
target = noise
|
519 |
+
elif self.parameterization == "x0":
|
520 |
+
target = x_start
|
521 |
+
elif self.parameterization == "v":
|
522 |
+
target = self.get_v(x_start, noise, t)
|
523 |
+
else:
|
524 |
+
raise NotImplementedError(
|
525 |
+
f"Parameterization {self.parameterization} not yet supported"
|
526 |
+
)
|
527 |
+
|
528 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
529 |
+
|
530 |
+
log_prefix = "train" if self.training else "val"
|
531 |
+
|
532 |
+
loss_dict.update({f"{log_prefix}/loss_simple": loss.mean()})
|
533 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
534 |
+
|
535 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
536 |
+
loss_dict.update({f"{log_prefix}/loss_vlb": loss_vlb})
|
537 |
+
|
538 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
539 |
+
|
540 |
+
loss_dict.update({f"{log_prefix}/loss": loss})
|
541 |
+
|
542 |
+
return loss, loss_dict
|
543 |
+
|
544 |
+
def forward(self, x, *args, **kwargs):
|
545 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
546 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
547 |
+
t = torch.randint(
|
548 |
+
0, self.num_timesteps, (x.shape[0],), device=self.device
|
549 |
+
).long()
|
550 |
+
return self.p_losses(x, t, *args, **kwargs)
|
551 |
+
|
552 |
+
def get_input(self, batch, k):
|
553 |
+
x = batch[k]
|
554 |
+
if len(x.shape) == 3:
|
555 |
+
x = x[..., None]
|
556 |
+
x = rearrange(x, "b h w c -> b c h w")
|
557 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
558 |
+
return x
|
559 |
+
|
560 |
+
def shared_step(self, batch):
|
561 |
+
x = self.get_input(batch, self.first_stage_key)
|
562 |
+
loss, loss_dict = self(x)
|
563 |
+
return loss, loss_dict
|
564 |
+
|
565 |
+
def training_step(self, batch, batch_idx):
|
566 |
+
for k in self.ucg_training:
|
567 |
+
p = self.ucg_training[k]["p"]
|
568 |
+
val = self.ucg_training[k]["val"]
|
569 |
+
if val is None:
|
570 |
+
val = ""
|
571 |
+
for i in range(len(batch[k])):
|
572 |
+
if self.ucg_prng.choice(2, p=[1 - p, p]):
|
573 |
+
batch[k][i] = val
|
574 |
+
|
575 |
+
loss, loss_dict = self.shared_step(batch)
|
576 |
+
|
577 |
+
self.log_dict(
|
578 |
+
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True
|
579 |
+
)
|
580 |
+
|
581 |
+
self.log(
|
582 |
+
"global_step",
|
583 |
+
self.global_step,
|
584 |
+
prog_bar=True,
|
585 |
+
logger=True,
|
586 |
+
on_step=True,
|
587 |
+
on_epoch=False,
|
588 |
+
)
|
589 |
+
|
590 |
+
if self.use_scheduler:
|
591 |
+
lr = self.optimizers().param_groups[0]["lr"]
|
592 |
+
self.log(
|
593 |
+
"lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
|
594 |
+
)
|
595 |
+
|
596 |
+
return loss
|
597 |
+
|
598 |
+
@torch.no_grad()
|
599 |
+
def validation_step(self, batch, batch_idx):
|
600 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
601 |
+
with self.ema_scope():
|
602 |
+
_, loss_dict_ema = self.shared_step(batch)
|
603 |
+
loss_dict_ema = {key + "_ema": loss_dict_ema[key] for key in loss_dict_ema}
|
604 |
+
self.log_dict(
|
605 |
+
loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
|
606 |
+
)
|
607 |
+
self.log_dict(
|
608 |
+
loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
|
609 |
+
)
|
610 |
+
|
611 |
+
def on_train_batch_end(self, *args, **kwargs):
|
612 |
+
if self.use_ema:
|
613 |
+
self.model_ema(self.model)
|
614 |
+
|
615 |
+
def _get_rows_from_list(self, samples):
|
616 |
+
n_imgs_per_row = len(samples)
|
617 |
+
denoise_grid = rearrange(samples, "n b c h w -> b n c h w")
|
618 |
+
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
|
619 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
620 |
+
return denoise_grid
|
621 |
+
|
622 |
+
@torch.no_grad()
|
623 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
624 |
+
log = dict()
|
625 |
+
x = self.get_input(batch, self.first_stage_key)
|
626 |
+
N = min(x.shape[0], N)
|
627 |
+
n_row = min(x.shape[0], n_row)
|
628 |
+
x = x.to(self.device)[:N]
|
629 |
+
log["inputs"] = x
|
630 |
+
|
631 |
+
# get diffusion row
|
632 |
+
diffusion_row = list()
|
633 |
+
x_start = x[:n_row]
|
634 |
+
|
635 |
+
for t in range(self.num_timesteps):
|
636 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
637 |
+
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
|
638 |
+
t = t.to(self.device).long()
|
639 |
+
noise = torch.randn_like(x_start)
|
640 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
641 |
+
diffusion_row.append(x_noisy)
|
642 |
+
|
643 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
644 |
+
|
645 |
+
if sample:
|
646 |
+
# get denoise row
|
647 |
+
with self.ema_scope("Plotting"):
|
648 |
+
samples, denoise_row = self.sample(
|
649 |
+
batch_size=N, return_intermediates=True
|
650 |
+
)
|
651 |
+
|
652 |
+
log["samples"] = samples
|
653 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
654 |
+
|
655 |
+
if return_keys:
|
656 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
657 |
+
return log
|
658 |
+
else:
|
659 |
+
return {key: log[key] for key in return_keys}
|
660 |
+
return log
|
661 |
+
|
662 |
+
def configure_optimizers(self):
|
663 |
+
lr = self.learning_rate
|
664 |
+
params = list(self.model.parameters())
|
665 |
+
if self.learn_logvar:
|
666 |
+
params = params + [self.logvar]
|
667 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
668 |
+
return opt
|
669 |
+
|
670 |
+
|
671 |
+
class LatentDiffusion(DDPM):
|
672 |
+
"""main class"""
|
673 |
+
|
674 |
+
def __init__(
|
675 |
+
self,
|
676 |
+
first_stage_config,
|
677 |
+
cond_stage_config,
|
678 |
+
num_timesteps_cond=None,
|
679 |
+
cond_stage_key="image",
|
680 |
+
cond_stage_trainable=False,
|
681 |
+
concat_mode=True,
|
682 |
+
cond_stage_forward=None,
|
683 |
+
conditioning_key=None,
|
684 |
+
scale_factor=1.0,
|
685 |
+
scale_by_std=False,
|
686 |
+
force_null_conditioning=False,
|
687 |
+
*args,
|
688 |
+
**kwargs,
|
689 |
+
):
|
690 |
+
self.force_null_conditioning = force_null_conditioning
|
691 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
692 |
+
self.scale_by_std = scale_by_std
|
693 |
+
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
694 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
695 |
+
if conditioning_key is None:
|
696 |
+
conditioning_key = "concat" if concat_mode else "crossattn"
|
697 |
+
if (
|
698 |
+
cond_stage_config == "__is_unconditional__"
|
699 |
+
and not self.force_null_conditioning
|
700 |
+
):
|
701 |
+
conditioning_key = None
|
702 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
703 |
+
reset_ema = kwargs.pop("reset_ema", False)
|
704 |
+
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
|
705 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
706 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
707 |
+
self.concat_mode = concat_mode
|
708 |
+
self.cond_stage_trainable = cond_stage_trainable
|
709 |
+
self.cond_stage_key = cond_stage_key
|
710 |
+
try:
|
711 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
712 |
+
except:
|
713 |
+
self.num_downs = 0
|
714 |
+
if not scale_by_std:
|
715 |
+
self.scale_factor = scale_factor
|
716 |
+
else:
|
717 |
+
self.register_buffer("scale_factor", torch.tensor(scale_factor))
|
718 |
+
self.instantiate_first_stage(first_stage_config)
|
719 |
+
self.instantiate_cond_stage(cond_stage_config)
|
720 |
+
self.cond_stage_forward = cond_stage_forward
|
721 |
+
self.clip_denoised = False
|
722 |
+
self.bbox_tokenizer = None
|
723 |
+
|
724 |
+
self.restarted_from_ckpt = False
|
725 |
+
if ckpt_path is not None:
|
726 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
727 |
+
self.restarted_from_ckpt = True
|
728 |
+
if reset_ema:
|
729 |
+
assert self.use_ema
|
730 |
+
print(
|
731 |
+
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint."
|
732 |
+
)
|
733 |
+
self.model_ema = LitEma(self.model)
|
734 |
+
if reset_num_ema_updates:
|
735 |
+
print(
|
736 |
+
" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ "
|
737 |
+
)
|
738 |
+
assert self.use_ema
|
739 |
+
self.model_ema.reset_num_updates()
|
740 |
+
|
741 |
+
def make_cond_schedule(
|
742 |
+
self,
|
743 |
+
):
|
744 |
+
self.cond_ids = torch.full(
|
745 |
+
size=(self.num_timesteps,),
|
746 |
+
fill_value=self.num_timesteps - 1,
|
747 |
+
dtype=torch.long,
|
748 |
+
)
|
749 |
+
ids = torch.round(
|
750 |
+
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
751 |
+
).long()
|
752 |
+
self.cond_ids[: self.num_timesteps_cond] = ids
|
753 |
+
|
754 |
+
@torch.no_grad()
|
755 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
756 |
+
# only for very first batch
|
757 |
+
if (
|
758 |
+
self.scale_by_std
|
759 |
+
and self.current_epoch == 0
|
760 |
+
and self.global_step == 0
|
761 |
+
and batch_idx == 0
|
762 |
+
and not self.restarted_from_ckpt
|
763 |
+
):
|
764 |
+
assert (
|
765 |
+
self.scale_factor == 1.0
|
766 |
+
), "rather not use custom rescaling and std-rescaling simultaneously"
|
767 |
+
# set rescale weight to 1./std of encodings
|
768 |
+
print("### USING STD-RESCALING ###")
|
769 |
+
x = super().get_input(batch, self.first_stage_key)
|
770 |
+
x = x.to(self.device)
|
771 |
+
encoder_posterior = self.encode_first_stage(x)
|
772 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
773 |
+
del self.scale_factor
|
774 |
+
self.register_buffer("scale_factor", 1.0 / z.flatten().std())
|
775 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
776 |
+
print("### USING STD-RESCALING ###")
|
777 |
+
|
778 |
+
def register_schedule(
|
779 |
+
self,
|
780 |
+
given_betas=None,
|
781 |
+
beta_schedule="linear",
|
782 |
+
timesteps=1000,
|
783 |
+
linear_start=1e-4,
|
784 |
+
linear_end=2e-2,
|
785 |
+
cosine_s=8e-3,
|
786 |
+
):
|
787 |
+
super().register_schedule(
|
788 |
+
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
|
789 |
+
)
|
790 |
+
|
791 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
792 |
+
if self.shorten_cond_schedule:
|
793 |
+
self.make_cond_schedule()
|
794 |
+
|
795 |
+
def instantiate_first_stage(self, config):
|
796 |
+
model = instantiate_from_config(config)
|
797 |
+
self.first_stage_model = model.eval()
|
798 |
+
self.first_stage_model.train = disabled_train
|
799 |
+
for param in self.first_stage_model.parameters():
|
800 |
+
param.requires_grad = False
|
801 |
+
|
802 |
+
def instantiate_cond_stage(self, config):
|
803 |
+
if not self.cond_stage_trainable:
|
804 |
+
if config == "__is_first_stage__":
|
805 |
+
print("Using first stage also as cond stage.")
|
806 |
+
self.cond_stage_model = self.first_stage_model
|
807 |
+
elif config == "__is_unconditional__":
|
808 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
809 |
+
self.cond_stage_model = None
|
810 |
+
# self.be_unconditional = True
|
811 |
+
else:
|
812 |
+
model = instantiate_from_config(config)
|
813 |
+
self.cond_stage_model = model.eval()
|
814 |
+
self.cond_stage_model.train = disabled_train
|
815 |
+
for param in self.cond_stage_model.parameters():
|
816 |
+
param.requires_grad = False
|
817 |
+
else:
|
818 |
+
assert config != "__is_first_stage__"
|
819 |
+
assert config != "__is_unconditional__"
|
820 |
+
model = instantiate_from_config(config)
|
821 |
+
self.cond_stage_model = model
|
822 |
+
|
823 |
+
def _get_denoise_row_from_list(
|
824 |
+
self, samples, desc="", force_no_decoder_quantization=False
|
825 |
+
):
|
826 |
+
denoise_row = []
|
827 |
+
for zd in tqdm(samples, desc=desc):
|
828 |
+
denoise_row.append(
|
829 |
+
self.decode_first_stage(
|
830 |
+
zd.to(self.device), force_not_quantize=force_no_decoder_quantization
|
831 |
+
)
|
832 |
+
)
|
833 |
+
n_imgs_per_row = len(denoise_row)
|
834 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
835 |
+
denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w")
|
836 |
+
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
|
837 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
838 |
+
return denoise_grid
|
839 |
+
|
840 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
841 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
842 |
+
z = encoder_posterior.sample()
|
843 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
844 |
+
z = encoder_posterior
|
845 |
+
else:
|
846 |
+
raise NotImplementedError(
|
847 |
+
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
848 |
+
)
|
849 |
+
return self.scale_factor * z
|
850 |
+
|
851 |
+
def get_learned_conditioning(self, c):
|
852 |
+
if self.cond_stage_forward is None:
|
853 |
+
if hasattr(self.cond_stage_model, "encode") and callable(
|
854 |
+
self.cond_stage_model.encode
|
855 |
+
):
|
856 |
+
c = self.cond_stage_model.encode(c)
|
857 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
858 |
+
c = c.mode()
|
859 |
+
else:
|
860 |
+
c = self.cond_stage_model(c)
|
861 |
+
else:
|
862 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
863 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
864 |
+
return c
|
865 |
+
|
866 |
+
def meshgrid(self, h, w):
|
867 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
868 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
869 |
+
|
870 |
+
arr = torch.cat([y, x], dim=-1)
|
871 |
+
return arr
|
872 |
+
|
873 |
+
def delta_border(self, h, w):
|
874 |
+
"""
|
875 |
+
:param h: height
|
876 |
+
:param w: width
|
877 |
+
:return: normalized distance to image border,
|
878 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
879 |
+
"""
|
880 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
881 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
882 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
883 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
884 |
+
edge_dist = torch.min(
|
885 |
+
torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1
|
886 |
+
)[0]
|
887 |
+
return edge_dist
|
888 |
+
|
889 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
890 |
+
weighting = self.delta_border(h, w)
|
891 |
+
weighting = torch.clip(
|
892 |
+
weighting,
|
893 |
+
self.split_input_params["clip_min_weight"],
|
894 |
+
self.split_input_params["clip_max_weight"],
|
895 |
+
)
|
896 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
897 |
+
|
898 |
+
if self.split_input_params["tie_braker"]:
|
899 |
+
L_weighting = self.delta_border(Ly, Lx)
|
900 |
+
L_weighting = torch.clip(
|
901 |
+
L_weighting,
|
902 |
+
self.split_input_params["clip_min_tie_weight"],
|
903 |
+
self.split_input_params["clip_max_tie_weight"],
|
904 |
+
)
|
905 |
+
|
906 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
907 |
+
weighting = weighting * L_weighting
|
908 |
+
return weighting
|
909 |
+
|
910 |
+
def get_fold_unfold(
|
911 |
+
self, x, kernel_size, stride, uf=1, df=1
|
912 |
+
): # todo load once not every time, shorten code
|
913 |
+
"""
|
914 |
+
:param x: img of size (bs, c, h, w)
|
915 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
916 |
+
"""
|
917 |
+
bs, nc, h, w = x.shape
|
918 |
+
|
919 |
+
# number of crops in image
|
920 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
921 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
922 |
+
|
923 |
+
if uf == 1 and df == 1:
|
924 |
+
fold_params = dict(
|
925 |
+
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
|
926 |
+
)
|
927 |
+
unfold = torch.nn.Unfold(**fold_params)
|
928 |
+
|
929 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
930 |
+
|
931 |
+
weighting = self.get_weighting(
|
932 |
+
kernel_size[0], kernel_size[1], Ly, Lx, x.device
|
933 |
+
).to(x.dtype)
|
934 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
935 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
936 |
+
|
937 |
+
elif uf > 1 and df == 1:
|
938 |
+
fold_params = dict(
|
939 |
+
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
|
940 |
+
)
|
941 |
+
unfold = torch.nn.Unfold(**fold_params)
|
942 |
+
|
943 |
+
fold_params2 = dict(
|
944 |
+
kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
945 |
+
dilation=1,
|
946 |
+
padding=0,
|
947 |
+
stride=(stride[0] * uf, stride[1] * uf),
|
948 |
+
)
|
949 |
+
fold = torch.nn.Fold(
|
950 |
+
output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2
|
951 |
+
)
|
952 |
+
|
953 |
+
weighting = self.get_weighting(
|
954 |
+
kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device
|
955 |
+
).to(x.dtype)
|
956 |
+
normalization = fold(weighting).view(
|
957 |
+
1, 1, h * uf, w * uf
|
958 |
+
) # normalizes the overlap
|
959 |
+
weighting = weighting.view(
|
960 |
+
(1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)
|
961 |
+
)
|
962 |
+
|
963 |
+
elif df > 1 and uf == 1:
|
964 |
+
fold_params = dict(
|
965 |
+
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
|
966 |
+
)
|
967 |
+
unfold = torch.nn.Unfold(**fold_params)
|
968 |
+
|
969 |
+
fold_params2 = dict(
|
970 |
+
kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
971 |
+
dilation=1,
|
972 |
+
padding=0,
|
973 |
+
stride=(stride[0] // df, stride[1] // df),
|
974 |
+
)
|
975 |
+
fold = torch.nn.Fold(
|
976 |
+
output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2
|
977 |
+
)
|
978 |
+
|
979 |
+
weighting = self.get_weighting(
|
980 |
+
kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device
|
981 |
+
).to(x.dtype)
|
982 |
+
normalization = fold(weighting).view(
|
983 |
+
1, 1, h // df, w // df
|
984 |
+
) # normalizes the overlap
|
985 |
+
weighting = weighting.view(
|
986 |
+
(1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)
|
987 |
+
)
|
988 |
+
|
989 |
+
else:
|
990 |
+
raise NotImplementedError
|
991 |
+
|
992 |
+
return fold, unfold, normalization, weighting
|
993 |
+
|
994 |
+
@torch.no_grad()
|
995 |
+
def get_input(
|
996 |
+
self,
|
997 |
+
batch,
|
998 |
+
k,
|
999 |
+
return_first_stage_outputs=False,
|
1000 |
+
force_c_encode=False,
|
1001 |
+
cond_key=None,
|
1002 |
+
return_original_cond=False,
|
1003 |
+
bs=None,
|
1004 |
+
return_x=False,
|
1005 |
+
mask_k=None,
|
1006 |
+
):
|
1007 |
+
x = super().get_input(batch, k)
|
1008 |
+
if bs is not None:
|
1009 |
+
x = x[:bs]
|
1010 |
+
x = x.to(self.device)
|
1011 |
+
encoder_posterior = self.encode_first_stage(x)
|
1012 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
1013 |
+
|
1014 |
+
if mask_k is not None:
|
1015 |
+
mx = super().get_input(batch, mask_k)
|
1016 |
+
if bs is not None:
|
1017 |
+
mx = mx[:bs]
|
1018 |
+
mx = mx.to(self.device)
|
1019 |
+
encoder_posterior = self.encode_first_stage(mx)
|
1020 |
+
mx = self.get_first_stage_encoding(encoder_posterior).detach()
|
1021 |
+
|
1022 |
+
if self.model.conditioning_key is not None and not self.force_null_conditioning:
|
1023 |
+
if cond_key is None:
|
1024 |
+
cond_key = self.cond_stage_key
|
1025 |
+
if cond_key != self.first_stage_key:
|
1026 |
+
if cond_key in ["caption", "coordinates_bbox", "txt"]:
|
1027 |
+
xc = batch[cond_key]
|
1028 |
+
elif cond_key in ["class_label", "cls"]:
|
1029 |
+
xc = batch
|
1030 |
+
else:
|
1031 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
1032 |
+
else:
|
1033 |
+
xc = x
|
1034 |
+
if not self.cond_stage_trainable or force_c_encode:
|
1035 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
1036 |
+
c = self.get_learned_conditioning(xc)
|
1037 |
+
else:
|
1038 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
1039 |
+
else:
|
1040 |
+
c = xc
|
1041 |
+
if bs is not None:
|
1042 |
+
c = c[:bs]
|
1043 |
+
|
1044 |
+
if self.use_positional_encodings:
|
1045 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
1046 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
1047 |
+
c = {ckey: c, "pos_x": pos_x, "pos_y": pos_y}
|
1048 |
+
|
1049 |
+
else:
|
1050 |
+
c = None
|
1051 |
+
xc = None
|
1052 |
+
if self.use_positional_encodings:
|
1053 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
1054 |
+
c = {"pos_x": pos_x, "pos_y": pos_y}
|
1055 |
+
out = [z, c]
|
1056 |
+
if return_first_stage_outputs:
|
1057 |
+
xrec = self.decode_first_stage(z)
|
1058 |
+
out.extend([x, xrec])
|
1059 |
+
if return_x:
|
1060 |
+
out.extend([x])
|
1061 |
+
if return_original_cond:
|
1062 |
+
out.append(xc)
|
1063 |
+
if mask_k:
|
1064 |
+
out.append(mx)
|
1065 |
+
return out
|
1066 |
+
|
1067 |
+
@torch.no_grad()
|
1068 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
1069 |
+
if predict_cids:
|
1070 |
+
if z.dim() == 4:
|
1071 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
1072 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
1073 |
+
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
1074 |
+
|
1075 |
+
z = 1.0 / self.scale_factor * z
|
1076 |
+
return self.first_stage_model.decode(z)
|
1077 |
+
|
1078 |
+
def decode_first_stage_grad(self, z, predict_cids=False, force_not_quantize=False):
|
1079 |
+
if predict_cids:
|
1080 |
+
if z.dim() == 4:
|
1081 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
1082 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
1083 |
+
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
1084 |
+
|
1085 |
+
z = 1.0 / self.scale_factor * z
|
1086 |
+
return self.first_stage_model.decode(z)
|
1087 |
+
|
1088 |
+
@torch.no_grad()
|
1089 |
+
def encode_first_stage(self, x):
|
1090 |
+
return self.first_stage_model.encode(x)
|
1091 |
+
|
1092 |
+
def shared_step(self, batch, **kwargs):
|
1093 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
1094 |
+
loss = self(x, c)
|
1095 |
+
return loss
|
1096 |
+
|
1097 |
+
def forward(self, x, c, *args, **kwargs):
|
1098 |
+
t = torch.randint(
|
1099 |
+
0, self.num_timesteps, (x.shape[0],), device=self.device
|
1100 |
+
).long()
|
1101 |
+
# t = torch.randint(500, 501, (x.shape[0],), device=self.device).long()
|
1102 |
+
if self.model.conditioning_key is not None:
|
1103 |
+
assert c is not None
|
1104 |
+
if self.cond_stage_trainable:
|
1105 |
+
c = self.get_learned_conditioning(c)
|
1106 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
1107 |
+
tc = self.cond_ids[t].to(self.device)
|
1108 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
1109 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
1110 |
+
|
1111 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
1112 |
+
if isinstance(cond, dict):
|
1113 |
+
# hybrid case, cond is expected to be a dict
|
1114 |
+
pass
|
1115 |
+
else:
|
1116 |
+
if not isinstance(cond, list):
|
1117 |
+
cond = [cond]
|
1118 |
+
key = (
|
1119 |
+
"c_concat" if self.model.conditioning_key == "concat" else "c_crossattn"
|
1120 |
+
)
|
1121 |
+
cond = {key: cond}
|
1122 |
+
|
1123 |
+
x_recon = self.model(x_noisy, t, **cond)
|
1124 |
+
|
1125 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
1126 |
+
return x_recon[0]
|
1127 |
+
else:
|
1128 |
+
return x_recon
|
1129 |
+
|
1130 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
1131 |
+
return (
|
1132 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
1133 |
+
- pred_xstart
|
1134 |
+
) / extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
1135 |
+
|
1136 |
+
def _prior_bpd(self, x_start):
|
1137 |
+
"""
|
1138 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1139 |
+
bits-per-dim.
|
1140 |
+
This term can't be optimized, as it only depends on the encoder.
|
1141 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1142 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1143 |
+
"""
|
1144 |
+
batch_size = x_start.shape[0]
|
1145 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1146 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1147 |
+
kl_prior = normal_kl(
|
1148 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
1149 |
+
)
|
1150 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1151 |
+
|
1152 |
+
def p_mean_variance(
|
1153 |
+
self,
|
1154 |
+
x,
|
1155 |
+
c,
|
1156 |
+
t,
|
1157 |
+
clip_denoised: bool,
|
1158 |
+
return_codebook_ids=False,
|
1159 |
+
quantize_denoised=False,
|
1160 |
+
return_x0=False,
|
1161 |
+
score_corrector=None,
|
1162 |
+
corrector_kwargs=None,
|
1163 |
+
):
|
1164 |
+
t_in = t
|
1165 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1166 |
+
|
1167 |
+
if score_corrector is not None:
|
1168 |
+
assert self.parameterization == "eps"
|
1169 |
+
model_out = score_corrector.modify_score(
|
1170 |
+
self, model_out, x, t, c, **corrector_kwargs
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
if return_codebook_ids:
|
1174 |
+
model_out, logits = model_out
|
1175 |
+
|
1176 |
+
if self.parameterization == "eps":
|
1177 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1178 |
+
elif self.parameterization == "x0":
|
1179 |
+
x_recon = model_out
|
1180 |
+
else:
|
1181 |
+
raise NotImplementedError()
|
1182 |
+
|
1183 |
+
if clip_denoised:
|
1184 |
+
x_recon.clamp_(-1.0, 1.0)
|
1185 |
+
if quantize_denoised:
|
1186 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1187 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
1188 |
+
x_start=x_recon, x_t=x, t=t
|
1189 |
+
)
|
1190 |
+
if return_codebook_ids:
|
1191 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1192 |
+
elif return_x0:
|
1193 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1194 |
+
else:
|
1195 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1196 |
+
|
1197 |
+
@torch.no_grad()
|
1198 |
+
def p_sample(
|
1199 |
+
self,
|
1200 |
+
x,
|
1201 |
+
c,
|
1202 |
+
t,
|
1203 |
+
clip_denoised=False,
|
1204 |
+
repeat_noise=False,
|
1205 |
+
return_codebook_ids=False,
|
1206 |
+
quantize_denoised=False,
|
1207 |
+
return_x0=False,
|
1208 |
+
temperature=1.0,
|
1209 |
+
noise_dropout=0.0,
|
1210 |
+
score_corrector=None,
|
1211 |
+
corrector_kwargs=None,
|
1212 |
+
):
|
1213 |
+
b, *_, device = *x.shape, x.device
|
1214 |
+
outputs = self.p_mean_variance(
|
1215 |
+
x=x,
|
1216 |
+
c=c,
|
1217 |
+
t=t,
|
1218 |
+
clip_denoised=clip_denoised,
|
1219 |
+
return_codebook_ids=return_codebook_ids,
|
1220 |
+
quantize_denoised=quantize_denoised,
|
1221 |
+
return_x0=return_x0,
|
1222 |
+
score_corrector=score_corrector,
|
1223 |
+
corrector_kwargs=corrector_kwargs,
|
1224 |
+
)
|
1225 |
+
if return_codebook_ids:
|
1226 |
+
raise DeprecationWarning("Support dropped.")
|
1227 |
+
model_mean, _, model_log_variance, logits = outputs
|
1228 |
+
elif return_x0:
|
1229 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1230 |
+
else:
|
1231 |
+
model_mean, _, model_log_variance = outputs
|
1232 |
+
|
1233 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1234 |
+
if noise_dropout > 0.0:
|
1235 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1236 |
+
# no noise when t == 0
|
1237 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1238 |
+
|
1239 |
+
if return_codebook_ids:
|
1240 |
+
return model_mean + nonzero_mask * (
|
1241 |
+
0.5 * model_log_variance
|
1242 |
+
).exp() * noise, logits.argmax(dim=1)
|
1243 |
+
if return_x0:
|
1244 |
+
return (
|
1245 |
+
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
|
1246 |
+
x0,
|
1247 |
+
)
|
1248 |
+
else:
|
1249 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1250 |
+
|
1251 |
+
@torch.no_grad()
|
1252 |
+
def progressive_denoising(
|
1253 |
+
self,
|
1254 |
+
cond,
|
1255 |
+
shape,
|
1256 |
+
verbose=True,
|
1257 |
+
callback=None,
|
1258 |
+
quantize_denoised=False,
|
1259 |
+
img_callback=None,
|
1260 |
+
mask=None,
|
1261 |
+
x0=None,
|
1262 |
+
temperature=1.0,
|
1263 |
+
noise_dropout=0.0,
|
1264 |
+
score_corrector=None,
|
1265 |
+
corrector_kwargs=None,
|
1266 |
+
batch_size=None,
|
1267 |
+
x_T=None,
|
1268 |
+
start_T=None,
|
1269 |
+
log_every_t=None,
|
1270 |
+
):
|
1271 |
+
if not log_every_t:
|
1272 |
+
log_every_t = self.log_every_t
|
1273 |
+
timesteps = self.num_timesteps
|
1274 |
+
if batch_size is not None:
|
1275 |
+
b = batch_size if batch_size is not None else shape[0]
|
1276 |
+
shape = [batch_size] + list(shape)
|
1277 |
+
else:
|
1278 |
+
b = batch_size = shape[0]
|
1279 |
+
if x_T is None:
|
1280 |
+
img = torch.randn(shape, device=self.device)
|
1281 |
+
else:
|
1282 |
+
img = x_T
|
1283 |
+
intermediates = []
|
1284 |
+
if cond is not None:
|
1285 |
+
if isinstance(cond, dict):
|
1286 |
+
cond = {
|
1287 |
+
key: cond[key][:batch_size]
|
1288 |
+
if not isinstance(cond[key], list)
|
1289 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
1290 |
+
for key in cond
|
1291 |
+
}
|
1292 |
+
else:
|
1293 |
+
cond = (
|
1294 |
+
[c[:batch_size] for c in cond]
|
1295 |
+
if isinstance(cond, list)
|
1296 |
+
else cond[:batch_size]
|
1297 |
+
)
|
1298 |
+
|
1299 |
+
if start_T is not None:
|
1300 |
+
timesteps = min(timesteps, start_T)
|
1301 |
+
iterator = (
|
1302 |
+
tqdm(
|
1303 |
+
reversed(range(0, timesteps)),
|
1304 |
+
desc="Progressive Generation",
|
1305 |
+
total=timesteps,
|
1306 |
+
)
|
1307 |
+
if verbose
|
1308 |
+
else reversed(range(0, timesteps))
|
1309 |
+
)
|
1310 |
+
if type(temperature) == float:
|
1311 |
+
temperature = [temperature] * timesteps
|
1312 |
+
|
1313 |
+
for i in iterator:
|
1314 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1315 |
+
if self.shorten_cond_schedule:
|
1316 |
+
assert self.model.conditioning_key != "hybrid"
|
1317 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1318 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1319 |
+
|
1320 |
+
img, x0_partial = self.p_sample(
|
1321 |
+
img,
|
1322 |
+
cond,
|
1323 |
+
ts,
|
1324 |
+
clip_denoised=self.clip_denoised,
|
1325 |
+
quantize_denoised=quantize_denoised,
|
1326 |
+
return_x0=True,
|
1327 |
+
temperature=temperature[i],
|
1328 |
+
noise_dropout=noise_dropout,
|
1329 |
+
score_corrector=score_corrector,
|
1330 |
+
corrector_kwargs=corrector_kwargs,
|
1331 |
+
)
|
1332 |
+
if mask is not None:
|
1333 |
+
assert x0 is not None
|
1334 |
+
img_orig = self.q_sample(x0, ts)
|
1335 |
+
img = img_orig * mask + (1.0 - mask) * img
|
1336 |
+
|
1337 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1338 |
+
intermediates.append(x0_partial)
|
1339 |
+
if callback:
|
1340 |
+
callback(i)
|
1341 |
+
if img_callback:
|
1342 |
+
img_callback(img, i)
|
1343 |
+
return img, intermediates
|
1344 |
+
|
1345 |
+
@torch.no_grad()
|
1346 |
+
def p_sample_loop(
|
1347 |
+
self,
|
1348 |
+
cond,
|
1349 |
+
shape,
|
1350 |
+
return_intermediates=False,
|
1351 |
+
x_T=None,
|
1352 |
+
verbose=True,
|
1353 |
+
callback=None,
|
1354 |
+
timesteps=None,
|
1355 |
+
quantize_denoised=False,
|
1356 |
+
mask=None,
|
1357 |
+
x0=None,
|
1358 |
+
img_callback=None,
|
1359 |
+
start_T=None,
|
1360 |
+
log_every_t=None,
|
1361 |
+
):
|
1362 |
+
if not log_every_t:
|
1363 |
+
log_every_t = self.log_every_t
|
1364 |
+
device = self.betas.device
|
1365 |
+
b = shape[0]
|
1366 |
+
if x_T is None:
|
1367 |
+
img = torch.randn(shape, device=device)
|
1368 |
+
else:
|
1369 |
+
img = x_T
|
1370 |
+
|
1371 |
+
intermediates = [img]
|
1372 |
+
if timesteps is None:
|
1373 |
+
timesteps = self.num_timesteps
|
1374 |
+
|
1375 |
+
if start_T is not None:
|
1376 |
+
timesteps = min(timesteps, start_T)
|
1377 |
+
iterator = (
|
1378 |
+
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
|
1379 |
+
if verbose
|
1380 |
+
else reversed(range(0, timesteps))
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
if mask is not None:
|
1384 |
+
assert x0 is not None
|
1385 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1386 |
+
|
1387 |
+
for i in iterator:
|
1388 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1389 |
+
if self.shorten_cond_schedule:
|
1390 |
+
assert self.model.conditioning_key != "hybrid"
|
1391 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1392 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1393 |
+
|
1394 |
+
img = self.p_sample(
|
1395 |
+
img,
|
1396 |
+
cond,
|
1397 |
+
ts,
|
1398 |
+
clip_denoised=self.clip_denoised,
|
1399 |
+
quantize_denoised=quantize_denoised,
|
1400 |
+
)
|
1401 |
+
if mask is not None:
|
1402 |
+
img_orig = self.q_sample(x0, ts)
|
1403 |
+
img = img_orig * mask + (1.0 - mask) * img
|
1404 |
+
|
1405 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1406 |
+
intermediates.append(img)
|
1407 |
+
if callback:
|
1408 |
+
callback(i)
|
1409 |
+
if img_callback:
|
1410 |
+
img_callback(img, i)
|
1411 |
+
|
1412 |
+
if return_intermediates:
|
1413 |
+
return img, intermediates
|
1414 |
+
return img
|
1415 |
+
|
1416 |
+
@torch.no_grad()
|
1417 |
+
def sample(
|
1418 |
+
self,
|
1419 |
+
cond,
|
1420 |
+
batch_size=16,
|
1421 |
+
return_intermediates=False,
|
1422 |
+
x_T=None,
|
1423 |
+
verbose=True,
|
1424 |
+
timesteps=None,
|
1425 |
+
quantize_denoised=False,
|
1426 |
+
mask=None,
|
1427 |
+
x0=None,
|
1428 |
+
shape=None,
|
1429 |
+
**kwargs,
|
1430 |
+
):
|
1431 |
+
if shape is None:
|
1432 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1433 |
+
if cond is not None:
|
1434 |
+
if isinstance(cond, dict):
|
1435 |
+
cond = {
|
1436 |
+
key: cond[key][:batch_size]
|
1437 |
+
if not isinstance(cond[key], list)
|
1438 |
+
else list(map(lambda x: x[:batch_size], cond[key]))
|
1439 |
+
for key in cond
|
1440 |
+
}
|
1441 |
+
else:
|
1442 |
+
cond = (
|
1443 |
+
[c[:batch_size] for c in cond]
|
1444 |
+
if isinstance(cond, list)
|
1445 |
+
else cond[:batch_size]
|
1446 |
+
)
|
1447 |
+
return self.p_sample_loop(
|
1448 |
+
cond,
|
1449 |
+
shape,
|
1450 |
+
return_intermediates=return_intermediates,
|
1451 |
+
x_T=x_T,
|
1452 |
+
verbose=verbose,
|
1453 |
+
timesteps=timesteps,
|
1454 |
+
quantize_denoised=quantize_denoised,
|
1455 |
+
mask=mask,
|
1456 |
+
x0=x0,
|
1457 |
+
)
|
1458 |
+
|
1459 |
+
@torch.no_grad()
|
1460 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
1461 |
+
if ddim:
|
1462 |
+
ddim_sampler = DDIMSampler(self)
|
1463 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1464 |
+
samples, intermediates = ddim_sampler.sample(
|
1465 |
+
ddim_steps, batch_size, shape, cond, verbose=False, **kwargs
|
1466 |
+
)
|
1467 |
+
|
1468 |
+
else:
|
1469 |
+
samples, intermediates = self.sample(
|
1470 |
+
cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs
|
1471 |
+
)
|
1472 |
+
|
1473 |
+
return samples, intermediates
|
1474 |
+
|
1475 |
+
@torch.no_grad()
|
1476 |
+
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
1477 |
+
if null_label is not None:
|
1478 |
+
xc = null_label
|
1479 |
+
if isinstance(xc, ListConfig):
|
1480 |
+
xc = list(xc)
|
1481 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
1482 |
+
c = self.get_learned_conditioning(xc)
|
1483 |
+
else:
|
1484 |
+
if hasattr(xc, "to"):
|
1485 |
+
xc = xc.to(self.device)
|
1486 |
+
c = self.get_learned_conditioning(xc)
|
1487 |
+
else:
|
1488 |
+
if self.cond_stage_key in ["class_label", "cls"]:
|
1489 |
+
xc = self.cond_stage_model.get_unconditional_conditioning(
|
1490 |
+
batch_size, device=self.device
|
1491 |
+
)
|
1492 |
+
return self.get_learned_conditioning(xc)
|
1493 |
+
else:
|
1494 |
+
raise NotImplementedError("todo")
|
1495 |
+
if isinstance(c, list): # in case the encoder gives us a list
|
1496 |
+
for i in range(len(c)):
|
1497 |
+
c[i] = repeat(c[i], "1 ... -> b ...", b=batch_size).to(self.device)
|
1498 |
+
else:
|
1499 |
+
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
|
1500 |
+
return c
|
1501 |
+
|
1502 |
+
@torch.no_grad()
|
1503 |
+
def log_images(
|
1504 |
+
self,
|
1505 |
+
batch,
|
1506 |
+
N=8,
|
1507 |
+
n_row=4,
|
1508 |
+
sample=True,
|
1509 |
+
ddim_steps=50,
|
1510 |
+
ddim_eta=0.0,
|
1511 |
+
return_keys=None,
|
1512 |
+
quantize_denoised=True,
|
1513 |
+
inpaint=True,
|
1514 |
+
plot_denoise_rows=False,
|
1515 |
+
plot_progressive_rows=True,
|
1516 |
+
plot_diffusion_rows=True,
|
1517 |
+
unconditional_guidance_scale=1.0,
|
1518 |
+
unconditional_guidance_label=None,
|
1519 |
+
use_ema_scope=True,
|
1520 |
+
**kwargs,
|
1521 |
+
):
|
1522 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1523 |
+
use_ddim = ddim_steps is not None
|
1524 |
+
|
1525 |
+
log = dict()
|
1526 |
+
z, c, x, xrec, xc = self.get_input(
|
1527 |
+
batch,
|
1528 |
+
self.first_stage_key,
|
1529 |
+
return_first_stage_outputs=True,
|
1530 |
+
force_c_encode=True,
|
1531 |
+
return_original_cond=True,
|
1532 |
+
bs=N,
|
1533 |
+
)
|
1534 |
+
N = min(x.shape[0], N)
|
1535 |
+
n_row = min(x.shape[0], n_row)
|
1536 |
+
log["inputs"] = x
|
1537 |
+
log["reconstruction"] = xrec
|
1538 |
+
if self.model.conditioning_key is not None:
|
1539 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1540 |
+
xc = self.cond_stage_model.decode(c)
|
1541 |
+
log["conditioning"] = xc
|
1542 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1543 |
+
xc = log_txt_as_img(
|
1544 |
+
(x.shape[2], x.shape[3]),
|
1545 |
+
batch[self.cond_stage_key],
|
1546 |
+
size=x.shape[2] // 25,
|
1547 |
+
)
|
1548 |
+
log["conditioning"] = xc
|
1549 |
+
elif self.cond_stage_key in ["class_label", "cls"]:
|
1550 |
+
try:
|
1551 |
+
xc = log_txt_as_img(
|
1552 |
+
(x.shape[2], x.shape[3]),
|
1553 |
+
batch["human_label"],
|
1554 |
+
size=x.shape[2] // 25,
|
1555 |
+
)
|
1556 |
+
log["conditioning"] = xc
|
1557 |
+
except KeyError:
|
1558 |
+
# probably no "human_label" in batch
|
1559 |
+
pass
|
1560 |
+
elif isimage(xc):
|
1561 |
+
log["conditioning"] = xc
|
1562 |
+
if ismap(xc):
|
1563 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1564 |
+
|
1565 |
+
if plot_diffusion_rows:
|
1566 |
+
# get diffusion row
|
1567 |
+
diffusion_row = list()
|
1568 |
+
z_start = z[:n_row]
|
1569 |
+
for t in range(self.num_timesteps):
|
1570 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1571 |
+
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
|
1572 |
+
t = t.to(self.device).long()
|
1573 |
+
noise = torch.randn_like(z_start)
|
1574 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1575 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1576 |
+
|
1577 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1578 |
+
diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
|
1579 |
+
diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
|
1580 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1581 |
+
log["diffusion_row"] = diffusion_grid
|
1582 |
+
|
1583 |
+
if sample:
|
1584 |
+
# get denoise row
|
1585 |
+
with ema_scope("Sampling"):
|
1586 |
+
samples, z_denoise_row = self.sample_log(
|
1587 |
+
cond=c,
|
1588 |
+
batch_size=N,
|
1589 |
+
ddim=use_ddim,
|
1590 |
+
ddim_steps=ddim_steps,
|
1591 |
+
eta=ddim_eta,
|
1592 |
+
)
|
1593 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1594 |
+
x_samples = self.decode_first_stage(samples)
|
1595 |
+
log["samples"] = x_samples
|
1596 |
+
if plot_denoise_rows:
|
1597 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1598 |
+
log["denoise_row"] = denoise_grid
|
1599 |
+
|
1600 |
+
if (
|
1601 |
+
quantize_denoised
|
1602 |
+
and not isinstance(self.first_stage_model, AutoencoderKL)
|
1603 |
+
and not isinstance(self.first_stage_model, IdentityFirstStage)
|
1604 |
+
):
|
1605 |
+
# also display when quantizing x0 while sampling
|
1606 |
+
with ema_scope("Plotting Quantized Denoised"):
|
1607 |
+
samples, z_denoise_row = self.sample_log(
|
1608 |
+
cond=c,
|
1609 |
+
batch_size=N,
|
1610 |
+
ddim=use_ddim,
|
1611 |
+
ddim_steps=ddim_steps,
|
1612 |
+
eta=ddim_eta,
|
1613 |
+
quantize_denoised=True,
|
1614 |
+
)
|
1615 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1616 |
+
# quantize_denoised=True)
|
1617 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1618 |
+
log["samples_x0_quantized"] = x_samples
|
1619 |
+
|
1620 |
+
if unconditional_guidance_scale > 1.0:
|
1621 |
+
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1622 |
+
if self.model.conditioning_key == "crossattn-adm":
|
1623 |
+
uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
|
1624 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1625 |
+
samples_cfg, _ = self.sample_log(
|
1626 |
+
cond=c,
|
1627 |
+
batch_size=N,
|
1628 |
+
ddim=use_ddim,
|
1629 |
+
ddim_steps=ddim_steps,
|
1630 |
+
eta=ddim_eta,
|
1631 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1632 |
+
unconditional_conditioning=uc,
|
1633 |
+
)
|
1634 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1635 |
+
log[
|
1636 |
+
f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
|
1637 |
+
] = x_samples_cfg
|
1638 |
+
|
1639 |
+
if inpaint:
|
1640 |
+
# make a simple center square
|
1641 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1642 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1643 |
+
# zeros will be filled in
|
1644 |
+
mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0
|
1645 |
+
mask = mask[:, None, ...]
|
1646 |
+
with ema_scope("Plotting Inpaint"):
|
1647 |
+
samples, _ = self.sample_log(
|
1648 |
+
cond=c,
|
1649 |
+
batch_size=N,
|
1650 |
+
ddim=use_ddim,
|
1651 |
+
eta=ddim_eta,
|
1652 |
+
ddim_steps=ddim_steps,
|
1653 |
+
x0=z[:N],
|
1654 |
+
mask=mask,
|
1655 |
+
)
|
1656 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1657 |
+
log["samples_inpainting"] = x_samples
|
1658 |
+
log["mask"] = mask
|
1659 |
+
|
1660 |
+
# outpaint
|
1661 |
+
mask = 1.0 - mask
|
1662 |
+
with ema_scope("Plotting Outpaint"):
|
1663 |
+
samples, _ = self.sample_log(
|
1664 |
+
cond=c,
|
1665 |
+
batch_size=N,
|
1666 |
+
ddim=use_ddim,
|
1667 |
+
eta=ddim_eta,
|
1668 |
+
ddim_steps=ddim_steps,
|
1669 |
+
x0=z[:N],
|
1670 |
+
mask=mask,
|
1671 |
+
)
|
1672 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1673 |
+
log["samples_outpainting"] = x_samples
|
1674 |
+
|
1675 |
+
if plot_progressive_rows:
|
1676 |
+
with ema_scope("Plotting Progressives"):
|
1677 |
+
img, progressives = self.progressive_denoising(
|
1678 |
+
c,
|
1679 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1680 |
+
batch_size=N,
|
1681 |
+
)
|
1682 |
+
prog_row = self._get_denoise_row_from_list(
|
1683 |
+
progressives, desc="Progressive Generation"
|
1684 |
+
)
|
1685 |
+
log["progressive_row"] = prog_row
|
1686 |
+
|
1687 |
+
if return_keys:
|
1688 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1689 |
+
return log
|
1690 |
+
else:
|
1691 |
+
return {key: log[key] for key in return_keys}
|
1692 |
+
return log
|
1693 |
+
|
1694 |
+
def configure_optimizers(self):
|
1695 |
+
lr = self.learning_rate
|
1696 |
+
params = list(self.model.parameters())
|
1697 |
+
if self.cond_stage_trainable:
|
1698 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1699 |
+
params = params + list(self.cond_stage_model.parameters())
|
1700 |
+
if self.learn_logvar:
|
1701 |
+
print("Diffusion model optimizing logvar")
|
1702 |
+
params.append(self.logvar)
|
1703 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1704 |
+
if self.use_scheduler:
|
1705 |
+
assert "target" in self.scheduler_config
|
1706 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1707 |
+
|
1708 |
+
print("Setting up LambdaLR scheduler...")
|
1709 |
+
scheduler = [
|
1710 |
+
{
|
1711 |
+
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1712 |
+
"interval": "step",
|
1713 |
+
"frequency": 1,
|
1714 |
+
}
|
1715 |
+
]
|
1716 |
+
return [opt], scheduler
|
1717 |
+
return opt
|
1718 |
+
|
1719 |
+
@torch.no_grad()
|
1720 |
+
def to_rgb(self, x):
|
1721 |
+
x = x.float()
|
1722 |
+
if not hasattr(self, "colorize"):
|
1723 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1724 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1725 |
+
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
1726 |
+
return x
|
1727 |
+
|
1728 |
+
|
1729 |
+
class DiffusionWrapper(torch.nn.Module):
|
1730 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1731 |
+
super().__init__()
|
1732 |
+
self.sequential_cross_attn = diff_model_config.pop(
|
1733 |
+
"sequential_crossattn", False
|
1734 |
+
)
|
1735 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1736 |
+
self.conditioning_key = conditioning_key
|
1737 |
+
assert self.conditioning_key in [
|
1738 |
+
None,
|
1739 |
+
"concat",
|
1740 |
+
"crossattn",
|
1741 |
+
"hybrid",
|
1742 |
+
"adm",
|
1743 |
+
"hybrid-adm",
|
1744 |
+
"crossattn-adm",
|
1745 |
+
]
|
1746 |
+
|
1747 |
+
def forward(
|
1748 |
+
self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None
|
1749 |
+
):
|
1750 |
+
if self.conditioning_key is None:
|
1751 |
+
out = self.diffusion_model(x, t)
|
1752 |
+
elif self.conditioning_key == "concat":
|
1753 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1754 |
+
out = self.diffusion_model(xc, t)
|
1755 |
+
elif self.conditioning_key == "crossattn":
|
1756 |
+
if not self.sequential_cross_attn:
|
1757 |
+
cc = torch.cat(c_crossattn, 1)
|
1758 |
+
else:
|
1759 |
+
cc = c_crossattn
|
1760 |
+
out = self.diffusion_model(x, t, context=cc)
|
1761 |
+
elif self.conditioning_key == "hybrid":
|
1762 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1763 |
+
cc = torch.cat(c_crossattn, 1)
|
1764 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1765 |
+
elif self.conditioning_key == "hybrid-adm":
|
1766 |
+
assert c_adm is not None
|
1767 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1768 |
+
cc = torch.cat(c_crossattn, 1)
|
1769 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
1770 |
+
elif self.conditioning_key == "crossattn-adm":
|
1771 |
+
assert c_adm is not None
|
1772 |
+
cc = torch.cat(c_crossattn, 1)
|
1773 |
+
out = self.diffusion_model(x, t, context=cc, y=c_adm)
|
1774 |
+
elif self.conditioning_key == "adm":
|
1775 |
+
cc = c_crossattn[0]
|
1776 |
+
out = self.diffusion_model(x, t, y=cc)
|
1777 |
+
else:
|
1778 |
+
raise NotImplementedError()
|
1779 |
+
|
1780 |
+
return out
|
1781 |
+
|
1782 |
+
|
1783 |
+
class LatentUpscaleDiffusion(LatentDiffusion):
|
1784 |
+
def __init__(
|
1785 |
+
self,
|
1786 |
+
*args,
|
1787 |
+
low_scale_config,
|
1788 |
+
low_scale_key="LR",
|
1789 |
+
noise_level_key=None,
|
1790 |
+
**kwargs,
|
1791 |
+
):
|
1792 |
+
super().__init__(*args, **kwargs)
|
1793 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1794 |
+
assert not self.cond_stage_trainable
|
1795 |
+
self.instantiate_low_stage(low_scale_config)
|
1796 |
+
self.low_scale_key = low_scale_key
|
1797 |
+
self.noise_level_key = noise_level_key
|
1798 |
+
|
1799 |
+
def instantiate_low_stage(self, config):
|
1800 |
+
model = instantiate_from_config(config)
|
1801 |
+
self.low_scale_model = model.eval()
|
1802 |
+
self.low_scale_model.train = disabled_train
|
1803 |
+
for param in self.low_scale_model.parameters():
|
1804 |
+
param.requires_grad = False
|
1805 |
+
|
1806 |
+
@torch.no_grad()
|
1807 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1808 |
+
if not log_mode:
|
1809 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1810 |
+
else:
|
1811 |
+
z, c, x, xrec, xc = super().get_input(
|
1812 |
+
batch,
|
1813 |
+
self.first_stage_key,
|
1814 |
+
return_first_stage_outputs=True,
|
1815 |
+
force_c_encode=True,
|
1816 |
+
return_original_cond=True,
|
1817 |
+
bs=bs,
|
1818 |
+
)
|
1819 |
+
x_low = batch[self.low_scale_key][:bs]
|
1820 |
+
x_low = rearrange(x_low, "b h w c -> b c h w")
|
1821 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1822 |
+
zx, noise_level = self.low_scale_model(x_low)
|
1823 |
+
if self.noise_level_key is not None:
|
1824 |
+
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr
|
1825 |
+
raise NotImplementedError("TODO")
|
1826 |
+
|
1827 |
+
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
1828 |
+
if log_mode:
|
1829 |
+
# TODO: maybe disable if too expensive
|
1830 |
+
x_low_rec = self.low_scale_model.decode(zx)
|
1831 |
+
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
1832 |
+
return z, all_conds
|
1833 |
+
|
1834 |
+
@torch.no_grad()
|
1835 |
+
def log_images(
|
1836 |
+
self,
|
1837 |
+
batch,
|
1838 |
+
N=8,
|
1839 |
+
n_row=4,
|
1840 |
+
sample=True,
|
1841 |
+
ddim_steps=200,
|
1842 |
+
ddim_eta=1.0,
|
1843 |
+
return_keys=None,
|
1844 |
+
plot_denoise_rows=False,
|
1845 |
+
plot_progressive_rows=True,
|
1846 |
+
plot_diffusion_rows=True,
|
1847 |
+
unconditional_guidance_scale=1.0,
|
1848 |
+
unconditional_guidance_label=None,
|
1849 |
+
use_ema_scope=True,
|
1850 |
+
**kwargs,
|
1851 |
+
):
|
1852 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1853 |
+
use_ddim = ddim_steps is not None
|
1854 |
+
|
1855 |
+
log = dict()
|
1856 |
+
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(
|
1857 |
+
batch, self.first_stage_key, bs=N, log_mode=True
|
1858 |
+
)
|
1859 |
+
N = min(x.shape[0], N)
|
1860 |
+
n_row = min(x.shape[0], n_row)
|
1861 |
+
log["inputs"] = x
|
1862 |
+
log["reconstruction"] = xrec
|
1863 |
+
log["x_lr"] = x_low
|
1864 |
+
log[
|
1865 |
+
f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"
|
1866 |
+
] = x_low_rec
|
1867 |
+
if self.model.conditioning_key is not None:
|
1868 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1869 |
+
xc = self.cond_stage_model.decode(c)
|
1870 |
+
log["conditioning"] = xc
|
1871 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
1872 |
+
xc = log_txt_as_img(
|
1873 |
+
(x.shape[2], x.shape[3]),
|
1874 |
+
batch[self.cond_stage_key],
|
1875 |
+
size=x.shape[2] // 25,
|
1876 |
+
)
|
1877 |
+
log["conditioning"] = xc
|
1878 |
+
elif self.cond_stage_key in ["class_label", "cls"]:
|
1879 |
+
xc = log_txt_as_img(
|
1880 |
+
(x.shape[2], x.shape[3]),
|
1881 |
+
batch["human_label"],
|
1882 |
+
size=x.shape[2] // 25,
|
1883 |
+
)
|
1884 |
+
log["conditioning"] = xc
|
1885 |
+
elif isimage(xc):
|
1886 |
+
log["conditioning"] = xc
|
1887 |
+
if ismap(xc):
|
1888 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1889 |
+
|
1890 |
+
if plot_diffusion_rows:
|
1891 |
+
# get diffusion row
|
1892 |
+
diffusion_row = list()
|
1893 |
+
z_start = z[:n_row]
|
1894 |
+
for t in range(self.num_timesteps):
|
1895 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1896 |
+
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
|
1897 |
+
t = t.to(self.device).long()
|
1898 |
+
noise = torch.randn_like(z_start)
|
1899 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1900 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1901 |
+
|
1902 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1903 |
+
diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
|
1904 |
+
diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
|
1905 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1906 |
+
log["diffusion_row"] = diffusion_grid
|
1907 |
+
|
1908 |
+
if sample:
|
1909 |
+
# get denoise row
|
1910 |
+
with ema_scope("Sampling"):
|
1911 |
+
samples, z_denoise_row = self.sample_log(
|
1912 |
+
cond=c,
|
1913 |
+
batch_size=N,
|
1914 |
+
ddim=use_ddim,
|
1915 |
+
ddim_steps=ddim_steps,
|
1916 |
+
eta=ddim_eta,
|
1917 |
+
)
|
1918 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1919 |
+
x_samples = self.decode_first_stage(samples)
|
1920 |
+
log["samples"] = x_samples
|
1921 |
+
if plot_denoise_rows:
|
1922 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1923 |
+
log["denoise_row"] = denoise_grid
|
1924 |
+
|
1925 |
+
if unconditional_guidance_scale > 1.0:
|
1926 |
+
uc_tmp = self.get_unconditional_conditioning(
|
1927 |
+
N, unconditional_guidance_label
|
1928 |
+
)
|
1929 |
+
# TODO explore better "unconditional" choices for the other keys
|
1930 |
+
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
|
1931 |
+
uc = dict()
|
1932 |
+
for k in c:
|
1933 |
+
if k == "c_crossattn":
|
1934 |
+
assert isinstance(c[k], list) and len(c[k]) == 1
|
1935 |
+
uc[k] = [uc_tmp]
|
1936 |
+
elif k == "c_adm": # todo: only run with text-based guidance?
|
1937 |
+
assert isinstance(c[k], torch.Tensor)
|
1938 |
+
# uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
|
1939 |
+
uc[k] = c[k]
|
1940 |
+
elif isinstance(c[k], list):
|
1941 |
+
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1942 |
+
else:
|
1943 |
+
uc[k] = c[k]
|
1944 |
+
|
1945 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
1946 |
+
samples_cfg, _ = self.sample_log(
|
1947 |
+
cond=c,
|
1948 |
+
batch_size=N,
|
1949 |
+
ddim=use_ddim,
|
1950 |
+
ddim_steps=ddim_steps,
|
1951 |
+
eta=ddim_eta,
|
1952 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
1953 |
+
unconditional_conditioning=uc,
|
1954 |
+
)
|
1955 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1956 |
+
log[
|
1957 |
+
f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
|
1958 |
+
] = x_samples_cfg
|
1959 |
+
|
1960 |
+
if plot_progressive_rows:
|
1961 |
+
with ema_scope("Plotting Progressives"):
|
1962 |
+
img, progressives = self.progressive_denoising(
|
1963 |
+
c,
|
1964 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1965 |
+
batch_size=N,
|
1966 |
+
)
|
1967 |
+
prog_row = self._get_denoise_row_from_list(
|
1968 |
+
progressives, desc="Progressive Generation"
|
1969 |
+
)
|
1970 |
+
log["progressive_row"] = prog_row
|
1971 |
+
|
1972 |
+
return log
|
1973 |
+
|
1974 |
+
|
1975 |
+
class LatentFinetuneDiffusion(LatentDiffusion):
|
1976 |
+
"""
|
1977 |
+
Basis for different finetunas, such as inpainting or depth2image
|
1978 |
+
To disable finetuning mode, set finetune_keys to None
|
1979 |
+
"""
|
1980 |
+
|
1981 |
+
def __init__(
|
1982 |
+
self,
|
1983 |
+
concat_keys: tuple,
|
1984 |
+
finetune_keys=(
|
1985 |
+
"model.diffusion_model.input_blocks.0.0.weight",
|
1986 |
+
"model_ema.diffusion_modelinput_blocks00weight",
|
1987 |
+
),
|
1988 |
+
keep_finetune_dims=4,
|
1989 |
+
# if model was trained without concat mode before and we would like to keep these channels
|
1990 |
+
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
1991 |
+
c_concat_log_end=None,
|
1992 |
+
*args,
|
1993 |
+
**kwargs,
|
1994 |
+
):
|
1995 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
1996 |
+
ignore_keys = kwargs.pop("ignore_keys", list())
|
1997 |
+
super().__init__(*args, **kwargs)
|
1998 |
+
self.finetune_keys = finetune_keys
|
1999 |
+
self.concat_keys = concat_keys
|
2000 |
+
self.keep_dims = keep_finetune_dims
|
2001 |
+
self.c_concat_log_start = c_concat_log_start
|
2002 |
+
self.c_concat_log_end = c_concat_log_end
|
2003 |
+
if exists(self.finetune_keys):
|
2004 |
+
assert exists(ckpt_path), "can only finetune from a given checkpoint"
|
2005 |
+
if exists(ckpt_path):
|
2006 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
2007 |
+
|
2008 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
2009 |
+
sd = torch.load(path, map_location="cpu")
|
2010 |
+
if "state_dict" in list(sd.keys()):
|
2011 |
+
sd = sd["state_dict"]
|
2012 |
+
keys = list(sd.keys())
|
2013 |
+
for k in keys:
|
2014 |
+
for ik in ignore_keys:
|
2015 |
+
if k.startswith(ik):
|
2016 |
+
print("Deleting key {} from state_dict.".format(k))
|
2017 |
+
del sd[k]
|
2018 |
+
|
2019 |
+
# make it explicit, finetune by including extra input channels
|
2020 |
+
if exists(self.finetune_keys) and k in self.finetune_keys:
|
2021 |
+
new_entry = None
|
2022 |
+
for name, param in self.named_parameters():
|
2023 |
+
if name in self.finetune_keys:
|
2024 |
+
print(
|
2025 |
+
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only"
|
2026 |
+
)
|
2027 |
+
new_entry = torch.zeros_like(param) # zero init
|
2028 |
+
assert exists(new_entry), "did not find matching parameter to modify"
|
2029 |
+
new_entry[:, : self.keep_dims, ...] = sd[k]
|
2030 |
+
sd[k] = new_entry
|
2031 |
+
|
2032 |
+
missing, unexpected = (
|
2033 |
+
self.load_state_dict(sd, strict=False)
|
2034 |
+
if not only_model
|
2035 |
+
else self.model.load_state_dict(sd, strict=False)
|
2036 |
+
)
|
2037 |
+
print(
|
2038 |
+
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
|
2039 |
+
)
|
2040 |
+
if len(missing) > 0:
|
2041 |
+
print(f"Missing Keys: {missing}")
|
2042 |
+
if len(unexpected) > 0:
|
2043 |
+
print(f"Unexpected Keys: {unexpected}")
|
2044 |
+
|
2045 |
+
@torch.no_grad()
|
2046 |
+
def log_images(
|
2047 |
+
self,
|
2048 |
+
batch,
|
2049 |
+
N=8,
|
2050 |
+
n_row=4,
|
2051 |
+
sample=True,
|
2052 |
+
ddim_steps=200,
|
2053 |
+
ddim_eta=1.0,
|
2054 |
+
return_keys=None,
|
2055 |
+
quantize_denoised=True,
|
2056 |
+
inpaint=True,
|
2057 |
+
plot_denoise_rows=False,
|
2058 |
+
plot_progressive_rows=True,
|
2059 |
+
plot_diffusion_rows=True,
|
2060 |
+
unconditional_guidance_scale=1.0,
|
2061 |
+
unconditional_guidance_label=None,
|
2062 |
+
use_ema_scope=True,
|
2063 |
+
**kwargs,
|
2064 |
+
):
|
2065 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
2066 |
+
use_ddim = ddim_steps is not None
|
2067 |
+
|
2068 |
+
log = dict()
|
2069 |
+
z, c, x, xrec, xc = self.get_input(
|
2070 |
+
batch, self.first_stage_key, bs=N, return_first_stage_outputs=True
|
2071 |
+
)
|
2072 |
+
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
2073 |
+
N = min(x.shape[0], N)
|
2074 |
+
n_row = min(x.shape[0], n_row)
|
2075 |
+
log["inputs"] = x
|
2076 |
+
log["reconstruction"] = xrec
|
2077 |
+
if self.model.conditioning_key is not None:
|
2078 |
+
if hasattr(self.cond_stage_model, "decode"):
|
2079 |
+
xc = self.cond_stage_model.decode(c)
|
2080 |
+
log["conditioning"] = xc
|
2081 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
2082 |
+
xc = log_txt_as_img(
|
2083 |
+
(x.shape[2], x.shape[3]),
|
2084 |
+
batch[self.cond_stage_key],
|
2085 |
+
size=x.shape[2] // 25,
|
2086 |
+
)
|
2087 |
+
log["conditioning"] = xc
|
2088 |
+
elif self.cond_stage_key in ["class_label", "cls"]:
|
2089 |
+
xc = log_txt_as_img(
|
2090 |
+
(x.shape[2], x.shape[3]),
|
2091 |
+
batch["human_label"],
|
2092 |
+
size=x.shape[2] // 25,
|
2093 |
+
)
|
2094 |
+
log["conditioning"] = xc
|
2095 |
+
elif isimage(xc):
|
2096 |
+
log["conditioning"] = xc
|
2097 |
+
if ismap(xc):
|
2098 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
2099 |
+
|
2100 |
+
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
2101 |
+
log["c_concat_decoded"] = self.decode_first_stage(
|
2102 |
+
c_cat[:, self.c_concat_log_start : self.c_concat_log_end]
|
2103 |
+
)
|
2104 |
+
|
2105 |
+
if plot_diffusion_rows:
|
2106 |
+
# get diffusion row
|
2107 |
+
diffusion_row = list()
|
2108 |
+
z_start = z[:n_row]
|
2109 |
+
for t in range(self.num_timesteps):
|
2110 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
2111 |
+
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
|
2112 |
+
t = t.to(self.device).long()
|
2113 |
+
noise = torch.randn_like(z_start)
|
2114 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
2115 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
2116 |
+
|
2117 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
2118 |
+
diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
|
2119 |
+
diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
|
2120 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
2121 |
+
log["diffusion_row"] = diffusion_grid
|
2122 |
+
|
2123 |
+
if sample:
|
2124 |
+
# get denoise row
|
2125 |
+
with ema_scope("Sampling"):
|
2126 |
+
samples, z_denoise_row = self.sample_log(
|
2127 |
+
cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
2128 |
+
batch_size=N,
|
2129 |
+
ddim=use_ddim,
|
2130 |
+
ddim_steps=ddim_steps,
|
2131 |
+
eta=ddim_eta,
|
2132 |
+
)
|
2133 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
2134 |
+
x_samples = self.decode_first_stage(samples)
|
2135 |
+
log["samples"] = x_samples
|
2136 |
+
if plot_denoise_rows:
|
2137 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
2138 |
+
log["denoise_row"] = denoise_grid
|
2139 |
+
|
2140 |
+
if unconditional_guidance_scale > 1.0:
|
2141 |
+
uc_cross = self.get_unconditional_conditioning(
|
2142 |
+
N, unconditional_guidance_label
|
2143 |
+
)
|
2144 |
+
uc_cat = c_cat
|
2145 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
2146 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
2147 |
+
samples_cfg, _ = self.sample_log(
|
2148 |
+
cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
2149 |
+
batch_size=N,
|
2150 |
+
ddim=use_ddim,
|
2151 |
+
ddim_steps=ddim_steps,
|
2152 |
+
eta=ddim_eta,
|
2153 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
2154 |
+
unconditional_conditioning=uc_full,
|
2155 |
+
)
|
2156 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
2157 |
+
log[
|
2158 |
+
f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
|
2159 |
+
] = x_samples_cfg
|
2160 |
+
|
2161 |
+
return log
|
2162 |
+
|
2163 |
+
|
2164 |
+
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
|
2165 |
+
"""
|
2166 |
+
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
2167 |
+
e.g. mask as concat and text via cross-attn.
|
2168 |
+
To disable finetuning mode, set finetune_keys to None
|
2169 |
+
"""
|
2170 |
+
|
2171 |
+
def __init__(
|
2172 |
+
self,
|
2173 |
+
concat_keys=("mask", "masked_image"),
|
2174 |
+
masked_image_key="masked_image",
|
2175 |
+
*args,
|
2176 |
+
**kwargs,
|
2177 |
+
):
|
2178 |
+
super().__init__(concat_keys, *args, **kwargs)
|
2179 |
+
self.masked_image_key = masked_image_key
|
2180 |
+
assert self.masked_image_key in concat_keys
|
2181 |
+
|
2182 |
+
@torch.no_grad()
|
2183 |
+
def get_input(
|
2184 |
+
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
|
2185 |
+
):
|
2186 |
+
# note: restricted to non-trainable encoders currently
|
2187 |
+
assert (
|
2188 |
+
not self.cond_stage_trainable
|
2189 |
+
), "trainable cond stages not yet supported for inpainting"
|
2190 |
+
z, c, x, xrec, xc = super().get_input(
|
2191 |
+
batch,
|
2192 |
+
self.first_stage_key,
|
2193 |
+
return_first_stage_outputs=True,
|
2194 |
+
force_c_encode=True,
|
2195 |
+
return_original_cond=True,
|
2196 |
+
bs=bs,
|
2197 |
+
)
|
2198 |
+
|
2199 |
+
assert exists(self.concat_keys)
|
2200 |
+
c_cat = list()
|
2201 |
+
for ck in self.concat_keys:
|
2202 |
+
cc = (
|
2203 |
+
rearrange(batch[ck], "b h w c -> b c h w")
|
2204 |
+
.to(memory_format=torch.contiguous_format)
|
2205 |
+
.float()
|
2206 |
+
)
|
2207 |
+
if bs is not None:
|
2208 |
+
cc = cc[:bs]
|
2209 |
+
cc = cc.to(self.device)
|
2210 |
+
bchw = z.shape
|
2211 |
+
if ck != self.masked_image_key:
|
2212 |
+
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
2213 |
+
else:
|
2214 |
+
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
2215 |
+
c_cat.append(cc)
|
2216 |
+
c_cat = torch.cat(c_cat, dim=1)
|
2217 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
2218 |
+
if return_first_stage_outputs:
|
2219 |
+
return z, all_conds, x, xrec, xc
|
2220 |
+
return z, all_conds
|
2221 |
+
|
2222 |
+
@torch.no_grad()
|
2223 |
+
def log_images(self, *args, **kwargs):
|
2224 |
+
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
|
2225 |
+
log["masked_image"] = (
|
2226 |
+
rearrange(args[0]["masked_image"], "b h w c -> b c h w")
|
2227 |
+
.to(memory_format=torch.contiguous_format)
|
2228 |
+
.float()
|
2229 |
+
)
|
2230 |
+
return log
|
2231 |
+
|
2232 |
+
|
2233 |
+
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
|
2234 |
+
"""
|
2235 |
+
condition on monocular depth estimation
|
2236 |
+
"""
|
2237 |
+
|
2238 |
+
def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
|
2239 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
2240 |
+
self.depth_model = instantiate_from_config(depth_stage_config)
|
2241 |
+
self.depth_stage_key = concat_keys[0]
|
2242 |
+
|
2243 |
+
@torch.no_grad()
|
2244 |
+
def get_input(
|
2245 |
+
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
|
2246 |
+
):
|
2247 |
+
# note: restricted to non-trainable encoders currently
|
2248 |
+
assert (
|
2249 |
+
not self.cond_stage_trainable
|
2250 |
+
), "trainable cond stages not yet supported for depth2img"
|
2251 |
+
z, c, x, xrec, xc = super().get_input(
|
2252 |
+
batch,
|
2253 |
+
self.first_stage_key,
|
2254 |
+
return_first_stage_outputs=True,
|
2255 |
+
force_c_encode=True,
|
2256 |
+
return_original_cond=True,
|
2257 |
+
bs=bs,
|
2258 |
+
)
|
2259 |
+
|
2260 |
+
assert exists(self.concat_keys)
|
2261 |
+
assert len(self.concat_keys) == 1
|
2262 |
+
c_cat = list()
|
2263 |
+
for ck in self.concat_keys:
|
2264 |
+
cc = batch[ck]
|
2265 |
+
if bs is not None:
|
2266 |
+
cc = cc[:bs]
|
2267 |
+
cc = cc.to(self.device)
|
2268 |
+
cc = self.depth_model(cc)
|
2269 |
+
cc = torch.nn.functional.interpolate(
|
2270 |
+
cc,
|
2271 |
+
size=z.shape[2:],
|
2272 |
+
mode="bicubic",
|
2273 |
+
align_corners=False,
|
2274 |
+
)
|
2275 |
+
|
2276 |
+
depth_min, depth_max = torch.amin(
|
2277 |
+
cc, dim=[1, 2, 3], keepdim=True
|
2278 |
+
), torch.amax(cc, dim=[1, 2, 3], keepdim=True)
|
2279 |
+
cc = 2.0 * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.0
|
2280 |
+
c_cat.append(cc)
|
2281 |
+
c_cat = torch.cat(c_cat, dim=1)
|
2282 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
2283 |
+
if return_first_stage_outputs:
|
2284 |
+
return z, all_conds, x, xrec, xc
|
2285 |
+
return z, all_conds
|
2286 |
+
|
2287 |
+
@torch.no_grad()
|
2288 |
+
def log_images(self, *args, **kwargs):
|
2289 |
+
log = super().log_images(*args, **kwargs)
|
2290 |
+
depth = self.depth_model(args[0][self.depth_stage_key])
|
2291 |
+
depth_min, depth_max = torch.amin(
|
2292 |
+
depth, dim=[1, 2, 3], keepdim=True
|
2293 |
+
), torch.amax(depth, dim=[1, 2, 3], keepdim=True)
|
2294 |
+
log["depth"] = 2.0 * (depth - depth_min) / (depth_max - depth_min) - 1.0
|
2295 |
+
return log
|
2296 |
+
|
2297 |
+
|
2298 |
+
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
|
2299 |
+
"""
|
2300 |
+
condition on low-res image (and optionally on some spatial noise augmentation)
|
2301 |
+
"""
|
2302 |
+
|
2303 |
+
def __init__(
|
2304 |
+
self,
|
2305 |
+
concat_keys=("lr",),
|
2306 |
+
reshuffle_patch_size=None,
|
2307 |
+
low_scale_config=None,
|
2308 |
+
low_scale_key=None,
|
2309 |
+
*args,
|
2310 |
+
**kwargs,
|
2311 |
+
):
|
2312 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
2313 |
+
self.reshuffle_patch_size = reshuffle_patch_size
|
2314 |
+
self.low_scale_model = None
|
2315 |
+
if low_scale_config is not None:
|
2316 |
+
print("Initializing a low-scale model")
|
2317 |
+
assert exists(low_scale_key)
|
2318 |
+
self.instantiate_low_stage(low_scale_config)
|
2319 |
+
self.low_scale_key = low_scale_key
|
2320 |
+
|
2321 |
+
def instantiate_low_stage(self, config):
|
2322 |
+
model = instantiate_from_config(config)
|
2323 |
+
self.low_scale_model = model.eval()
|
2324 |
+
self.low_scale_model.train = disabled_train
|
2325 |
+
for param in self.low_scale_model.parameters():
|
2326 |
+
param.requires_grad = False
|
2327 |
+
|
2328 |
+
@torch.no_grad()
|
2329 |
+
def get_input(
|
2330 |
+
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
|
2331 |
+
):
|
2332 |
+
# note: restricted to non-trainable encoders currently
|
2333 |
+
assert (
|
2334 |
+
not self.cond_stage_trainable
|
2335 |
+
), "trainable cond stages not yet supported for upscaling-ft"
|
2336 |
+
z, c, x, xrec, xc = super().get_input(
|
2337 |
+
batch,
|
2338 |
+
self.first_stage_key,
|
2339 |
+
return_first_stage_outputs=True,
|
2340 |
+
force_c_encode=True,
|
2341 |
+
return_original_cond=True,
|
2342 |
+
bs=bs,
|
2343 |
+
)
|
2344 |
+
|
2345 |
+
assert exists(self.concat_keys)
|
2346 |
+
assert len(self.concat_keys) == 1
|
2347 |
+
# optionally make spatial noise_level here
|
2348 |
+
c_cat = list()
|
2349 |
+
noise_level = None
|
2350 |
+
for ck in self.concat_keys:
|
2351 |
+
cc = batch[ck]
|
2352 |
+
cc = rearrange(cc, "b h w c -> b c h w")
|
2353 |
+
if exists(self.reshuffle_patch_size):
|
2354 |
+
assert isinstance(self.reshuffle_patch_size, int)
|
2355 |
+
cc = rearrange(
|
2356 |
+
cc,
|
2357 |
+
"b c (p1 h) (p2 w) -> b (p1 p2 c) h w",
|
2358 |
+
p1=self.reshuffle_patch_size,
|
2359 |
+
p2=self.reshuffle_patch_size,
|
2360 |
+
)
|
2361 |
+
if bs is not None:
|
2362 |
+
cc = cc[:bs]
|
2363 |
+
cc = cc.to(self.device)
|
2364 |
+
if exists(self.low_scale_model) and ck == self.low_scale_key:
|
2365 |
+
cc, noise_level = self.low_scale_model(cc)
|
2366 |
+
c_cat.append(cc)
|
2367 |
+
c_cat = torch.cat(c_cat, dim=1)
|
2368 |
+
if exists(noise_level):
|
2369 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
|
2370 |
+
else:
|
2371 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
2372 |
+
if return_first_stage_outputs:
|
2373 |
+
return z, all_conds, x, xrec, xc
|
2374 |
+
return z, all_conds
|
2375 |
+
|
2376 |
+
@torch.no_grad()
|
2377 |
+
def log_images(self, *args, **kwargs):
|
2378 |
+
log = super().log_images(*args, **kwargs)
|
2379 |
+
log["lr"] = rearrange(args[0]["lr"], "b h w c -> b c h w")
|
2380 |
+
return log
|
iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py
ADDED
@@ -0,0 +1,1154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import math
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class NoiseScheduleVP:
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
schedule='discrete',
|
11 |
+
betas=None,
|
12 |
+
alphas_cumprod=None,
|
13 |
+
continuous_beta_0=0.1,
|
14 |
+
continuous_beta_1=20.,
|
15 |
+
):
|
16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
17 |
+
***
|
18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
+
***
|
21 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
22 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
23 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
24 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
25 |
+
sigma_t = self.marginal_std(t)
|
26 |
+
lambda_t = self.marginal_lambda(t)
|
27 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
28 |
+
t = self.inverse_lambda(lambda_t)
|
29 |
+
===============================================================
|
30 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
31 |
+
1. For discrete-time DPMs:
|
32 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
33 |
+
t_i = (i + 1) / N
|
34 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
35 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
36 |
+
Args:
|
37 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
38 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
39 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
40 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
41 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
42 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
43 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
44 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
45 |
+
and
|
46 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
47 |
+
2. For continuous-time DPMs:
|
48 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
49 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
50 |
+
Args:
|
51 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
52 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
53 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
54 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
55 |
+
T: A `float` number. The ending time of the forward process.
|
56 |
+
===============================================================
|
57 |
+
Args:
|
58 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
59 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
60 |
+
Returns:
|
61 |
+
A wrapper object of the forward SDE (VP type).
|
62 |
+
|
63 |
+
===============================================================
|
64 |
+
Example:
|
65 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
66 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
67 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
68 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
69 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
70 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
71 |
+
"""
|
72 |
+
|
73 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
74 |
+
raise ValueError(
|
75 |
+
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
|
76 |
+
schedule))
|
77 |
+
|
78 |
+
self.schedule = schedule
|
79 |
+
if schedule == 'discrete':
|
80 |
+
if betas is not None:
|
81 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
82 |
+
else:
|
83 |
+
assert alphas_cumprod is not None
|
84 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
85 |
+
self.total_N = len(log_alphas)
|
86 |
+
self.T = 1.
|
87 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
88 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
89 |
+
else:
|
90 |
+
self.total_N = 1000
|
91 |
+
self.beta_0 = continuous_beta_0
|
92 |
+
self.beta_1 = continuous_beta_1
|
93 |
+
self.cosine_s = 0.008
|
94 |
+
self.cosine_beta_max = 999.
|
95 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
|
96 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
97 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
98 |
+
self.schedule = schedule
|
99 |
+
if schedule == 'cosine':
|
100 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
101 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
102 |
+
self.T = 0.9946
|
103 |
+
else:
|
104 |
+
self.T = 1.
|
105 |
+
|
106 |
+
def marginal_log_mean_coeff(self, t):
|
107 |
+
"""
|
108 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
109 |
+
"""
|
110 |
+
if self.schedule == 'discrete':
|
111 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
|
112 |
+
self.log_alpha_array.to(t.device)).reshape((-1))
|
113 |
+
elif self.schedule == 'linear':
|
114 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
115 |
+
elif self.schedule == 'cosine':
|
116 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
117 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
118 |
+
return log_alpha_t
|
119 |
+
|
120 |
+
def marginal_alpha(self, t):
|
121 |
+
"""
|
122 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
123 |
+
"""
|
124 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
125 |
+
|
126 |
+
def marginal_std(self, t):
|
127 |
+
"""
|
128 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
129 |
+
"""
|
130 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
131 |
+
|
132 |
+
def marginal_lambda(self, t):
|
133 |
+
"""
|
134 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
135 |
+
"""
|
136 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
137 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
138 |
+
return log_mean_coeff - log_std
|
139 |
+
|
140 |
+
def inverse_lambda(self, lamb):
|
141 |
+
"""
|
142 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
143 |
+
"""
|
144 |
+
if self.schedule == 'linear':
|
145 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
146 |
+
Delta = self.beta_0 ** 2 + tmp
|
147 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
148 |
+
elif self.schedule == 'discrete':
|
149 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
150 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
|
151 |
+
torch.flip(self.t_array.to(lamb.device), [1]))
|
152 |
+
return t.reshape((-1,))
|
153 |
+
else:
|
154 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
155 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
|
156 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
157 |
+
t = t_fn(log_alpha)
|
158 |
+
return t
|
159 |
+
|
160 |
+
|
161 |
+
def model_wrapper(
|
162 |
+
model,
|
163 |
+
noise_schedule,
|
164 |
+
model_type="noise",
|
165 |
+
model_kwargs={},
|
166 |
+
guidance_type="uncond",
|
167 |
+
condition=None,
|
168 |
+
unconditional_condition=None,
|
169 |
+
guidance_scale=1.,
|
170 |
+
classifier_fn=None,
|
171 |
+
classifier_kwargs={},
|
172 |
+
):
|
173 |
+
"""Create a wrapper function for the noise prediction model.
|
174 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
175 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
176 |
+
We support four types of the diffusion model by setting `model_type`:
|
177 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
178 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
179 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
180 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
181 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
182 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
183 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
184 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
185 |
+
|
186 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
187 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
188 |
+
```
|
189 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
190 |
+
```
|
191 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
192 |
+
1. "uncond": unconditional sampling by DPMs.
|
193 |
+
The input `model` has the following format:
|
194 |
+
``
|
195 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
196 |
+
``
|
197 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
198 |
+
The input `model` has the following format:
|
199 |
+
``
|
200 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
201 |
+
``
|
202 |
+
The input `classifier_fn` has the following format:
|
203 |
+
``
|
204 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
205 |
+
``
|
206 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
207 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
208 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
209 |
+
The input `model` has the following format:
|
210 |
+
``
|
211 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
212 |
+
``
|
213 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
214 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
215 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
216 |
+
|
217 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
218 |
+
or continuous-time labels (i.e. epsilon to T).
|
219 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
220 |
+
``
|
221 |
+
def model_fn(x, t_continuous) -> noise:
|
222 |
+
t_input = get_model_input_time(t_continuous)
|
223 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
224 |
+
``
|
225 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
226 |
+
===============================================================
|
227 |
+
Args:
|
228 |
+
model: A diffusion model with the corresponding format described above.
|
229 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
230 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
231 |
+
"noise" or "x_start" or "v" or "score".
|
232 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
233 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
234 |
+
"uncond" or "classifier" or "classifier-free".
|
235 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
236 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
237 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
238 |
+
Only used for "classifier-free" guidance type.
|
239 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
240 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
241 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
242 |
+
Returns:
|
243 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
244 |
+
"""
|
245 |
+
|
246 |
+
def get_model_input_time(t_continuous):
|
247 |
+
"""
|
248 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
249 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
250 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
251 |
+
"""
|
252 |
+
if noise_schedule.schedule == 'discrete':
|
253 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
254 |
+
else:
|
255 |
+
return t_continuous
|
256 |
+
|
257 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
258 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
259 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
260 |
+
t_input = get_model_input_time(t_continuous)
|
261 |
+
if cond is None:
|
262 |
+
output = model(x, t_input, **model_kwargs)
|
263 |
+
else:
|
264 |
+
output = model(x, t_input, cond, **model_kwargs)
|
265 |
+
if model_type == "noise":
|
266 |
+
return output
|
267 |
+
elif model_type == "x_start":
|
268 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
269 |
+
dims = x.dim()
|
270 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
271 |
+
elif model_type == "v":
|
272 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
273 |
+
dims = x.dim()
|
274 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
275 |
+
elif model_type == "score":
|
276 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
277 |
+
dims = x.dim()
|
278 |
+
return -expand_dims(sigma_t, dims) * output
|
279 |
+
|
280 |
+
def cond_grad_fn(x, t_input):
|
281 |
+
"""
|
282 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
283 |
+
"""
|
284 |
+
with torch.enable_grad():
|
285 |
+
x_in = x.detach().requires_grad_(True)
|
286 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
287 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
288 |
+
|
289 |
+
def model_fn(x, t_continuous):
|
290 |
+
"""
|
291 |
+
The noise predicition model function that is used for DPM-Solver.
|
292 |
+
"""
|
293 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
294 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
295 |
+
if guidance_type == "uncond":
|
296 |
+
return noise_pred_fn(x, t_continuous)
|
297 |
+
elif guidance_type == "classifier":
|
298 |
+
assert classifier_fn is not None
|
299 |
+
t_input = get_model_input_time(t_continuous)
|
300 |
+
cond_grad = cond_grad_fn(x, t_input)
|
301 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
302 |
+
noise = noise_pred_fn(x, t_continuous)
|
303 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
304 |
+
elif guidance_type == "classifier-free":
|
305 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
306 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
307 |
+
else:
|
308 |
+
x_in = torch.cat([x] * 2)
|
309 |
+
t_in = torch.cat([t_continuous] * 2)
|
310 |
+
c_in = torch.cat([unconditional_condition, condition])
|
311 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
312 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
313 |
+
|
314 |
+
assert model_type in ["noise", "x_start", "v"]
|
315 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
316 |
+
return model_fn
|
317 |
+
|
318 |
+
|
319 |
+
class DPM_Solver:
|
320 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
321 |
+
"""Construct a DPM-Solver.
|
322 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
323 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
324 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
325 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
326 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
327 |
+
Args:
|
328 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
329 |
+
``
|
330 |
+
def model_fn(x, t_continuous):
|
331 |
+
return noise
|
332 |
+
``
|
333 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
334 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
335 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
336 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
337 |
+
|
338 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
339 |
+
"""
|
340 |
+
self.model = model_fn
|
341 |
+
self.noise_schedule = noise_schedule
|
342 |
+
self.predict_x0 = predict_x0
|
343 |
+
self.thresholding = thresholding
|
344 |
+
self.max_val = max_val
|
345 |
+
|
346 |
+
def noise_prediction_fn(self, x, t):
|
347 |
+
"""
|
348 |
+
Return the noise prediction model.
|
349 |
+
"""
|
350 |
+
return self.model(x, t)
|
351 |
+
|
352 |
+
def data_prediction_fn(self, x, t):
|
353 |
+
"""
|
354 |
+
Return the data prediction model (with thresholding).
|
355 |
+
"""
|
356 |
+
noise = self.noise_prediction_fn(x, t)
|
357 |
+
dims = x.dim()
|
358 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
359 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
360 |
+
if self.thresholding:
|
361 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
362 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
363 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
364 |
+
x0 = torch.clamp(x0, -s, s) / s
|
365 |
+
return x0
|
366 |
+
|
367 |
+
def model_fn(self, x, t):
|
368 |
+
"""
|
369 |
+
Convert the model to the noise prediction model or the data prediction model.
|
370 |
+
"""
|
371 |
+
if self.predict_x0:
|
372 |
+
return self.data_prediction_fn(x, t)
|
373 |
+
else:
|
374 |
+
return self.noise_prediction_fn(x, t)
|
375 |
+
|
376 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
377 |
+
"""Compute the intermediate time steps for sampling.
|
378 |
+
Args:
|
379 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
380 |
+
- 'logSNR': uniform logSNR for the time steps.
|
381 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
382 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
383 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
384 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
385 |
+
N: A `int`. The total number of the spacing of the time steps.
|
386 |
+
device: A torch device.
|
387 |
+
Returns:
|
388 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
389 |
+
"""
|
390 |
+
if skip_type == 'logSNR':
|
391 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
392 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
393 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
394 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
395 |
+
elif skip_type == 'time_uniform':
|
396 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
397 |
+
elif skip_type == 'time_quadratic':
|
398 |
+
t_order = 2
|
399 |
+
t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
|
400 |
+
return t
|
401 |
+
else:
|
402 |
+
raise ValueError(
|
403 |
+
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
404 |
+
|
405 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
406 |
+
"""
|
407 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
408 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
409 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
410 |
+
- If order == 1:
|
411 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
412 |
+
- If order == 2:
|
413 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
414 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
415 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
416 |
+
- If order == 3:
|
417 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
418 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
419 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
420 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
421 |
+
============================================
|
422 |
+
Args:
|
423 |
+
order: A `int`. The max order for the solver (2 or 3).
|
424 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
425 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
426 |
+
- 'logSNR': uniform logSNR for the time steps.
|
427 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
428 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
429 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
430 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
431 |
+
device: A torch device.
|
432 |
+
Returns:
|
433 |
+
orders: A list of the solver order of each step.
|
434 |
+
"""
|
435 |
+
if order == 3:
|
436 |
+
K = steps // 3 + 1
|
437 |
+
if steps % 3 == 0:
|
438 |
+
orders = [3, ] * (K - 2) + [2, 1]
|
439 |
+
elif steps % 3 == 1:
|
440 |
+
orders = [3, ] * (K - 1) + [1]
|
441 |
+
else:
|
442 |
+
orders = [3, ] * (K - 1) + [2]
|
443 |
+
elif order == 2:
|
444 |
+
if steps % 2 == 0:
|
445 |
+
K = steps // 2
|
446 |
+
orders = [2, ] * K
|
447 |
+
else:
|
448 |
+
K = steps // 2 + 1
|
449 |
+
orders = [2, ] * (K - 1) + [1]
|
450 |
+
elif order == 1:
|
451 |
+
K = 1
|
452 |
+
orders = [1, ] * steps
|
453 |
+
else:
|
454 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
455 |
+
if skip_type == 'logSNR':
|
456 |
+
# To reproduce the results in DPM-Solver paper
|
457 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
458 |
+
else:
|
459 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
460 |
+
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
|
461 |
+
return timesteps_outer, orders
|
462 |
+
|
463 |
+
def denoise_to_zero_fn(self, x, s):
|
464 |
+
"""
|
465 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
466 |
+
"""
|
467 |
+
return self.data_prediction_fn(x, s)
|
468 |
+
|
469 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
470 |
+
"""
|
471 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
472 |
+
Args:
|
473 |
+
x: A pytorch tensor. The initial value at time `s`.
|
474 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
475 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
476 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
477 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
478 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
479 |
+
Returns:
|
480 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
481 |
+
"""
|
482 |
+
ns = self.noise_schedule
|
483 |
+
dims = x.dim()
|
484 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
485 |
+
h = lambda_t - lambda_s
|
486 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
487 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
488 |
+
alpha_t = torch.exp(log_alpha_t)
|
489 |
+
|
490 |
+
if self.predict_x0:
|
491 |
+
phi_1 = torch.expm1(-h)
|
492 |
+
if model_s is None:
|
493 |
+
model_s = self.model_fn(x, s)
|
494 |
+
x_t = (
|
495 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
496 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
497 |
+
)
|
498 |
+
if return_intermediate:
|
499 |
+
return x_t, {'model_s': model_s}
|
500 |
+
else:
|
501 |
+
return x_t
|
502 |
+
else:
|
503 |
+
phi_1 = torch.expm1(h)
|
504 |
+
if model_s is None:
|
505 |
+
model_s = self.model_fn(x, s)
|
506 |
+
x_t = (
|
507 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
508 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
509 |
+
)
|
510 |
+
if return_intermediate:
|
511 |
+
return x_t, {'model_s': model_s}
|
512 |
+
else:
|
513 |
+
return x_t
|
514 |
+
|
515 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
516 |
+
solver_type='dpm_solver'):
|
517 |
+
"""
|
518 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
519 |
+
Args:
|
520 |
+
x: A pytorch tensor. The initial value at time `s`.
|
521 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
522 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
523 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
524 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
525 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
526 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
527 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
528 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
529 |
+
Returns:
|
530 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
531 |
+
"""
|
532 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
533 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
534 |
+
if r1 is None:
|
535 |
+
r1 = 0.5
|
536 |
+
ns = self.noise_schedule
|
537 |
+
dims = x.dim()
|
538 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
539 |
+
h = lambda_t - lambda_s
|
540 |
+
lambda_s1 = lambda_s + r1 * h
|
541 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
542 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
543 |
+
s1), ns.marginal_log_mean_coeff(t)
|
544 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
545 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
546 |
+
|
547 |
+
if self.predict_x0:
|
548 |
+
phi_11 = torch.expm1(-r1 * h)
|
549 |
+
phi_1 = torch.expm1(-h)
|
550 |
+
|
551 |
+
if model_s is None:
|
552 |
+
model_s = self.model_fn(x, s)
|
553 |
+
x_s1 = (
|
554 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
555 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
556 |
+
)
|
557 |
+
model_s1 = self.model_fn(x_s1, s1)
|
558 |
+
if solver_type == 'dpm_solver':
|
559 |
+
x_t = (
|
560 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
561 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
562 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
563 |
+
)
|
564 |
+
elif solver_type == 'taylor':
|
565 |
+
x_t = (
|
566 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
567 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
568 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
569 |
+
model_s1 - model_s)
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
phi_11 = torch.expm1(r1 * h)
|
573 |
+
phi_1 = torch.expm1(h)
|
574 |
+
|
575 |
+
if model_s is None:
|
576 |
+
model_s = self.model_fn(x, s)
|
577 |
+
x_s1 = (
|
578 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
579 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
580 |
+
)
|
581 |
+
model_s1 = self.model_fn(x_s1, s1)
|
582 |
+
if solver_type == 'dpm_solver':
|
583 |
+
x_t = (
|
584 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
585 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
586 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
587 |
+
)
|
588 |
+
elif solver_type == 'taylor':
|
589 |
+
x_t = (
|
590 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
591 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
592 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
593 |
+
)
|
594 |
+
if return_intermediate:
|
595 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
596 |
+
else:
|
597 |
+
return x_t
|
598 |
+
|
599 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
600 |
+
return_intermediate=False, solver_type='dpm_solver'):
|
601 |
+
"""
|
602 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
603 |
+
Args:
|
604 |
+
x: A pytorch tensor. The initial value at time `s`.
|
605 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
606 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
607 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
608 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
609 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
610 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
611 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
612 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
613 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
614 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
615 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
616 |
+
Returns:
|
617 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
618 |
+
"""
|
619 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
620 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
621 |
+
if r1 is None:
|
622 |
+
r1 = 1. / 3.
|
623 |
+
if r2 is None:
|
624 |
+
r2 = 2. / 3.
|
625 |
+
ns = self.noise_schedule
|
626 |
+
dims = x.dim()
|
627 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
628 |
+
h = lambda_t - lambda_s
|
629 |
+
lambda_s1 = lambda_s + r1 * h
|
630 |
+
lambda_s2 = lambda_s + r2 * h
|
631 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
632 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
633 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
634 |
+
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
635 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
636 |
+
s2), ns.marginal_std(t)
|
637 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
638 |
+
|
639 |
+
if self.predict_x0:
|
640 |
+
phi_11 = torch.expm1(-r1 * h)
|
641 |
+
phi_12 = torch.expm1(-r2 * h)
|
642 |
+
phi_1 = torch.expm1(-h)
|
643 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
644 |
+
phi_2 = phi_1 / h + 1.
|
645 |
+
phi_3 = phi_2 / h - 0.5
|
646 |
+
|
647 |
+
if model_s is None:
|
648 |
+
model_s = self.model_fn(x, s)
|
649 |
+
if model_s1 is None:
|
650 |
+
x_s1 = (
|
651 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
652 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
653 |
+
)
|
654 |
+
model_s1 = self.model_fn(x_s1, s1)
|
655 |
+
x_s2 = (
|
656 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
657 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
658 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
659 |
+
)
|
660 |
+
model_s2 = self.model_fn(x_s2, s2)
|
661 |
+
if solver_type == 'dpm_solver':
|
662 |
+
x_t = (
|
663 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
664 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
665 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
666 |
+
)
|
667 |
+
elif solver_type == 'taylor':
|
668 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
669 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
670 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
671 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
672 |
+
x_t = (
|
673 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
674 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
675 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
676 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
677 |
+
)
|
678 |
+
else:
|
679 |
+
phi_11 = torch.expm1(r1 * h)
|
680 |
+
phi_12 = torch.expm1(r2 * h)
|
681 |
+
phi_1 = torch.expm1(h)
|
682 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
683 |
+
phi_2 = phi_1 / h - 1.
|
684 |
+
phi_3 = phi_2 / h - 0.5
|
685 |
+
|
686 |
+
if model_s is None:
|
687 |
+
model_s = self.model_fn(x, s)
|
688 |
+
if model_s1 is None:
|
689 |
+
x_s1 = (
|
690 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
691 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
692 |
+
)
|
693 |
+
model_s1 = self.model_fn(x_s1, s1)
|
694 |
+
x_s2 = (
|
695 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
696 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
697 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
698 |
+
)
|
699 |
+
model_s2 = self.model_fn(x_s2, s2)
|
700 |
+
if solver_type == 'dpm_solver':
|
701 |
+
x_t = (
|
702 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
703 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
704 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
705 |
+
)
|
706 |
+
elif solver_type == 'taylor':
|
707 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
708 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
709 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
710 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
711 |
+
x_t = (
|
712 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
713 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
714 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
715 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
716 |
+
)
|
717 |
+
|
718 |
+
if return_intermediate:
|
719 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
720 |
+
else:
|
721 |
+
return x_t
|
722 |
+
|
723 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
724 |
+
"""
|
725 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
726 |
+
Args:
|
727 |
+
x: A pytorch tensor. The initial value at time `s`.
|
728 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
729 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
730 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
731 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
732 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
733 |
+
Returns:
|
734 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
735 |
+
"""
|
736 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
737 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
738 |
+
ns = self.noise_schedule
|
739 |
+
dims = x.dim()
|
740 |
+
model_prev_1, model_prev_0 = model_prev_list
|
741 |
+
t_prev_1, t_prev_0 = t_prev_list
|
742 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
|
743 |
+
t_prev_0), ns.marginal_lambda(t)
|
744 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
745 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
746 |
+
alpha_t = torch.exp(log_alpha_t)
|
747 |
+
|
748 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
749 |
+
h = lambda_t - lambda_prev_0
|
750 |
+
r0 = h_0 / h
|
751 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
752 |
+
if self.predict_x0:
|
753 |
+
if solver_type == 'dpm_solver':
|
754 |
+
x_t = (
|
755 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
756 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
757 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
758 |
+
)
|
759 |
+
elif solver_type == 'taylor':
|
760 |
+
x_t = (
|
761 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
762 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
763 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
764 |
+
)
|
765 |
+
else:
|
766 |
+
if solver_type == 'dpm_solver':
|
767 |
+
x_t = (
|
768 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
769 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
770 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
771 |
+
)
|
772 |
+
elif solver_type == 'taylor':
|
773 |
+
x_t = (
|
774 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
775 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
776 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
777 |
+
)
|
778 |
+
return x_t
|
779 |
+
|
780 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
781 |
+
"""
|
782 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
783 |
+
Args:
|
784 |
+
x: A pytorch tensor. The initial value at time `s`.
|
785 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
786 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
787 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
788 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
789 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
790 |
+
Returns:
|
791 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
792 |
+
"""
|
793 |
+
ns = self.noise_schedule
|
794 |
+
dims = x.dim()
|
795 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
796 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
797 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
|
798 |
+
t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
799 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
800 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
801 |
+
alpha_t = torch.exp(log_alpha_t)
|
802 |
+
|
803 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
804 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
805 |
+
h = lambda_t - lambda_prev_0
|
806 |
+
r0, r1 = h_0 / h, h_1 / h
|
807 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
808 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
809 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
810 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
811 |
+
if self.predict_x0:
|
812 |
+
x_t = (
|
813 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
814 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
815 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
816 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
|
817 |
+
)
|
818 |
+
else:
|
819 |
+
x_t = (
|
820 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
821 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
822 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
823 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
|
824 |
+
)
|
825 |
+
return x_t
|
826 |
+
|
827 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
|
828 |
+
r2=None):
|
829 |
+
"""
|
830 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
831 |
+
Args:
|
832 |
+
x: A pytorch tensor. The initial value at time `s`.
|
833 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
834 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
835 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
836 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
837 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
838 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
839 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
840 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
841 |
+
Returns:
|
842 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
843 |
+
"""
|
844 |
+
if order == 1:
|
845 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
846 |
+
elif order == 2:
|
847 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
|
848 |
+
solver_type=solver_type, r1=r1)
|
849 |
+
elif order == 3:
|
850 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
|
851 |
+
solver_type=solver_type, r1=r1, r2=r2)
|
852 |
+
else:
|
853 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
854 |
+
|
855 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
856 |
+
"""
|
857 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
858 |
+
Args:
|
859 |
+
x: A pytorch tensor. The initial value at time `s`.
|
860 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
861 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
862 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
863 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
864 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
865 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
866 |
+
Returns:
|
867 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
868 |
+
"""
|
869 |
+
if order == 1:
|
870 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
871 |
+
elif order == 2:
|
872 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
873 |
+
elif order == 3:
|
874 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
875 |
+
else:
|
876 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
877 |
+
|
878 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
|
879 |
+
solver_type='dpm_solver'):
|
880 |
+
"""
|
881 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
882 |
+
Args:
|
883 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
884 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
885 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
886 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
887 |
+
h_init: A `float`. The initial step size (for logSNR).
|
888 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
889 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
890 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
891 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
892 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
893 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
894 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
895 |
+
Returns:
|
896 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
897 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
898 |
+
"""
|
899 |
+
ns = self.noise_schedule
|
900 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
901 |
+
lambda_s = ns.marginal_lambda(s)
|
902 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
903 |
+
h = h_init * torch.ones_like(s).to(x)
|
904 |
+
x_prev = x
|
905 |
+
nfe = 0
|
906 |
+
if order == 2:
|
907 |
+
r1 = 0.5
|
908 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
909 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
910 |
+
solver_type=solver_type,
|
911 |
+
**kwargs)
|
912 |
+
elif order == 3:
|
913 |
+
r1, r2 = 1. / 3., 2. / 3.
|
914 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
915 |
+
return_intermediate=True,
|
916 |
+
solver_type=solver_type)
|
917 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
|
918 |
+
solver_type=solver_type,
|
919 |
+
**kwargs)
|
920 |
+
else:
|
921 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
922 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
923 |
+
t = ns.inverse_lambda(lambda_s + h)
|
924 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
925 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
926 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
927 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
928 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
929 |
+
if torch.all(E <= 1.):
|
930 |
+
x = x_higher
|
931 |
+
s = t
|
932 |
+
x_prev = x_lower
|
933 |
+
lambda_s = ns.marginal_lambda(s)
|
934 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
935 |
+
nfe += order
|
936 |
+
print('adaptive solver nfe', nfe)
|
937 |
+
return x
|
938 |
+
|
939 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
940 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
941 |
+
atol=0.0078, rtol=0.05,
|
942 |
+
):
|
943 |
+
"""
|
944 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
945 |
+
=====================================================
|
946 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
947 |
+
- 'singlestep':
|
948 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
949 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
950 |
+
The total number of function evaluations (NFE) == `steps`.
|
951 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
952 |
+
- If `order` == 1:
|
953 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
954 |
+
- If `order` == 2:
|
955 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
956 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
957 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
958 |
+
- If `order` == 3:
|
959 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
960 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
961 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
962 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
963 |
+
- 'multistep':
|
964 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
965 |
+
We initialize the first `order` values by lower order multistep solvers.
|
966 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
967 |
+
Denote K = steps.
|
968 |
+
- If `order` == 1:
|
969 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
970 |
+
- If `order` == 2:
|
971 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
972 |
+
- If `order` == 3:
|
973 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
974 |
+
- 'singlestep_fixed':
|
975 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
976 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
977 |
+
- 'adaptive':
|
978 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
979 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
980 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
981 |
+
(NFE) and the sample quality.
|
982 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
983 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
984 |
+
=====================================================
|
985 |
+
Some advices for choosing the algorithm:
|
986 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
987 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
988 |
+
e.g.
|
989 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
990 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
991 |
+
skip_type='time_uniform', method='singlestep')
|
992 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
993 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
994 |
+
e.g.
|
995 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
996 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
997 |
+
skip_type='time_uniform', method='multistep')
|
998 |
+
We support three types of `skip_type`:
|
999 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1000 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1001 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1002 |
+
=====================================================
|
1003 |
+
Args:
|
1004 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1005 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1006 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1007 |
+
t_start: A `float`. The starting time of the sampling.
|
1008 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1009 |
+
t_end: A `float`. The ending time of the sampling.
|
1010 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1011 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1012 |
+
For discrete-time DPMs:
|
1013 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1014 |
+
For continuous-time DPMs:
|
1015 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1016 |
+
order: A `int`. The order of DPM-Solver.
|
1017 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1018 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1019 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1020 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1021 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1022 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1023 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1024 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1025 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1026 |
+
it for high-resolutional images.
|
1027 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1028 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1029 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1030 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1031 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1032 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1033 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1034 |
+
Returns:
|
1035 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1036 |
+
"""
|
1037 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1038 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1039 |
+
device = x.device
|
1040 |
+
if method == 'adaptive':
|
1041 |
+
with torch.no_grad():
|
1042 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
|
1043 |
+
solver_type=solver_type)
|
1044 |
+
elif method == 'multistep':
|
1045 |
+
assert steps >= order
|
1046 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1047 |
+
assert timesteps.shape[0] - 1 == steps
|
1048 |
+
with torch.no_grad():
|
1049 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
1050 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
1051 |
+
t_prev_list = [vec_t]
|
1052 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1053 |
+
for init_order in tqdm(range(1, order), desc="DPM init order"):
|
1054 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
1055 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
|
1056 |
+
solver_type=solver_type)
|
1057 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
1058 |
+
t_prev_list.append(vec_t)
|
1059 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1060 |
+
for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
|
1061 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
1062 |
+
if lower_order_final and steps < 15:
|
1063 |
+
step_order = min(order, steps + 1 - step)
|
1064 |
+
else:
|
1065 |
+
step_order = order
|
1066 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
|
1067 |
+
solver_type=solver_type)
|
1068 |
+
for i in range(order - 1):
|
1069 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1070 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1071 |
+
t_prev_list[-1] = vec_t
|
1072 |
+
# We do not need to evaluate the final model value.
|
1073 |
+
if step < steps:
|
1074 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1075 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1076 |
+
if method == 'singlestep':
|
1077 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
|
1078 |
+
skip_type=skip_type,
|
1079 |
+
t_T=t_T, t_0=t_0,
|
1080 |
+
device=device)
|
1081 |
+
elif method == 'singlestep_fixed':
|
1082 |
+
K = steps // order
|
1083 |
+
orders = [order, ] * K
|
1084 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1085 |
+
for i, order in enumerate(orders):
|
1086 |
+
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
1087 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
|
1088 |
+
N=order, device=device)
|
1089 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1090 |
+
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
1091 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1092 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1093 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1094 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1095 |
+
if denoise_to_zero:
|
1096 |
+
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1097 |
+
return x
|
1098 |
+
|
1099 |
+
|
1100 |
+
#############################################################
|
1101 |
+
# other utility functions
|
1102 |
+
#############################################################
|
1103 |
+
|
1104 |
+
def interpolate_fn(x, xp, yp):
|
1105 |
+
"""
|
1106 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1107 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1108 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1109 |
+
Args:
|
1110 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1111 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1112 |
+
yp: PyTorch tensor with shape [C, K].
|
1113 |
+
Returns:
|
1114 |
+
The function values f(x), with shape [N, C].
|
1115 |
+
"""
|
1116 |
+
N, K = x.shape[0], xp.shape[1]
|
1117 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1118 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1119 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1120 |
+
cand_start_idx = x_idx - 1
|
1121 |
+
start_idx = torch.where(
|
1122 |
+
torch.eq(x_idx, 0),
|
1123 |
+
torch.tensor(1, device=x.device),
|
1124 |
+
torch.where(
|
1125 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1126 |
+
),
|
1127 |
+
)
|
1128 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1129 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1130 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1131 |
+
start_idx2 = torch.where(
|
1132 |
+
torch.eq(x_idx, 0),
|
1133 |
+
torch.tensor(0, device=x.device),
|
1134 |
+
torch.where(
|
1135 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1136 |
+
),
|
1137 |
+
)
|
1138 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1139 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1140 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1141 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1142 |
+
return cand
|
1143 |
+
|
1144 |
+
|
1145 |
+
def expand_dims(v, dims):
|
1146 |
+
"""
|
1147 |
+
Expand the tensor `v` to the dim `dims`.
|
1148 |
+
Args:
|
1149 |
+
`v`: a PyTorch tensor with shape [N].
|
1150 |
+
`dim`: a `int`.
|
1151 |
+
Returns:
|
1152 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1153 |
+
"""
|
1154 |
+
return v[(...,) + (None,) * (dims - 1)]
|
iopaint/model/anytext/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,973 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
|
9 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
10 |
+
"""
|
11 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
12 |
+
From Fairseq.
|
13 |
+
Build sinusoidal embeddings.
|
14 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
15 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
16 |
+
"""
|
17 |
+
assert len(timesteps.shape) == 1
|
18 |
+
|
19 |
+
half_dim = embedding_dim // 2
|
20 |
+
emb = math.log(10000) / (half_dim - 1)
|
21 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
22 |
+
emb = emb.to(device=timesteps.device)
|
23 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
24 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
25 |
+
if embedding_dim % 2 == 1: # zero pad
|
26 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
27 |
+
return emb
|
28 |
+
|
29 |
+
|
30 |
+
def nonlinearity(x):
|
31 |
+
# swish
|
32 |
+
return x * torch.sigmoid(x)
|
33 |
+
|
34 |
+
|
35 |
+
def Normalize(in_channels, num_groups=32):
|
36 |
+
return torch.nn.GroupNorm(
|
37 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
class Upsample(nn.Module):
|
42 |
+
def __init__(self, in_channels, with_conv):
|
43 |
+
super().__init__()
|
44 |
+
self.with_conv = with_conv
|
45 |
+
if self.with_conv:
|
46 |
+
self.conv = torch.nn.Conv2d(
|
47 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
52 |
+
if self.with_conv:
|
53 |
+
x = self.conv(x)
|
54 |
+
return x
|
55 |
+
|
56 |
+
|
57 |
+
class Downsample(nn.Module):
|
58 |
+
def __init__(self, in_channels, with_conv):
|
59 |
+
super().__init__()
|
60 |
+
self.with_conv = with_conv
|
61 |
+
if self.with_conv:
|
62 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
63 |
+
self.conv = torch.nn.Conv2d(
|
64 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
65 |
+
)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.with_conv:
|
69 |
+
pad = (0, 1, 0, 1)
|
70 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
71 |
+
x = self.conv(x)
|
72 |
+
else:
|
73 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class ResnetBlock(nn.Module):
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
*,
|
81 |
+
in_channels,
|
82 |
+
out_channels=None,
|
83 |
+
conv_shortcut=False,
|
84 |
+
dropout,
|
85 |
+
temb_channels=512,
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
self.in_channels = in_channels
|
89 |
+
out_channels = in_channels if out_channels is None else out_channels
|
90 |
+
self.out_channels = out_channels
|
91 |
+
self.use_conv_shortcut = conv_shortcut
|
92 |
+
|
93 |
+
self.norm1 = Normalize(in_channels)
|
94 |
+
self.conv1 = torch.nn.Conv2d(
|
95 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
96 |
+
)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
99 |
+
self.norm2 = Normalize(out_channels)
|
100 |
+
self.dropout = torch.nn.Dropout(dropout)
|
101 |
+
self.conv2 = torch.nn.Conv2d(
|
102 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
103 |
+
)
|
104 |
+
if self.in_channels != self.out_channels:
|
105 |
+
if self.use_conv_shortcut:
|
106 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
107 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
111 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
112 |
+
)
|
113 |
+
|
114 |
+
def forward(self, x, temb):
|
115 |
+
h = x
|
116 |
+
h = self.norm1(h)
|
117 |
+
h = nonlinearity(h)
|
118 |
+
h = self.conv1(h)
|
119 |
+
|
120 |
+
if temb is not None:
|
121 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
122 |
+
|
123 |
+
h = self.norm2(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.dropout(h)
|
126 |
+
h = self.conv2(h)
|
127 |
+
|
128 |
+
if self.in_channels != self.out_channels:
|
129 |
+
if self.use_conv_shortcut:
|
130 |
+
x = self.conv_shortcut(x)
|
131 |
+
else:
|
132 |
+
x = self.nin_shortcut(x)
|
133 |
+
|
134 |
+
return x + h
|
135 |
+
|
136 |
+
|
137 |
+
class AttnBlock(nn.Module):
|
138 |
+
def __init__(self, in_channels):
|
139 |
+
super().__init__()
|
140 |
+
self.in_channels = in_channels
|
141 |
+
|
142 |
+
self.norm = Normalize(in_channels)
|
143 |
+
self.q = torch.nn.Conv2d(
|
144 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
145 |
+
)
|
146 |
+
self.k = torch.nn.Conv2d(
|
147 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
148 |
+
)
|
149 |
+
self.v = torch.nn.Conv2d(
|
150 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
151 |
+
)
|
152 |
+
self.proj_out = torch.nn.Conv2d(
|
153 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
154 |
+
)
|
155 |
+
|
156 |
+
def forward(self, x):
|
157 |
+
h_ = x
|
158 |
+
h_ = self.norm(h_)
|
159 |
+
q = self.q(h_)
|
160 |
+
k = self.k(h_)
|
161 |
+
v = self.v(h_)
|
162 |
+
|
163 |
+
# compute attention
|
164 |
+
b, c, h, w = q.shape
|
165 |
+
q = q.reshape(b, c, h * w)
|
166 |
+
q = q.permute(0, 2, 1) # b,hw,c
|
167 |
+
k = k.reshape(b, c, h * w) # b,c,hw
|
168 |
+
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
169 |
+
w_ = w_ * (int(c) ** (-0.5))
|
170 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
171 |
+
|
172 |
+
# attend to values
|
173 |
+
v = v.reshape(b, c, h * w)
|
174 |
+
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
175 |
+
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
176 |
+
h_ = h_.reshape(b, c, h, w)
|
177 |
+
|
178 |
+
h_ = self.proj_out(h_)
|
179 |
+
|
180 |
+
return x + h_
|
181 |
+
|
182 |
+
|
183 |
+
class AttnBlock2_0(nn.Module):
|
184 |
+
def __init__(self, in_channels):
|
185 |
+
super().__init__()
|
186 |
+
self.in_channels = in_channels
|
187 |
+
|
188 |
+
self.norm = Normalize(in_channels)
|
189 |
+
self.q = torch.nn.Conv2d(
|
190 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
191 |
+
)
|
192 |
+
self.k = torch.nn.Conv2d(
|
193 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
194 |
+
)
|
195 |
+
self.v = torch.nn.Conv2d(
|
196 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
197 |
+
)
|
198 |
+
self.proj_out = torch.nn.Conv2d(
|
199 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
200 |
+
)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
h_ = x
|
204 |
+
h_ = self.norm(h_)
|
205 |
+
# output: [1, 512, 64, 64]
|
206 |
+
q = self.q(h_)
|
207 |
+
k = self.k(h_)
|
208 |
+
v = self.v(h_)
|
209 |
+
|
210 |
+
# compute attention
|
211 |
+
b, c, h, w = q.shape
|
212 |
+
|
213 |
+
# q = q.reshape(b, c, h * w).transpose()
|
214 |
+
# q = q.permute(0, 2, 1) # b,hw,c
|
215 |
+
# k = k.reshape(b, c, h * w) # b,c,hw
|
216 |
+
q = q.transpose(1, 2)
|
217 |
+
k = k.transpose(1, 2)
|
218 |
+
v = v.transpose(1, 2)
|
219 |
+
# (batch, num_heads, seq_len, head_dim)
|
220 |
+
hidden_states = torch.nn.functional.scaled_dot_product_attention(
|
221 |
+
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False
|
222 |
+
)
|
223 |
+
hidden_states = hidden_states.transpose(1, 2)
|
224 |
+
hidden_states = hidden_states.to(q.dtype)
|
225 |
+
|
226 |
+
h_ = self.proj_out(hidden_states)
|
227 |
+
|
228 |
+
return x + h_
|
229 |
+
|
230 |
+
|
231 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
232 |
+
assert attn_type in [
|
233 |
+
"vanilla",
|
234 |
+
"vanilla-xformers",
|
235 |
+
"memory-efficient-cross-attn",
|
236 |
+
"linear",
|
237 |
+
"none",
|
238 |
+
], f"attn_type {attn_type} unknown"
|
239 |
+
assert attn_kwargs is None
|
240 |
+
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
241 |
+
# print(f"Using torch.nn.functional.scaled_dot_product_attention")
|
242 |
+
return AttnBlock2_0(in_channels)
|
243 |
+
return AttnBlock(in_channels)
|
244 |
+
|
245 |
+
|
246 |
+
class Model(nn.Module):
|
247 |
+
def __init__(
|
248 |
+
self,
|
249 |
+
*,
|
250 |
+
ch,
|
251 |
+
out_ch,
|
252 |
+
ch_mult=(1, 2, 4, 8),
|
253 |
+
num_res_blocks,
|
254 |
+
attn_resolutions,
|
255 |
+
dropout=0.0,
|
256 |
+
resamp_with_conv=True,
|
257 |
+
in_channels,
|
258 |
+
resolution,
|
259 |
+
use_timestep=True,
|
260 |
+
use_linear_attn=False,
|
261 |
+
attn_type="vanilla",
|
262 |
+
):
|
263 |
+
super().__init__()
|
264 |
+
if use_linear_attn:
|
265 |
+
attn_type = "linear"
|
266 |
+
self.ch = ch
|
267 |
+
self.temb_ch = self.ch * 4
|
268 |
+
self.num_resolutions = len(ch_mult)
|
269 |
+
self.num_res_blocks = num_res_blocks
|
270 |
+
self.resolution = resolution
|
271 |
+
self.in_channels = in_channels
|
272 |
+
|
273 |
+
self.use_timestep = use_timestep
|
274 |
+
if self.use_timestep:
|
275 |
+
# timestep embedding
|
276 |
+
self.temb = nn.Module()
|
277 |
+
self.temb.dense = nn.ModuleList(
|
278 |
+
[
|
279 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
280 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
281 |
+
]
|
282 |
+
)
|
283 |
+
|
284 |
+
# downsampling
|
285 |
+
self.conv_in = torch.nn.Conv2d(
|
286 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
287 |
+
)
|
288 |
+
|
289 |
+
curr_res = resolution
|
290 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
291 |
+
self.down = nn.ModuleList()
|
292 |
+
for i_level in range(self.num_resolutions):
|
293 |
+
block = nn.ModuleList()
|
294 |
+
attn = nn.ModuleList()
|
295 |
+
block_in = ch * in_ch_mult[i_level]
|
296 |
+
block_out = ch * ch_mult[i_level]
|
297 |
+
for i_block in range(self.num_res_blocks):
|
298 |
+
block.append(
|
299 |
+
ResnetBlock(
|
300 |
+
in_channels=block_in,
|
301 |
+
out_channels=block_out,
|
302 |
+
temb_channels=self.temb_ch,
|
303 |
+
dropout=dropout,
|
304 |
+
)
|
305 |
+
)
|
306 |
+
block_in = block_out
|
307 |
+
if curr_res in attn_resolutions:
|
308 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
309 |
+
down = nn.Module()
|
310 |
+
down.block = block
|
311 |
+
down.attn = attn
|
312 |
+
if i_level != self.num_resolutions - 1:
|
313 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
314 |
+
curr_res = curr_res // 2
|
315 |
+
self.down.append(down)
|
316 |
+
|
317 |
+
# middle
|
318 |
+
self.mid = nn.Module()
|
319 |
+
self.mid.block_1 = ResnetBlock(
|
320 |
+
in_channels=block_in,
|
321 |
+
out_channels=block_in,
|
322 |
+
temb_channels=self.temb_ch,
|
323 |
+
dropout=dropout,
|
324 |
+
)
|
325 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
326 |
+
self.mid.block_2 = ResnetBlock(
|
327 |
+
in_channels=block_in,
|
328 |
+
out_channels=block_in,
|
329 |
+
temb_channels=self.temb_ch,
|
330 |
+
dropout=dropout,
|
331 |
+
)
|
332 |
+
|
333 |
+
# upsampling
|
334 |
+
self.up = nn.ModuleList()
|
335 |
+
for i_level in reversed(range(self.num_resolutions)):
|
336 |
+
block = nn.ModuleList()
|
337 |
+
attn = nn.ModuleList()
|
338 |
+
block_out = ch * ch_mult[i_level]
|
339 |
+
skip_in = ch * ch_mult[i_level]
|
340 |
+
for i_block in range(self.num_res_blocks + 1):
|
341 |
+
if i_block == self.num_res_blocks:
|
342 |
+
skip_in = ch * in_ch_mult[i_level]
|
343 |
+
block.append(
|
344 |
+
ResnetBlock(
|
345 |
+
in_channels=block_in + skip_in,
|
346 |
+
out_channels=block_out,
|
347 |
+
temb_channels=self.temb_ch,
|
348 |
+
dropout=dropout,
|
349 |
+
)
|
350 |
+
)
|
351 |
+
block_in = block_out
|
352 |
+
if curr_res in attn_resolutions:
|
353 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
354 |
+
up = nn.Module()
|
355 |
+
up.block = block
|
356 |
+
up.attn = attn
|
357 |
+
if i_level != 0:
|
358 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
359 |
+
curr_res = curr_res * 2
|
360 |
+
self.up.insert(0, up) # prepend to get consistent order
|
361 |
+
|
362 |
+
# end
|
363 |
+
self.norm_out = Normalize(block_in)
|
364 |
+
self.conv_out = torch.nn.Conv2d(
|
365 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
366 |
+
)
|
367 |
+
|
368 |
+
def forward(self, x, t=None, context=None):
|
369 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
370 |
+
if context is not None:
|
371 |
+
# assume aligned context, cat along channel axis
|
372 |
+
x = torch.cat((x, context), dim=1)
|
373 |
+
if self.use_timestep:
|
374 |
+
# timestep embedding
|
375 |
+
assert t is not None
|
376 |
+
temb = get_timestep_embedding(t, self.ch)
|
377 |
+
temb = self.temb.dense[0](temb)
|
378 |
+
temb = nonlinearity(temb)
|
379 |
+
temb = self.temb.dense[1](temb)
|
380 |
+
else:
|
381 |
+
temb = None
|
382 |
+
|
383 |
+
# downsampling
|
384 |
+
hs = [self.conv_in(x)]
|
385 |
+
for i_level in range(self.num_resolutions):
|
386 |
+
for i_block in range(self.num_res_blocks):
|
387 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
388 |
+
if len(self.down[i_level].attn) > 0:
|
389 |
+
h = self.down[i_level].attn[i_block](h)
|
390 |
+
hs.append(h)
|
391 |
+
if i_level != self.num_resolutions - 1:
|
392 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
393 |
+
|
394 |
+
# middle
|
395 |
+
h = hs[-1]
|
396 |
+
h = self.mid.block_1(h, temb)
|
397 |
+
h = self.mid.attn_1(h)
|
398 |
+
h = self.mid.block_2(h, temb)
|
399 |
+
|
400 |
+
# upsampling
|
401 |
+
for i_level in reversed(range(self.num_resolutions)):
|
402 |
+
for i_block in range(self.num_res_blocks + 1):
|
403 |
+
h = self.up[i_level].block[i_block](
|
404 |
+
torch.cat([h, hs.pop()], dim=1), temb
|
405 |
+
)
|
406 |
+
if len(self.up[i_level].attn) > 0:
|
407 |
+
h = self.up[i_level].attn[i_block](h)
|
408 |
+
if i_level != 0:
|
409 |
+
h = self.up[i_level].upsample(h)
|
410 |
+
|
411 |
+
# end
|
412 |
+
h = self.norm_out(h)
|
413 |
+
h = nonlinearity(h)
|
414 |
+
h = self.conv_out(h)
|
415 |
+
return h
|
416 |
+
|
417 |
+
def get_last_layer(self):
|
418 |
+
return self.conv_out.weight
|
419 |
+
|
420 |
+
|
421 |
+
class Encoder(nn.Module):
|
422 |
+
def __init__(
|
423 |
+
self,
|
424 |
+
*,
|
425 |
+
ch,
|
426 |
+
out_ch,
|
427 |
+
ch_mult=(1, 2, 4, 8),
|
428 |
+
num_res_blocks,
|
429 |
+
attn_resolutions,
|
430 |
+
dropout=0.0,
|
431 |
+
resamp_with_conv=True,
|
432 |
+
in_channels,
|
433 |
+
resolution,
|
434 |
+
z_channels,
|
435 |
+
double_z=True,
|
436 |
+
use_linear_attn=False,
|
437 |
+
attn_type="vanilla",
|
438 |
+
**ignore_kwargs,
|
439 |
+
):
|
440 |
+
super().__init__()
|
441 |
+
if use_linear_attn:
|
442 |
+
attn_type = "linear"
|
443 |
+
self.ch = ch
|
444 |
+
self.temb_ch = 0
|
445 |
+
self.num_resolutions = len(ch_mult)
|
446 |
+
self.num_res_blocks = num_res_blocks
|
447 |
+
self.resolution = resolution
|
448 |
+
self.in_channels = in_channels
|
449 |
+
|
450 |
+
# downsampling
|
451 |
+
self.conv_in = torch.nn.Conv2d(
|
452 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
453 |
+
)
|
454 |
+
|
455 |
+
curr_res = resolution
|
456 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
457 |
+
self.in_ch_mult = in_ch_mult
|
458 |
+
self.down = nn.ModuleList()
|
459 |
+
for i_level in range(self.num_resolutions):
|
460 |
+
block = nn.ModuleList()
|
461 |
+
attn = nn.ModuleList()
|
462 |
+
block_in = ch * in_ch_mult[i_level]
|
463 |
+
block_out = ch * ch_mult[i_level]
|
464 |
+
for i_block in range(self.num_res_blocks):
|
465 |
+
block.append(
|
466 |
+
ResnetBlock(
|
467 |
+
in_channels=block_in,
|
468 |
+
out_channels=block_out,
|
469 |
+
temb_channels=self.temb_ch,
|
470 |
+
dropout=dropout,
|
471 |
+
)
|
472 |
+
)
|
473 |
+
block_in = block_out
|
474 |
+
if curr_res in attn_resolutions:
|
475 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
476 |
+
down = nn.Module()
|
477 |
+
down.block = block
|
478 |
+
down.attn = attn
|
479 |
+
if i_level != self.num_resolutions - 1:
|
480 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
481 |
+
curr_res = curr_res // 2
|
482 |
+
self.down.append(down)
|
483 |
+
|
484 |
+
# middle
|
485 |
+
self.mid = nn.Module()
|
486 |
+
self.mid.block_1 = ResnetBlock(
|
487 |
+
in_channels=block_in,
|
488 |
+
out_channels=block_in,
|
489 |
+
temb_channels=self.temb_ch,
|
490 |
+
dropout=dropout,
|
491 |
+
)
|
492 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
493 |
+
self.mid.block_2 = ResnetBlock(
|
494 |
+
in_channels=block_in,
|
495 |
+
out_channels=block_in,
|
496 |
+
temb_channels=self.temb_ch,
|
497 |
+
dropout=dropout,
|
498 |
+
)
|
499 |
+
|
500 |
+
# end
|
501 |
+
self.norm_out = Normalize(block_in)
|
502 |
+
self.conv_out = torch.nn.Conv2d(
|
503 |
+
block_in,
|
504 |
+
2 * z_channels if double_z else z_channels,
|
505 |
+
kernel_size=3,
|
506 |
+
stride=1,
|
507 |
+
padding=1,
|
508 |
+
)
|
509 |
+
|
510 |
+
def forward(self, x):
|
511 |
+
# timestep embedding
|
512 |
+
temb = None
|
513 |
+
|
514 |
+
# downsampling
|
515 |
+
hs = [self.conv_in(x)]
|
516 |
+
for i_level in range(self.num_resolutions):
|
517 |
+
for i_block in range(self.num_res_blocks):
|
518 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
519 |
+
if len(self.down[i_level].attn) > 0:
|
520 |
+
h = self.down[i_level].attn[i_block](h)
|
521 |
+
hs.append(h)
|
522 |
+
if i_level != self.num_resolutions - 1:
|
523 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
524 |
+
|
525 |
+
# middle
|
526 |
+
h = hs[-1]
|
527 |
+
h = self.mid.block_1(h, temb)
|
528 |
+
h = self.mid.attn_1(h)
|
529 |
+
h = self.mid.block_2(h, temb)
|
530 |
+
|
531 |
+
# end
|
532 |
+
h = self.norm_out(h)
|
533 |
+
h = nonlinearity(h)
|
534 |
+
h = self.conv_out(h)
|
535 |
+
return h
|
536 |
+
|
537 |
+
|
538 |
+
class Decoder(nn.Module):
|
539 |
+
def __init__(
|
540 |
+
self,
|
541 |
+
*,
|
542 |
+
ch,
|
543 |
+
out_ch,
|
544 |
+
ch_mult=(1, 2, 4, 8),
|
545 |
+
num_res_blocks,
|
546 |
+
attn_resolutions,
|
547 |
+
dropout=0.0,
|
548 |
+
resamp_with_conv=True,
|
549 |
+
in_channels,
|
550 |
+
resolution,
|
551 |
+
z_channels,
|
552 |
+
give_pre_end=False,
|
553 |
+
tanh_out=False,
|
554 |
+
use_linear_attn=False,
|
555 |
+
attn_type="vanilla",
|
556 |
+
**ignorekwargs,
|
557 |
+
):
|
558 |
+
super().__init__()
|
559 |
+
if use_linear_attn:
|
560 |
+
attn_type = "linear"
|
561 |
+
self.ch = ch
|
562 |
+
self.temb_ch = 0
|
563 |
+
self.num_resolutions = len(ch_mult)
|
564 |
+
self.num_res_blocks = num_res_blocks
|
565 |
+
self.resolution = resolution
|
566 |
+
self.in_channels = in_channels
|
567 |
+
self.give_pre_end = give_pre_end
|
568 |
+
self.tanh_out = tanh_out
|
569 |
+
|
570 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
571 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
572 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
573 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
574 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
575 |
+
print(
|
576 |
+
"Working with z of shape {} = {} dimensions.".format(
|
577 |
+
self.z_shape, np.prod(self.z_shape)
|
578 |
+
)
|
579 |
+
)
|
580 |
+
|
581 |
+
# z to block_in
|
582 |
+
self.conv_in = torch.nn.Conv2d(
|
583 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
584 |
+
)
|
585 |
+
|
586 |
+
# middle
|
587 |
+
self.mid = nn.Module()
|
588 |
+
self.mid.block_1 = ResnetBlock(
|
589 |
+
in_channels=block_in,
|
590 |
+
out_channels=block_in,
|
591 |
+
temb_channels=self.temb_ch,
|
592 |
+
dropout=dropout,
|
593 |
+
)
|
594 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
595 |
+
self.mid.block_2 = ResnetBlock(
|
596 |
+
in_channels=block_in,
|
597 |
+
out_channels=block_in,
|
598 |
+
temb_channels=self.temb_ch,
|
599 |
+
dropout=dropout,
|
600 |
+
)
|
601 |
+
|
602 |
+
# upsampling
|
603 |
+
self.up = nn.ModuleList()
|
604 |
+
for i_level in reversed(range(self.num_resolutions)):
|
605 |
+
block = nn.ModuleList()
|
606 |
+
attn = nn.ModuleList()
|
607 |
+
block_out = ch * ch_mult[i_level]
|
608 |
+
for i_block in range(self.num_res_blocks + 1):
|
609 |
+
block.append(
|
610 |
+
ResnetBlock(
|
611 |
+
in_channels=block_in,
|
612 |
+
out_channels=block_out,
|
613 |
+
temb_channels=self.temb_ch,
|
614 |
+
dropout=dropout,
|
615 |
+
)
|
616 |
+
)
|
617 |
+
block_in = block_out
|
618 |
+
if curr_res in attn_resolutions:
|
619 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
620 |
+
up = nn.Module()
|
621 |
+
up.block = block
|
622 |
+
up.attn = attn
|
623 |
+
if i_level != 0:
|
624 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
625 |
+
curr_res = curr_res * 2
|
626 |
+
self.up.insert(0, up) # prepend to get consistent order
|
627 |
+
|
628 |
+
# end
|
629 |
+
self.norm_out = Normalize(block_in)
|
630 |
+
self.conv_out = torch.nn.Conv2d(
|
631 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
632 |
+
)
|
633 |
+
|
634 |
+
def forward(self, z):
|
635 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
636 |
+
self.last_z_shape = z.shape
|
637 |
+
|
638 |
+
# timestep embedding
|
639 |
+
temb = None
|
640 |
+
|
641 |
+
# z to block_in
|
642 |
+
h = self.conv_in(z)
|
643 |
+
|
644 |
+
# middle
|
645 |
+
h = self.mid.block_1(h, temb)
|
646 |
+
h = self.mid.attn_1(h)
|
647 |
+
h = self.mid.block_2(h, temb)
|
648 |
+
|
649 |
+
# upsampling
|
650 |
+
for i_level in reversed(range(self.num_resolutions)):
|
651 |
+
for i_block in range(self.num_res_blocks + 1):
|
652 |
+
h = self.up[i_level].block[i_block](h, temb)
|
653 |
+
if len(self.up[i_level].attn) > 0:
|
654 |
+
h = self.up[i_level].attn[i_block](h)
|
655 |
+
if i_level != 0:
|
656 |
+
h = self.up[i_level].upsample(h)
|
657 |
+
|
658 |
+
# end
|
659 |
+
if self.give_pre_end:
|
660 |
+
return h
|
661 |
+
|
662 |
+
h = self.norm_out(h)
|
663 |
+
h = nonlinearity(h)
|
664 |
+
h = self.conv_out(h)
|
665 |
+
if self.tanh_out:
|
666 |
+
h = torch.tanh(h)
|
667 |
+
return h
|
668 |
+
|
669 |
+
|
670 |
+
class SimpleDecoder(nn.Module):
|
671 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
672 |
+
super().__init__()
|
673 |
+
self.model = nn.ModuleList(
|
674 |
+
[
|
675 |
+
nn.Conv2d(in_channels, in_channels, 1),
|
676 |
+
ResnetBlock(
|
677 |
+
in_channels=in_channels,
|
678 |
+
out_channels=2 * in_channels,
|
679 |
+
temb_channels=0,
|
680 |
+
dropout=0.0,
|
681 |
+
),
|
682 |
+
ResnetBlock(
|
683 |
+
in_channels=2 * in_channels,
|
684 |
+
out_channels=4 * in_channels,
|
685 |
+
temb_channels=0,
|
686 |
+
dropout=0.0,
|
687 |
+
),
|
688 |
+
ResnetBlock(
|
689 |
+
in_channels=4 * in_channels,
|
690 |
+
out_channels=2 * in_channels,
|
691 |
+
temb_channels=0,
|
692 |
+
dropout=0.0,
|
693 |
+
),
|
694 |
+
nn.Conv2d(2 * in_channels, in_channels, 1),
|
695 |
+
Upsample(in_channels, with_conv=True),
|
696 |
+
]
|
697 |
+
)
|
698 |
+
# end
|
699 |
+
self.norm_out = Normalize(in_channels)
|
700 |
+
self.conv_out = torch.nn.Conv2d(
|
701 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
702 |
+
)
|
703 |
+
|
704 |
+
def forward(self, x):
|
705 |
+
for i, layer in enumerate(self.model):
|
706 |
+
if i in [1, 2, 3]:
|
707 |
+
x = layer(x, None)
|
708 |
+
else:
|
709 |
+
x = layer(x)
|
710 |
+
|
711 |
+
h = self.norm_out(x)
|
712 |
+
h = nonlinearity(h)
|
713 |
+
x = self.conv_out(h)
|
714 |
+
return x
|
715 |
+
|
716 |
+
|
717 |
+
class UpsampleDecoder(nn.Module):
|
718 |
+
def __init__(
|
719 |
+
self,
|
720 |
+
in_channels,
|
721 |
+
out_channels,
|
722 |
+
ch,
|
723 |
+
num_res_blocks,
|
724 |
+
resolution,
|
725 |
+
ch_mult=(2, 2),
|
726 |
+
dropout=0.0,
|
727 |
+
):
|
728 |
+
super().__init__()
|
729 |
+
# upsampling
|
730 |
+
self.temb_ch = 0
|
731 |
+
self.num_resolutions = len(ch_mult)
|
732 |
+
self.num_res_blocks = num_res_blocks
|
733 |
+
block_in = in_channels
|
734 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
735 |
+
self.res_blocks = nn.ModuleList()
|
736 |
+
self.upsample_blocks = nn.ModuleList()
|
737 |
+
for i_level in range(self.num_resolutions):
|
738 |
+
res_block = []
|
739 |
+
block_out = ch * ch_mult[i_level]
|
740 |
+
for i_block in range(self.num_res_blocks + 1):
|
741 |
+
res_block.append(
|
742 |
+
ResnetBlock(
|
743 |
+
in_channels=block_in,
|
744 |
+
out_channels=block_out,
|
745 |
+
temb_channels=self.temb_ch,
|
746 |
+
dropout=dropout,
|
747 |
+
)
|
748 |
+
)
|
749 |
+
block_in = block_out
|
750 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
751 |
+
if i_level != self.num_resolutions - 1:
|
752 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
753 |
+
curr_res = curr_res * 2
|
754 |
+
|
755 |
+
# end
|
756 |
+
self.norm_out = Normalize(block_in)
|
757 |
+
self.conv_out = torch.nn.Conv2d(
|
758 |
+
block_in, out_channels, kernel_size=3, stride=1, padding=1
|
759 |
+
)
|
760 |
+
|
761 |
+
def forward(self, x):
|
762 |
+
# upsampling
|
763 |
+
h = x
|
764 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
765 |
+
for i_block in range(self.num_res_blocks + 1):
|
766 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
767 |
+
if i_level != self.num_resolutions - 1:
|
768 |
+
h = self.upsample_blocks[k](h)
|
769 |
+
h = self.norm_out(h)
|
770 |
+
h = nonlinearity(h)
|
771 |
+
h = self.conv_out(h)
|
772 |
+
return h
|
773 |
+
|
774 |
+
|
775 |
+
class LatentRescaler(nn.Module):
|
776 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
777 |
+
super().__init__()
|
778 |
+
# residual block, interpolate, residual block
|
779 |
+
self.factor = factor
|
780 |
+
self.conv_in = nn.Conv2d(
|
781 |
+
in_channels, mid_channels, kernel_size=3, stride=1, padding=1
|
782 |
+
)
|
783 |
+
self.res_block1 = nn.ModuleList(
|
784 |
+
[
|
785 |
+
ResnetBlock(
|
786 |
+
in_channels=mid_channels,
|
787 |
+
out_channels=mid_channels,
|
788 |
+
temb_channels=0,
|
789 |
+
dropout=0.0,
|
790 |
+
)
|
791 |
+
for _ in range(depth)
|
792 |
+
]
|
793 |
+
)
|
794 |
+
self.attn = AttnBlock(mid_channels)
|
795 |
+
self.res_block2 = nn.ModuleList(
|
796 |
+
[
|
797 |
+
ResnetBlock(
|
798 |
+
in_channels=mid_channels,
|
799 |
+
out_channels=mid_channels,
|
800 |
+
temb_channels=0,
|
801 |
+
dropout=0.0,
|
802 |
+
)
|
803 |
+
for _ in range(depth)
|
804 |
+
]
|
805 |
+
)
|
806 |
+
|
807 |
+
self.conv_out = nn.Conv2d(
|
808 |
+
mid_channels,
|
809 |
+
out_channels,
|
810 |
+
kernel_size=1,
|
811 |
+
)
|
812 |
+
|
813 |
+
def forward(self, x):
|
814 |
+
x = self.conv_in(x)
|
815 |
+
for block in self.res_block1:
|
816 |
+
x = block(x, None)
|
817 |
+
x = torch.nn.functional.interpolate(
|
818 |
+
x,
|
819 |
+
size=(
|
820 |
+
int(round(x.shape[2] * self.factor)),
|
821 |
+
int(round(x.shape[3] * self.factor)),
|
822 |
+
),
|
823 |
+
)
|
824 |
+
x = self.attn(x)
|
825 |
+
for block in self.res_block2:
|
826 |
+
x = block(x, None)
|
827 |
+
x = self.conv_out(x)
|
828 |
+
return x
|
829 |
+
|
830 |
+
|
831 |
+
class MergedRescaleEncoder(nn.Module):
|
832 |
+
def __init__(
|
833 |
+
self,
|
834 |
+
in_channels,
|
835 |
+
ch,
|
836 |
+
resolution,
|
837 |
+
out_ch,
|
838 |
+
num_res_blocks,
|
839 |
+
attn_resolutions,
|
840 |
+
dropout=0.0,
|
841 |
+
resamp_with_conv=True,
|
842 |
+
ch_mult=(1, 2, 4, 8),
|
843 |
+
rescale_factor=1.0,
|
844 |
+
rescale_module_depth=1,
|
845 |
+
):
|
846 |
+
super().__init__()
|
847 |
+
intermediate_chn = ch * ch_mult[-1]
|
848 |
+
self.encoder = Encoder(
|
849 |
+
in_channels=in_channels,
|
850 |
+
num_res_blocks=num_res_blocks,
|
851 |
+
ch=ch,
|
852 |
+
ch_mult=ch_mult,
|
853 |
+
z_channels=intermediate_chn,
|
854 |
+
double_z=False,
|
855 |
+
resolution=resolution,
|
856 |
+
attn_resolutions=attn_resolutions,
|
857 |
+
dropout=dropout,
|
858 |
+
resamp_with_conv=resamp_with_conv,
|
859 |
+
out_ch=None,
|
860 |
+
)
|
861 |
+
self.rescaler = LatentRescaler(
|
862 |
+
factor=rescale_factor,
|
863 |
+
in_channels=intermediate_chn,
|
864 |
+
mid_channels=intermediate_chn,
|
865 |
+
out_channels=out_ch,
|
866 |
+
depth=rescale_module_depth,
|
867 |
+
)
|
868 |
+
|
869 |
+
def forward(self, x):
|
870 |
+
x = self.encoder(x)
|
871 |
+
x = self.rescaler(x)
|
872 |
+
return x
|
873 |
+
|
874 |
+
|
875 |
+
class MergedRescaleDecoder(nn.Module):
|
876 |
+
def __init__(
|
877 |
+
self,
|
878 |
+
z_channels,
|
879 |
+
out_ch,
|
880 |
+
resolution,
|
881 |
+
num_res_blocks,
|
882 |
+
attn_resolutions,
|
883 |
+
ch,
|
884 |
+
ch_mult=(1, 2, 4, 8),
|
885 |
+
dropout=0.0,
|
886 |
+
resamp_with_conv=True,
|
887 |
+
rescale_factor=1.0,
|
888 |
+
rescale_module_depth=1,
|
889 |
+
):
|
890 |
+
super().__init__()
|
891 |
+
tmp_chn = z_channels * ch_mult[-1]
|
892 |
+
self.decoder = Decoder(
|
893 |
+
out_ch=out_ch,
|
894 |
+
z_channels=tmp_chn,
|
895 |
+
attn_resolutions=attn_resolutions,
|
896 |
+
dropout=dropout,
|
897 |
+
resamp_with_conv=resamp_with_conv,
|
898 |
+
in_channels=None,
|
899 |
+
num_res_blocks=num_res_blocks,
|
900 |
+
ch_mult=ch_mult,
|
901 |
+
resolution=resolution,
|
902 |
+
ch=ch,
|
903 |
+
)
|
904 |
+
self.rescaler = LatentRescaler(
|
905 |
+
factor=rescale_factor,
|
906 |
+
in_channels=z_channels,
|
907 |
+
mid_channels=tmp_chn,
|
908 |
+
out_channels=tmp_chn,
|
909 |
+
depth=rescale_module_depth,
|
910 |
+
)
|
911 |
+
|
912 |
+
def forward(self, x):
|
913 |
+
x = self.rescaler(x)
|
914 |
+
x = self.decoder(x)
|
915 |
+
return x
|
916 |
+
|
917 |
+
|
918 |
+
class Upsampler(nn.Module):
|
919 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
920 |
+
super().__init__()
|
921 |
+
assert out_size >= in_size
|
922 |
+
num_blocks = int(np.log2(out_size // in_size)) + 1
|
923 |
+
factor_up = 1.0 + (out_size % in_size)
|
924 |
+
print(
|
925 |
+
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
|
926 |
+
)
|
927 |
+
self.rescaler = LatentRescaler(
|
928 |
+
factor=factor_up,
|
929 |
+
in_channels=in_channels,
|
930 |
+
mid_channels=2 * in_channels,
|
931 |
+
out_channels=in_channels,
|
932 |
+
)
|
933 |
+
self.decoder = Decoder(
|
934 |
+
out_ch=out_channels,
|
935 |
+
resolution=out_size,
|
936 |
+
z_channels=in_channels,
|
937 |
+
num_res_blocks=2,
|
938 |
+
attn_resolutions=[],
|
939 |
+
in_channels=None,
|
940 |
+
ch=in_channels,
|
941 |
+
ch_mult=[ch_mult for _ in range(num_blocks)],
|
942 |
+
)
|
943 |
+
|
944 |
+
def forward(self, x):
|
945 |
+
x = self.rescaler(x)
|
946 |
+
x = self.decoder(x)
|
947 |
+
return x
|
948 |
+
|
949 |
+
|
950 |
+
class Resize(nn.Module):
|
951 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
952 |
+
super().__init__()
|
953 |
+
self.with_conv = learned
|
954 |
+
self.mode = mode
|
955 |
+
if self.with_conv:
|
956 |
+
print(
|
957 |
+
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
|
958 |
+
)
|
959 |
+
raise NotImplementedError()
|
960 |
+
assert in_channels is not None
|
961 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
962 |
+
self.conv = torch.nn.Conv2d(
|
963 |
+
in_channels, in_channels, kernel_size=4, stride=2, padding=1
|
964 |
+
)
|
965 |
+
|
966 |
+
def forward(self, x, scale_factor=1.0):
|
967 |
+
if scale_factor == 1.0:
|
968 |
+
return x
|
969 |
+
else:
|
970 |
+
x = torch.nn.functional.interpolate(
|
971 |
+
x, mode=self.mode, align_corners=False, scale_factor=scale_factor
|
972 |
+
)
|
973 |
+
return x
|
iopaint/model/anytext/ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,786 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
|
10 |
+
checkpoint,
|
11 |
+
conv_nd,
|
12 |
+
linear,
|
13 |
+
avg_pool_nd,
|
14 |
+
zero_module,
|
15 |
+
normalization,
|
16 |
+
timestep_embedding,
|
17 |
+
)
|
18 |
+
from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer
|
19 |
+
from iopaint.model.anytext.ldm.util import exists
|
20 |
+
|
21 |
+
|
22 |
+
# dummy replace
|
23 |
+
def convert_module_to_f16(x):
|
24 |
+
pass
|
25 |
+
|
26 |
+
def convert_module_to_f32(x):
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
## go
|
31 |
+
class AttentionPool2d(nn.Module):
|
32 |
+
"""
|
33 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
spacial_dim: int,
|
39 |
+
embed_dim: int,
|
40 |
+
num_heads_channels: int,
|
41 |
+
output_dim: int = None,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
45 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
46 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
47 |
+
self.num_heads = embed_dim // num_heads_channels
|
48 |
+
self.attention = QKVAttention(self.num_heads)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
b, c, *_spatial = x.shape
|
52 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
53 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
54 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
55 |
+
x = self.qkv_proj(x)
|
56 |
+
x = self.attention(x)
|
57 |
+
x = self.c_proj(x)
|
58 |
+
return x[:, :, 0]
|
59 |
+
|
60 |
+
|
61 |
+
class TimestepBlock(nn.Module):
|
62 |
+
"""
|
63 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
64 |
+
"""
|
65 |
+
|
66 |
+
@abstractmethod
|
67 |
+
def forward(self, x, emb):
|
68 |
+
"""
|
69 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
70 |
+
"""
|
71 |
+
|
72 |
+
|
73 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
74 |
+
"""
|
75 |
+
A sequential module that passes timestep embeddings to the children that
|
76 |
+
support it as an extra input.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def forward(self, x, emb, context=None):
|
80 |
+
for layer in self:
|
81 |
+
if isinstance(layer, TimestepBlock):
|
82 |
+
x = layer(x, emb)
|
83 |
+
elif isinstance(layer, SpatialTransformer):
|
84 |
+
x = layer(x, context)
|
85 |
+
else:
|
86 |
+
x = layer(x)
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
class Upsample(nn.Module):
|
91 |
+
"""
|
92 |
+
An upsampling layer with an optional convolution.
|
93 |
+
:param channels: channels in the inputs and outputs.
|
94 |
+
:param use_conv: a bool determining if a convolution is applied.
|
95 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
96 |
+
upsampling occurs in the inner-two dimensions.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
100 |
+
super().__init__()
|
101 |
+
self.channels = channels
|
102 |
+
self.out_channels = out_channels or channels
|
103 |
+
self.use_conv = use_conv
|
104 |
+
self.dims = dims
|
105 |
+
if use_conv:
|
106 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
assert x.shape[1] == self.channels
|
110 |
+
if self.dims == 3:
|
111 |
+
x = F.interpolate(
|
112 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
116 |
+
if self.use_conv:
|
117 |
+
x = self.conv(x)
|
118 |
+
return x
|
119 |
+
|
120 |
+
class TransposedUpsample(nn.Module):
|
121 |
+
'Learned 2x upsampling without padding'
|
122 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
123 |
+
super().__init__()
|
124 |
+
self.channels = channels
|
125 |
+
self.out_channels = out_channels or channels
|
126 |
+
|
127 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
128 |
+
|
129 |
+
def forward(self,x):
|
130 |
+
return self.up(x)
|
131 |
+
|
132 |
+
|
133 |
+
class Downsample(nn.Module):
|
134 |
+
"""
|
135 |
+
A downsampling layer with an optional convolution.
|
136 |
+
:param channels: channels in the inputs and outputs.
|
137 |
+
:param use_conv: a bool determining if a convolution is applied.
|
138 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
139 |
+
downsampling occurs in the inner-two dimensions.
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
143 |
+
super().__init__()
|
144 |
+
self.channels = channels
|
145 |
+
self.out_channels = out_channels or channels
|
146 |
+
self.use_conv = use_conv
|
147 |
+
self.dims = dims
|
148 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
149 |
+
if use_conv:
|
150 |
+
self.op = conv_nd(
|
151 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
assert self.channels == self.out_channels
|
155 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
assert x.shape[1] == self.channels
|
159 |
+
return self.op(x)
|
160 |
+
|
161 |
+
|
162 |
+
class ResBlock(TimestepBlock):
|
163 |
+
"""
|
164 |
+
A residual block that can optionally change the number of channels.
|
165 |
+
:param channels: the number of input channels.
|
166 |
+
:param emb_channels: the number of timestep embedding channels.
|
167 |
+
:param dropout: the rate of dropout.
|
168 |
+
:param out_channels: if specified, the number of out channels.
|
169 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
170 |
+
convolution instead of a smaller 1x1 convolution to change the
|
171 |
+
channels in the skip connection.
|
172 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
173 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
174 |
+
:param up: if True, use this block for upsampling.
|
175 |
+
:param down: if True, use this block for downsampling.
|
176 |
+
"""
|
177 |
+
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
channels,
|
181 |
+
emb_channels,
|
182 |
+
dropout,
|
183 |
+
out_channels=None,
|
184 |
+
use_conv=False,
|
185 |
+
use_scale_shift_norm=False,
|
186 |
+
dims=2,
|
187 |
+
use_checkpoint=False,
|
188 |
+
up=False,
|
189 |
+
down=False,
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
self.channels = channels
|
193 |
+
self.emb_channels = emb_channels
|
194 |
+
self.dropout = dropout
|
195 |
+
self.out_channels = out_channels or channels
|
196 |
+
self.use_conv = use_conv
|
197 |
+
self.use_checkpoint = use_checkpoint
|
198 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
199 |
+
|
200 |
+
self.in_layers = nn.Sequential(
|
201 |
+
normalization(channels),
|
202 |
+
nn.SiLU(),
|
203 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
204 |
+
)
|
205 |
+
|
206 |
+
self.updown = up or down
|
207 |
+
|
208 |
+
if up:
|
209 |
+
self.h_upd = Upsample(channels, False, dims)
|
210 |
+
self.x_upd = Upsample(channels, False, dims)
|
211 |
+
elif down:
|
212 |
+
self.h_upd = Downsample(channels, False, dims)
|
213 |
+
self.x_upd = Downsample(channels, False, dims)
|
214 |
+
else:
|
215 |
+
self.h_upd = self.x_upd = nn.Identity()
|
216 |
+
|
217 |
+
self.emb_layers = nn.Sequential(
|
218 |
+
nn.SiLU(),
|
219 |
+
linear(
|
220 |
+
emb_channels,
|
221 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
222 |
+
),
|
223 |
+
)
|
224 |
+
self.out_layers = nn.Sequential(
|
225 |
+
normalization(self.out_channels),
|
226 |
+
nn.SiLU(),
|
227 |
+
nn.Dropout(p=dropout),
|
228 |
+
zero_module(
|
229 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
230 |
+
),
|
231 |
+
)
|
232 |
+
|
233 |
+
if self.out_channels == channels:
|
234 |
+
self.skip_connection = nn.Identity()
|
235 |
+
elif use_conv:
|
236 |
+
self.skip_connection = conv_nd(
|
237 |
+
dims, channels, self.out_channels, 3, padding=1
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
241 |
+
|
242 |
+
def forward(self, x, emb):
|
243 |
+
"""
|
244 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
245 |
+
:param x: an [N x C x ...] Tensor of features.
|
246 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
247 |
+
:return: an [N x C x ...] Tensor of outputs.
|
248 |
+
"""
|
249 |
+
return checkpoint(
|
250 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
def _forward(self, x, emb):
|
255 |
+
if self.updown:
|
256 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
257 |
+
h = in_rest(x)
|
258 |
+
h = self.h_upd(h)
|
259 |
+
x = self.x_upd(x)
|
260 |
+
h = in_conv(h)
|
261 |
+
else:
|
262 |
+
h = self.in_layers(x)
|
263 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
264 |
+
while len(emb_out.shape) < len(h.shape):
|
265 |
+
emb_out = emb_out[..., None]
|
266 |
+
if self.use_scale_shift_norm:
|
267 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
268 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
269 |
+
h = out_norm(h) * (1 + scale) + shift
|
270 |
+
h = out_rest(h)
|
271 |
+
else:
|
272 |
+
h = h + emb_out
|
273 |
+
h = self.out_layers(h)
|
274 |
+
return self.skip_connection(x) + h
|
275 |
+
|
276 |
+
|
277 |
+
class AttentionBlock(nn.Module):
|
278 |
+
"""
|
279 |
+
An attention block that allows spatial positions to attend to each other.
|
280 |
+
Originally ported from here, but adapted to the N-d case.
|
281 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
282 |
+
"""
|
283 |
+
|
284 |
+
def __init__(
|
285 |
+
self,
|
286 |
+
channels,
|
287 |
+
num_heads=1,
|
288 |
+
num_head_channels=-1,
|
289 |
+
use_checkpoint=False,
|
290 |
+
use_new_attention_order=False,
|
291 |
+
):
|
292 |
+
super().__init__()
|
293 |
+
self.channels = channels
|
294 |
+
if num_head_channels == -1:
|
295 |
+
self.num_heads = num_heads
|
296 |
+
else:
|
297 |
+
assert (
|
298 |
+
channels % num_head_channels == 0
|
299 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
300 |
+
self.num_heads = channels // num_head_channels
|
301 |
+
self.use_checkpoint = use_checkpoint
|
302 |
+
self.norm = normalization(channels)
|
303 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
304 |
+
if use_new_attention_order:
|
305 |
+
# split qkv before split heads
|
306 |
+
self.attention = QKVAttention(self.num_heads)
|
307 |
+
else:
|
308 |
+
# split heads before split qkv
|
309 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
310 |
+
|
311 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
312 |
+
|
313 |
+
def forward(self, x):
|
314 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
315 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
316 |
+
|
317 |
+
def _forward(self, x):
|
318 |
+
b, c, *spatial = x.shape
|
319 |
+
x = x.reshape(b, c, -1)
|
320 |
+
qkv = self.qkv(self.norm(x))
|
321 |
+
h = self.attention(qkv)
|
322 |
+
h = self.proj_out(h)
|
323 |
+
return (x + h).reshape(b, c, *spatial)
|
324 |
+
|
325 |
+
|
326 |
+
def count_flops_attn(model, _x, y):
|
327 |
+
"""
|
328 |
+
A counter for the `thop` package to count the operations in an
|
329 |
+
attention operation.
|
330 |
+
Meant to be used like:
|
331 |
+
macs, params = thop.profile(
|
332 |
+
model,
|
333 |
+
inputs=(inputs, timestamps),
|
334 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
335 |
+
)
|
336 |
+
"""
|
337 |
+
b, c, *spatial = y[0].shape
|
338 |
+
num_spatial = int(np.prod(spatial))
|
339 |
+
# We perform two matmuls with the same number of ops.
|
340 |
+
# The first computes the weight matrix, the second computes
|
341 |
+
# the combination of the value vectors.
|
342 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
343 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
344 |
+
|
345 |
+
|
346 |
+
class QKVAttentionLegacy(nn.Module):
|
347 |
+
"""
|
348 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
349 |
+
"""
|
350 |
+
|
351 |
+
def __init__(self, n_heads):
|
352 |
+
super().__init__()
|
353 |
+
self.n_heads = n_heads
|
354 |
+
|
355 |
+
def forward(self, qkv):
|
356 |
+
"""
|
357 |
+
Apply QKV attention.
|
358 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
359 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
360 |
+
"""
|
361 |
+
bs, width, length = qkv.shape
|
362 |
+
assert width % (3 * self.n_heads) == 0
|
363 |
+
ch = width // (3 * self.n_heads)
|
364 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
365 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
366 |
+
weight = th.einsum(
|
367 |
+
"bct,bcs->bts", q * scale, k * scale
|
368 |
+
) # More stable with f16 than dividing afterwards
|
369 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
370 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
371 |
+
return a.reshape(bs, -1, length)
|
372 |
+
|
373 |
+
@staticmethod
|
374 |
+
def count_flops(model, _x, y):
|
375 |
+
return count_flops_attn(model, _x, y)
|
376 |
+
|
377 |
+
|
378 |
+
class QKVAttention(nn.Module):
|
379 |
+
"""
|
380 |
+
A module which performs QKV attention and splits in a different order.
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(self, n_heads):
|
384 |
+
super().__init__()
|
385 |
+
self.n_heads = n_heads
|
386 |
+
|
387 |
+
def forward(self, qkv):
|
388 |
+
"""
|
389 |
+
Apply QKV attention.
|
390 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
391 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
392 |
+
"""
|
393 |
+
bs, width, length = qkv.shape
|
394 |
+
assert width % (3 * self.n_heads) == 0
|
395 |
+
ch = width // (3 * self.n_heads)
|
396 |
+
q, k, v = qkv.chunk(3, dim=1)
|
397 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
398 |
+
weight = th.einsum(
|
399 |
+
"bct,bcs->bts",
|
400 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
401 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
402 |
+
) # More stable with f16 than dividing afterwards
|
403 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
404 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
405 |
+
return a.reshape(bs, -1, length)
|
406 |
+
|
407 |
+
@staticmethod
|
408 |
+
def count_flops(model, _x, y):
|
409 |
+
return count_flops_attn(model, _x, y)
|
410 |
+
|
411 |
+
|
412 |
+
class UNetModel(nn.Module):
|
413 |
+
"""
|
414 |
+
The full UNet model with attention and timestep embedding.
|
415 |
+
:param in_channels: channels in the input Tensor.
|
416 |
+
:param model_channels: base channel count for the model.
|
417 |
+
:param out_channels: channels in the output Tensor.
|
418 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
419 |
+
:param attention_resolutions: a collection of downsample rates at which
|
420 |
+
attention will take place. May be a set, list, or tuple.
|
421 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
422 |
+
will be used.
|
423 |
+
:param dropout: the dropout probability.
|
424 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
425 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
426 |
+
downsampling.
|
427 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
428 |
+
:param num_classes: if specified (as an int), then this model will be
|
429 |
+
class-conditional with `num_classes` classes.
|
430 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
431 |
+
:param num_heads: the number of attention heads in each attention layer.
|
432 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
433 |
+
a fixed channel width per attention head.
|
434 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
435 |
+
of heads for upsampling. Deprecated.
|
436 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
437 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
438 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
439 |
+
increased efficiency.
|
440 |
+
"""
|
441 |
+
|
442 |
+
def __init__(
|
443 |
+
self,
|
444 |
+
image_size,
|
445 |
+
in_channels,
|
446 |
+
model_channels,
|
447 |
+
out_channels,
|
448 |
+
num_res_blocks,
|
449 |
+
attention_resolutions,
|
450 |
+
dropout=0,
|
451 |
+
channel_mult=(1, 2, 4, 8),
|
452 |
+
conv_resample=True,
|
453 |
+
dims=2,
|
454 |
+
num_classes=None,
|
455 |
+
use_checkpoint=False,
|
456 |
+
use_fp16=False,
|
457 |
+
num_heads=-1,
|
458 |
+
num_head_channels=-1,
|
459 |
+
num_heads_upsample=-1,
|
460 |
+
use_scale_shift_norm=False,
|
461 |
+
resblock_updown=False,
|
462 |
+
use_new_attention_order=False,
|
463 |
+
use_spatial_transformer=False, # custom transformer support
|
464 |
+
transformer_depth=1, # custom transformer support
|
465 |
+
context_dim=None, # custom transformer support
|
466 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
467 |
+
legacy=True,
|
468 |
+
disable_self_attentions=None,
|
469 |
+
num_attention_blocks=None,
|
470 |
+
disable_middle_self_attn=False,
|
471 |
+
use_linear_in_transformer=False,
|
472 |
+
):
|
473 |
+
super().__init__()
|
474 |
+
if use_spatial_transformer:
|
475 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
476 |
+
|
477 |
+
if context_dim is not None:
|
478 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
479 |
+
from omegaconf.listconfig import ListConfig
|
480 |
+
if type(context_dim) == ListConfig:
|
481 |
+
context_dim = list(context_dim)
|
482 |
+
|
483 |
+
if num_heads_upsample == -1:
|
484 |
+
num_heads_upsample = num_heads
|
485 |
+
|
486 |
+
if num_heads == -1:
|
487 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
488 |
+
|
489 |
+
if num_head_channels == -1:
|
490 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
491 |
+
|
492 |
+
self.image_size = image_size
|
493 |
+
self.in_channels = in_channels
|
494 |
+
self.model_channels = model_channels
|
495 |
+
self.out_channels = out_channels
|
496 |
+
if isinstance(num_res_blocks, int):
|
497 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
498 |
+
else:
|
499 |
+
if len(num_res_blocks) != len(channel_mult):
|
500 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
501 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
502 |
+
self.num_res_blocks = num_res_blocks
|
503 |
+
if disable_self_attentions is not None:
|
504 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
505 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
506 |
+
if num_attention_blocks is not None:
|
507 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
508 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
509 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
510 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
511 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
512 |
+
f"attention will still not be set.")
|
513 |
+
self.use_fp16 = use_fp16
|
514 |
+
self.attention_resolutions = attention_resolutions
|
515 |
+
self.dropout = dropout
|
516 |
+
self.channel_mult = channel_mult
|
517 |
+
self.conv_resample = conv_resample
|
518 |
+
self.num_classes = num_classes
|
519 |
+
self.use_checkpoint = use_checkpoint
|
520 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
521 |
+
self.num_heads = num_heads
|
522 |
+
self.num_head_channels = num_head_channels
|
523 |
+
self.num_heads_upsample = num_heads_upsample
|
524 |
+
self.predict_codebook_ids = n_embed is not None
|
525 |
+
|
526 |
+
time_embed_dim = model_channels * 4
|
527 |
+
self.time_embed = nn.Sequential(
|
528 |
+
linear(model_channels, time_embed_dim),
|
529 |
+
nn.SiLU(),
|
530 |
+
linear(time_embed_dim, time_embed_dim),
|
531 |
+
)
|
532 |
+
|
533 |
+
if self.num_classes is not None:
|
534 |
+
if isinstance(self.num_classes, int):
|
535 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
536 |
+
elif self.num_classes == "continuous":
|
537 |
+
print("setting up linear c_adm embedding layer")
|
538 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
539 |
+
else:
|
540 |
+
raise ValueError()
|
541 |
+
|
542 |
+
self.input_blocks = nn.ModuleList(
|
543 |
+
[
|
544 |
+
TimestepEmbedSequential(
|
545 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
546 |
+
)
|
547 |
+
]
|
548 |
+
)
|
549 |
+
self._feature_size = model_channels
|
550 |
+
input_block_chans = [model_channels]
|
551 |
+
ch = model_channels
|
552 |
+
ds = 1
|
553 |
+
for level, mult in enumerate(channel_mult):
|
554 |
+
for nr in range(self.num_res_blocks[level]):
|
555 |
+
layers = [
|
556 |
+
ResBlock(
|
557 |
+
ch,
|
558 |
+
time_embed_dim,
|
559 |
+
dropout,
|
560 |
+
out_channels=mult * model_channels,
|
561 |
+
dims=dims,
|
562 |
+
use_checkpoint=use_checkpoint,
|
563 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
564 |
+
)
|
565 |
+
]
|
566 |
+
ch = mult * model_channels
|
567 |
+
if ds in attention_resolutions:
|
568 |
+
if num_head_channels == -1:
|
569 |
+
dim_head = ch // num_heads
|
570 |
+
else:
|
571 |
+
num_heads = ch // num_head_channels
|
572 |
+
dim_head = num_head_channels
|
573 |
+
if legacy:
|
574 |
+
#num_heads = 1
|
575 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
576 |
+
if exists(disable_self_attentions):
|
577 |
+
disabled_sa = disable_self_attentions[level]
|
578 |
+
else:
|
579 |
+
disabled_sa = False
|
580 |
+
|
581 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
582 |
+
layers.append(
|
583 |
+
AttentionBlock(
|
584 |
+
ch,
|
585 |
+
use_checkpoint=use_checkpoint,
|
586 |
+
num_heads=num_heads,
|
587 |
+
num_head_channels=dim_head,
|
588 |
+
use_new_attention_order=use_new_attention_order,
|
589 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
590 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
591 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
592 |
+
use_checkpoint=use_checkpoint
|
593 |
+
)
|
594 |
+
)
|
595 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
596 |
+
self._feature_size += ch
|
597 |
+
input_block_chans.append(ch)
|
598 |
+
if level != len(channel_mult) - 1:
|
599 |
+
out_ch = ch
|
600 |
+
self.input_blocks.append(
|
601 |
+
TimestepEmbedSequential(
|
602 |
+
ResBlock(
|
603 |
+
ch,
|
604 |
+
time_embed_dim,
|
605 |
+
dropout,
|
606 |
+
out_channels=out_ch,
|
607 |
+
dims=dims,
|
608 |
+
use_checkpoint=use_checkpoint,
|
609 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
610 |
+
down=True,
|
611 |
+
)
|
612 |
+
if resblock_updown
|
613 |
+
else Downsample(
|
614 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
615 |
+
)
|
616 |
+
)
|
617 |
+
)
|
618 |
+
ch = out_ch
|
619 |
+
input_block_chans.append(ch)
|
620 |
+
ds *= 2
|
621 |
+
self._feature_size += ch
|
622 |
+
|
623 |
+
if num_head_channels == -1:
|
624 |
+
dim_head = ch // num_heads
|
625 |
+
else:
|
626 |
+
num_heads = ch // num_head_channels
|
627 |
+
dim_head = num_head_channels
|
628 |
+
if legacy:
|
629 |
+
#num_heads = 1
|
630 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
631 |
+
self.middle_block = TimestepEmbedSequential(
|
632 |
+
ResBlock(
|
633 |
+
ch,
|
634 |
+
time_embed_dim,
|
635 |
+
dropout,
|
636 |
+
dims=dims,
|
637 |
+
use_checkpoint=use_checkpoint,
|
638 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
639 |
+
),
|
640 |
+
AttentionBlock(
|
641 |
+
ch,
|
642 |
+
use_checkpoint=use_checkpoint,
|
643 |
+
num_heads=num_heads,
|
644 |
+
num_head_channels=dim_head,
|
645 |
+
use_new_attention_order=use_new_attention_order,
|
646 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
647 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
648 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
649 |
+
use_checkpoint=use_checkpoint
|
650 |
+
),
|
651 |
+
ResBlock(
|
652 |
+
ch,
|
653 |
+
time_embed_dim,
|
654 |
+
dropout,
|
655 |
+
dims=dims,
|
656 |
+
use_checkpoint=use_checkpoint,
|
657 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
658 |
+
),
|
659 |
+
)
|
660 |
+
self._feature_size += ch
|
661 |
+
|
662 |
+
self.output_blocks = nn.ModuleList([])
|
663 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
664 |
+
for i in range(self.num_res_blocks[level] + 1):
|
665 |
+
ich = input_block_chans.pop()
|
666 |
+
layers = [
|
667 |
+
ResBlock(
|
668 |
+
ch + ich,
|
669 |
+
time_embed_dim,
|
670 |
+
dropout,
|
671 |
+
out_channels=model_channels * mult,
|
672 |
+
dims=dims,
|
673 |
+
use_checkpoint=use_checkpoint,
|
674 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
675 |
+
)
|
676 |
+
]
|
677 |
+
ch = model_channels * mult
|
678 |
+
if ds in attention_resolutions:
|
679 |
+
if num_head_channels == -1:
|
680 |
+
dim_head = ch // num_heads
|
681 |
+
else:
|
682 |
+
num_heads = ch // num_head_channels
|
683 |
+
dim_head = num_head_channels
|
684 |
+
if legacy:
|
685 |
+
#num_heads = 1
|
686 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
687 |
+
if exists(disable_self_attentions):
|
688 |
+
disabled_sa = disable_self_attentions[level]
|
689 |
+
else:
|
690 |
+
disabled_sa = False
|
691 |
+
|
692 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
693 |
+
layers.append(
|
694 |
+
AttentionBlock(
|
695 |
+
ch,
|
696 |
+
use_checkpoint=use_checkpoint,
|
697 |
+
num_heads=num_heads_upsample,
|
698 |
+
num_head_channels=dim_head,
|
699 |
+
use_new_attention_order=use_new_attention_order,
|
700 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
701 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
702 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
703 |
+
use_checkpoint=use_checkpoint
|
704 |
+
)
|
705 |
+
)
|
706 |
+
if level and i == self.num_res_blocks[level]:
|
707 |
+
out_ch = ch
|
708 |
+
layers.append(
|
709 |
+
ResBlock(
|
710 |
+
ch,
|
711 |
+
time_embed_dim,
|
712 |
+
dropout,
|
713 |
+
out_channels=out_ch,
|
714 |
+
dims=dims,
|
715 |
+
use_checkpoint=use_checkpoint,
|
716 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
717 |
+
up=True,
|
718 |
+
)
|
719 |
+
if resblock_updown
|
720 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
721 |
+
)
|
722 |
+
ds //= 2
|
723 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
724 |
+
self._feature_size += ch
|
725 |
+
|
726 |
+
self.out = nn.Sequential(
|
727 |
+
normalization(ch),
|
728 |
+
nn.SiLU(),
|
729 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
730 |
+
)
|
731 |
+
if self.predict_codebook_ids:
|
732 |
+
self.id_predictor = nn.Sequential(
|
733 |
+
normalization(ch),
|
734 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
735 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
736 |
+
)
|
737 |
+
|
738 |
+
def convert_to_fp16(self):
|
739 |
+
"""
|
740 |
+
Convert the torso of the model to float16.
|
741 |
+
"""
|
742 |
+
self.input_blocks.apply(convert_module_to_f16)
|
743 |
+
self.middle_block.apply(convert_module_to_f16)
|
744 |
+
self.output_blocks.apply(convert_module_to_f16)
|
745 |
+
|
746 |
+
def convert_to_fp32(self):
|
747 |
+
"""
|
748 |
+
Convert the torso of the model to float32.
|
749 |
+
"""
|
750 |
+
self.input_blocks.apply(convert_module_to_f32)
|
751 |
+
self.middle_block.apply(convert_module_to_f32)
|
752 |
+
self.output_blocks.apply(convert_module_to_f32)
|
753 |
+
|
754 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
755 |
+
"""
|
756 |
+
Apply the model to an input batch.
|
757 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
758 |
+
:param timesteps: a 1-D batch of timesteps.
|
759 |
+
:param context: conditioning plugged in via crossattn
|
760 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
761 |
+
:return: an [N x C x ...] Tensor of outputs.
|
762 |
+
"""
|
763 |
+
assert (y is not None) == (
|
764 |
+
self.num_classes is not None
|
765 |
+
), "must specify y if and only if the model is class-conditional"
|
766 |
+
hs = []
|
767 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
768 |
+
emb = self.time_embed(t_emb)
|
769 |
+
|
770 |
+
if self.num_classes is not None:
|
771 |
+
assert y.shape[0] == x.shape[0]
|
772 |
+
emb = emb + self.label_emb(y)
|
773 |
+
|
774 |
+
h = x.type(self.dtype)
|
775 |
+
for module in self.input_blocks:
|
776 |
+
h = module(h, emb, context)
|
777 |
+
hs.append(h)
|
778 |
+
h = self.middle_block(h, emb, context)
|
779 |
+
for module in self.output_blocks:
|
780 |
+
h = th.cat([h, hs.pop()], dim=1)
|
781 |
+
h = module(h, emb, context)
|
782 |
+
h = h.type(x.dtype)
|
783 |
+
if self.predict_codebook_ids:
|
784 |
+
return self.id_predictor(h)
|
785 |
+
else:
|
786 |
+
return self.out(h)
|
iopaint/model/anytext/ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
iopaint/model/anytext/ldm/modules/ema.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1, dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
# remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.', '')
|
20 |
+
self.m_name2s_name.update({name: s_name})
|
21 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def reset_num_updates(self):
|
26 |
+
del self.num_updates
|
27 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
28 |
+
|
29 |
+
def forward(self, model):
|
30 |
+
decay = self.decay
|
31 |
+
|
32 |
+
if self.num_updates >= 0:
|
33 |
+
self.num_updates += 1
|
34 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
35 |
+
|
36 |
+
one_minus_decay = 1.0 - decay
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
m_param = dict(model.named_parameters())
|
40 |
+
shadow_params = dict(self.named_buffers())
|
41 |
+
|
42 |
+
for key in m_param:
|
43 |
+
if m_param[key].requires_grad:
|
44 |
+
sname = self.m_name2s_name[key]
|
45 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
46 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
47 |
+
else:
|
48 |
+
assert not key in self.m_name2s_name
|
49 |
+
|
50 |
+
def copy_to(self, model):
|
51 |
+
m_param = dict(model.named_parameters())
|
52 |
+
shadow_params = dict(self.named_buffers())
|
53 |
+
for key in m_param:
|
54 |
+
if m_param[key].requires_grad:
|
55 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
56 |
+
else:
|
57 |
+
assert not key in self.m_name2s_name
|
58 |
+
|
59 |
+
def store(self, parameters):
|
60 |
+
"""
|
61 |
+
Save the current parameters for restoring later.
|
62 |
+
Args:
|
63 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
64 |
+
temporarily stored.
|
65 |
+
"""
|
66 |
+
self.collected_params = [param.clone() for param in parameters]
|
67 |
+
|
68 |
+
def restore(self, parameters):
|
69 |
+
"""
|
70 |
+
Restore the parameters stored with the `store` method.
|
71 |
+
Useful to validate the model with EMA parameters without affecting the
|
72 |
+
original optimization process. Store the parameters before the
|
73 |
+
`copy_to` method. After validation (or model saving), use this to
|
74 |
+
restore the former parameters.
|
75 |
+
Args:
|
76 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
77 |
+
updated with the stored parameters.
|
78 |
+
"""
|
79 |
+
for c_param, param in zip(self.collected_params, parameters):
|
80 |
+
param.data.copy_(c_param.data)
|
iopaint/model/anytext/ldm/modules/encoders/modules.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.checkpoint import checkpoint
|
4 |
+
|
5 |
+
from transformers import (
|
6 |
+
T5Tokenizer,
|
7 |
+
T5EncoderModel,
|
8 |
+
CLIPTokenizer,
|
9 |
+
CLIPTextModel,
|
10 |
+
AutoProcessor,
|
11 |
+
CLIPVisionModelWithProjection,
|
12 |
+
)
|
13 |
+
|
14 |
+
from iopaint.model.anytext.ldm.util import count_params
|
15 |
+
|
16 |
+
|
17 |
+
def _expand_mask(mask, dtype, tgt_len=None):
|
18 |
+
"""
|
19 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
20 |
+
"""
|
21 |
+
bsz, src_len = mask.size()
|
22 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
23 |
+
|
24 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
25 |
+
|
26 |
+
inverted_mask = 1.0 - expanded_mask
|
27 |
+
|
28 |
+
return inverted_mask.masked_fill(
|
29 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def _build_causal_attention_mask(bsz, seq_len, dtype):
|
34 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
35 |
+
# pytorch uses additive attention mask; fill with -inf
|
36 |
+
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
37 |
+
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
38 |
+
mask.triu_(1) # zero out the lower diagonal
|
39 |
+
mask = mask.unsqueeze(1) # expand mask
|
40 |
+
return mask
|
41 |
+
|
42 |
+
|
43 |
+
class AbstractEncoder(nn.Module):
|
44 |
+
def __init__(self):
|
45 |
+
super().__init__()
|
46 |
+
|
47 |
+
def encode(self, *args, **kwargs):
|
48 |
+
raise NotImplementedError
|
49 |
+
|
50 |
+
|
51 |
+
class IdentityEncoder(AbstractEncoder):
|
52 |
+
def encode(self, x):
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class ClassEmbedder(nn.Module):
|
57 |
+
def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1):
|
58 |
+
super().__init__()
|
59 |
+
self.key = key
|
60 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
61 |
+
self.n_classes = n_classes
|
62 |
+
self.ucg_rate = ucg_rate
|
63 |
+
|
64 |
+
def forward(self, batch, key=None, disable_dropout=False):
|
65 |
+
if key is None:
|
66 |
+
key = self.key
|
67 |
+
# this is for use in crossattn
|
68 |
+
c = batch[key][:, None]
|
69 |
+
if self.ucg_rate > 0.0 and not disable_dropout:
|
70 |
+
mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
71 |
+
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
72 |
+
c = c.long()
|
73 |
+
c = self.embedding(c)
|
74 |
+
return c
|
75 |
+
|
76 |
+
def get_unconditional_conditioning(self, bs, device="cuda"):
|
77 |
+
uc_class = (
|
78 |
+
self.n_classes - 1
|
79 |
+
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
80 |
+
uc = torch.ones((bs,), device=device) * uc_class
|
81 |
+
uc = {self.key: uc}
|
82 |
+
return uc
|
83 |
+
|
84 |
+
|
85 |
+
def disabled_train(self, mode=True):
|
86 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
87 |
+
does not change anymore."""
|
88 |
+
return self
|
89 |
+
|
90 |
+
|
91 |
+
class FrozenT5Embedder(AbstractEncoder):
|
92 |
+
"""Uses the T5 transformer encoder for text"""
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True
|
96 |
+
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
97 |
+
super().__init__()
|
98 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
99 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
100 |
+
self.device = device
|
101 |
+
self.max_length = max_length # TODO: typical value?
|
102 |
+
if freeze:
|
103 |
+
self.freeze()
|
104 |
+
|
105 |
+
def freeze(self):
|
106 |
+
self.transformer = self.transformer.eval()
|
107 |
+
# self.train = disabled_train
|
108 |
+
for param in self.parameters():
|
109 |
+
param.requires_grad = False
|
110 |
+
|
111 |
+
def forward(self, text):
|
112 |
+
batch_encoding = self.tokenizer(
|
113 |
+
text,
|
114 |
+
truncation=True,
|
115 |
+
max_length=self.max_length,
|
116 |
+
return_length=True,
|
117 |
+
return_overflowing_tokens=False,
|
118 |
+
padding="max_length",
|
119 |
+
return_tensors="pt",
|
120 |
+
)
|
121 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
122 |
+
outputs = self.transformer(input_ids=tokens)
|
123 |
+
|
124 |
+
z = outputs.last_hidden_state
|
125 |
+
return z
|
126 |
+
|
127 |
+
def encode(self, text):
|
128 |
+
return self(text)
|
129 |
+
|
130 |
+
|
131 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
132 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
133 |
+
|
134 |
+
LAYERS = ["last", "pooled", "hidden"]
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
version="openai/clip-vit-large-patch14",
|
139 |
+
device="cuda",
|
140 |
+
max_length=77,
|
141 |
+
freeze=True,
|
142 |
+
layer="last",
|
143 |
+
layer_idx=None,
|
144 |
+
): # clip-vit-base-patch32
|
145 |
+
super().__init__()
|
146 |
+
assert layer in self.LAYERS
|
147 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
148 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
149 |
+
self.device = device
|
150 |
+
self.max_length = max_length
|
151 |
+
if freeze:
|
152 |
+
self.freeze()
|
153 |
+
self.layer = layer
|
154 |
+
self.layer_idx = layer_idx
|
155 |
+
if layer == "hidden":
|
156 |
+
assert layer_idx is not None
|
157 |
+
assert 0 <= abs(layer_idx) <= 12
|
158 |
+
|
159 |
+
def freeze(self):
|
160 |
+
self.transformer = self.transformer.eval()
|
161 |
+
# self.train = disabled_train
|
162 |
+
for param in self.parameters():
|
163 |
+
param.requires_grad = False
|
164 |
+
|
165 |
+
def forward(self, text):
|
166 |
+
batch_encoding = self.tokenizer(
|
167 |
+
text,
|
168 |
+
truncation=True,
|
169 |
+
max_length=self.max_length,
|
170 |
+
return_length=True,
|
171 |
+
return_overflowing_tokens=False,
|
172 |
+
padding="max_length",
|
173 |
+
return_tensors="pt",
|
174 |
+
)
|
175 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
176 |
+
outputs = self.transformer(
|
177 |
+
input_ids=tokens, output_hidden_states=self.layer == "hidden"
|
178 |
+
)
|
179 |
+
if self.layer == "last":
|
180 |
+
z = outputs.last_hidden_state
|
181 |
+
elif self.layer == "pooled":
|
182 |
+
z = outputs.pooler_output[:, None, :]
|
183 |
+
else:
|
184 |
+
z = outputs.hidden_states[self.layer_idx]
|
185 |
+
return z
|
186 |
+
|
187 |
+
def encode(self, text):
|
188 |
+
return self(text)
|
189 |
+
|
190 |
+
|
191 |
+
class FrozenCLIPT5Encoder(AbstractEncoder):
|
192 |
+
def __init__(
|
193 |
+
self,
|
194 |
+
clip_version="openai/clip-vit-large-patch14",
|
195 |
+
t5_version="google/t5-v1_1-xl",
|
196 |
+
device="cuda",
|
197 |
+
clip_max_length=77,
|
198 |
+
t5_max_length=77,
|
199 |
+
):
|
200 |
+
super().__init__()
|
201 |
+
self.clip_encoder = FrozenCLIPEmbedder(
|
202 |
+
clip_version, device, max_length=clip_max_length
|
203 |
+
)
|
204 |
+
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
205 |
+
print(
|
206 |
+
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
|
207 |
+
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params."
|
208 |
+
)
|
209 |
+
|
210 |
+
def encode(self, text):
|
211 |
+
return self(text)
|
212 |
+
|
213 |
+
def forward(self, text):
|
214 |
+
clip_z = self.clip_encoder.encode(text)
|
215 |
+
t5_z = self.t5_encoder.encode(text)
|
216 |
+
return [clip_z, t5_z]
|
217 |
+
|
218 |
+
|
219 |
+
class FrozenCLIPEmbedderT3(AbstractEncoder):
|
220 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
221 |
+
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
version="openai/clip-vit-large-patch14",
|
225 |
+
device="cuda",
|
226 |
+
max_length=77,
|
227 |
+
freeze=True,
|
228 |
+
use_vision=False,
|
229 |
+
):
|
230 |
+
super().__init__()
|
231 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
232 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
233 |
+
if use_vision:
|
234 |
+
self.vit = CLIPVisionModelWithProjection.from_pretrained(version)
|
235 |
+
self.processor = AutoProcessor.from_pretrained(version)
|
236 |
+
self.device = device
|
237 |
+
self.max_length = max_length
|
238 |
+
if freeze:
|
239 |
+
self.freeze()
|
240 |
+
|
241 |
+
def embedding_forward(
|
242 |
+
self,
|
243 |
+
input_ids=None,
|
244 |
+
position_ids=None,
|
245 |
+
inputs_embeds=None,
|
246 |
+
embedding_manager=None,
|
247 |
+
):
|
248 |
+
seq_length = (
|
249 |
+
input_ids.shape[-1]
|
250 |
+
if input_ids is not None
|
251 |
+
else inputs_embeds.shape[-2]
|
252 |
+
)
|
253 |
+
if position_ids is None:
|
254 |
+
position_ids = self.position_ids[:, :seq_length]
|
255 |
+
if inputs_embeds is None:
|
256 |
+
inputs_embeds = self.token_embedding(input_ids)
|
257 |
+
if embedding_manager is not None:
|
258 |
+
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
259 |
+
position_embeddings = self.position_embedding(position_ids)
|
260 |
+
embeddings = inputs_embeds + position_embeddings
|
261 |
+
return embeddings
|
262 |
+
|
263 |
+
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
|
264 |
+
self.transformer.text_model.embeddings
|
265 |
+
)
|
266 |
+
|
267 |
+
def encoder_forward(
|
268 |
+
self,
|
269 |
+
inputs_embeds,
|
270 |
+
attention_mask=None,
|
271 |
+
causal_attention_mask=None,
|
272 |
+
output_attentions=None,
|
273 |
+
output_hidden_states=None,
|
274 |
+
return_dict=None,
|
275 |
+
):
|
276 |
+
output_attentions = (
|
277 |
+
output_attentions
|
278 |
+
if output_attentions is not None
|
279 |
+
else self.config.output_attentions
|
280 |
+
)
|
281 |
+
output_hidden_states = (
|
282 |
+
output_hidden_states
|
283 |
+
if output_hidden_states is not None
|
284 |
+
else self.config.output_hidden_states
|
285 |
+
)
|
286 |
+
return_dict = (
|
287 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
288 |
+
)
|
289 |
+
encoder_states = () if output_hidden_states else None
|
290 |
+
all_attentions = () if output_attentions else None
|
291 |
+
hidden_states = inputs_embeds
|
292 |
+
for idx, encoder_layer in enumerate(self.layers):
|
293 |
+
if output_hidden_states:
|
294 |
+
encoder_states = encoder_states + (hidden_states,)
|
295 |
+
layer_outputs = encoder_layer(
|
296 |
+
hidden_states,
|
297 |
+
attention_mask,
|
298 |
+
causal_attention_mask,
|
299 |
+
output_attentions=output_attentions,
|
300 |
+
)
|
301 |
+
hidden_states = layer_outputs[0]
|
302 |
+
if output_attentions:
|
303 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
304 |
+
if output_hidden_states:
|
305 |
+
encoder_states = encoder_states + (hidden_states,)
|
306 |
+
return hidden_states
|
307 |
+
|
308 |
+
self.transformer.text_model.encoder.forward = encoder_forward.__get__(
|
309 |
+
self.transformer.text_model.encoder
|
310 |
+
)
|
311 |
+
|
312 |
+
def text_encoder_forward(
|
313 |
+
self,
|
314 |
+
input_ids=None,
|
315 |
+
attention_mask=None,
|
316 |
+
position_ids=None,
|
317 |
+
output_attentions=None,
|
318 |
+
output_hidden_states=None,
|
319 |
+
return_dict=None,
|
320 |
+
embedding_manager=None,
|
321 |
+
):
|
322 |
+
output_attentions = (
|
323 |
+
output_attentions
|
324 |
+
if output_attentions is not None
|
325 |
+
else self.config.output_attentions
|
326 |
+
)
|
327 |
+
output_hidden_states = (
|
328 |
+
output_hidden_states
|
329 |
+
if output_hidden_states is not None
|
330 |
+
else self.config.output_hidden_states
|
331 |
+
)
|
332 |
+
return_dict = (
|
333 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
334 |
+
)
|
335 |
+
if input_ids is None:
|
336 |
+
raise ValueError("You have to specify either input_ids")
|
337 |
+
input_shape = input_ids.size()
|
338 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
339 |
+
hidden_states = self.embeddings(
|
340 |
+
input_ids=input_ids,
|
341 |
+
position_ids=position_ids,
|
342 |
+
embedding_manager=embedding_manager,
|
343 |
+
)
|
344 |
+
bsz, seq_len = input_shape
|
345 |
+
# CLIP's text model uses causal mask, prepare it here.
|
346 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
347 |
+
causal_attention_mask = _build_causal_attention_mask(
|
348 |
+
bsz, seq_len, hidden_states.dtype
|
349 |
+
).to(hidden_states.device)
|
350 |
+
# expand attention_mask
|
351 |
+
if attention_mask is not None:
|
352 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
353 |
+
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
354 |
+
last_hidden_state = self.encoder(
|
355 |
+
inputs_embeds=hidden_states,
|
356 |
+
attention_mask=attention_mask,
|
357 |
+
causal_attention_mask=causal_attention_mask,
|
358 |
+
output_attentions=output_attentions,
|
359 |
+
output_hidden_states=output_hidden_states,
|
360 |
+
return_dict=return_dict,
|
361 |
+
)
|
362 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
363 |
+
return last_hidden_state
|
364 |
+
|
365 |
+
self.transformer.text_model.forward = text_encoder_forward.__get__(
|
366 |
+
self.transformer.text_model
|
367 |
+
)
|
368 |
+
|
369 |
+
def transformer_forward(
|
370 |
+
self,
|
371 |
+
input_ids=None,
|
372 |
+
attention_mask=None,
|
373 |
+
position_ids=None,
|
374 |
+
output_attentions=None,
|
375 |
+
output_hidden_states=None,
|
376 |
+
return_dict=None,
|
377 |
+
embedding_manager=None,
|
378 |
+
):
|
379 |
+
return self.text_model(
|
380 |
+
input_ids=input_ids,
|
381 |
+
attention_mask=attention_mask,
|
382 |
+
position_ids=position_ids,
|
383 |
+
output_attentions=output_attentions,
|
384 |
+
output_hidden_states=output_hidden_states,
|
385 |
+
return_dict=return_dict,
|
386 |
+
embedding_manager=embedding_manager,
|
387 |
+
)
|
388 |
+
|
389 |
+
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
390 |
+
|
391 |
+
def freeze(self):
|
392 |
+
self.transformer = self.transformer.eval()
|
393 |
+
for param in self.parameters():
|
394 |
+
param.requires_grad = False
|
395 |
+
|
396 |
+
def forward(self, text, **kwargs):
|
397 |
+
batch_encoding = self.tokenizer(
|
398 |
+
text,
|
399 |
+
truncation=True,
|
400 |
+
max_length=self.max_length,
|
401 |
+
return_length=True,
|
402 |
+
return_overflowing_tokens=False,
|
403 |
+
padding="max_length",
|
404 |
+
return_tensors="pt",
|
405 |
+
)
|
406 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
407 |
+
z = self.transformer(input_ids=tokens, **kwargs)
|
408 |
+
return z
|
409 |
+
|
410 |
+
def encode(self, text, **kwargs):
|
411 |
+
return self(text, **kwargs)
|
iopaint/model/anytext/main.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import os
|
3 |
+
|
4 |
+
from anytext_pipeline import AnyTextPipeline
|
5 |
+
from utils import save_images
|
6 |
+
|
7 |
+
seed = 66273235
|
8 |
+
# seed_everything(seed)
|
9 |
+
|
10 |
+
pipe = AnyTextPipeline(
|
11 |
+
ckpt_path="/Users/cwq/code/github/IOPaint/iopaint/model/anytext/anytext_v1.1_fp16.ckpt",
|
12 |
+
font_path="/Users/cwq/code/github/AnyText/anytext/font/SourceHanSansSC-Medium.otf",
|
13 |
+
use_fp16=False,
|
14 |
+
device="mps",
|
15 |
+
)
|
16 |
+
|
17 |
+
img_save_folder = "SaveImages"
|
18 |
+
rgb_image = cv2.imread(
|
19 |
+
"/Users/cwq/code/github/AnyText/anytext/example_images/ref7.jpg"
|
20 |
+
)[..., ::-1]
|
21 |
+
|
22 |
+
masked_image = cv2.imread(
|
23 |
+
"/Users/cwq/code/github/AnyText/anytext/example_images/edit7.png"
|
24 |
+
)[..., ::-1]
|
25 |
+
|
26 |
+
rgb_image = cv2.resize(rgb_image, (512, 512))
|
27 |
+
masked_image = cv2.resize(masked_image, (512, 512))
|
28 |
+
|
29 |
+
# results: list of rgb ndarray
|
30 |
+
results, rtn_code, rtn_warning = pipe(
|
31 |
+
prompt='A cake with colorful characters that reads "EVERYDAY", best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks',
|
32 |
+
negative_prompt="low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture",
|
33 |
+
image=rgb_image,
|
34 |
+
masked_image=masked_image,
|
35 |
+
num_inference_steps=20,
|
36 |
+
strength=1.0,
|
37 |
+
guidance_scale=9.0,
|
38 |
+
height=rgb_image.shape[0],
|
39 |
+
width=rgb_image.shape[1],
|
40 |
+
seed=seed,
|
41 |
+
sort_priority="y",
|
42 |
+
)
|
43 |
+
if rtn_code >= 0:
|
44 |
+
save_images(results, img_save_folder)
|
45 |
+
print(f"Done, result images are saved in: {img_save_folder}")
|
iopaint/model/anytext/ocr_recog/common.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class Hswish(nn.Module):
|
9 |
+
def __init__(self, inplace=True):
|
10 |
+
super(Hswish, self).__init__()
|
11 |
+
self.inplace = inplace
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
return x * F.relu6(x + 3., inplace=self.inplace) / 6.
|
15 |
+
|
16 |
+
# out = max(0, min(1, slop*x+offset))
|
17 |
+
# paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None)
|
18 |
+
class Hsigmoid(nn.Module):
|
19 |
+
def __init__(self, inplace=True):
|
20 |
+
super(Hsigmoid, self).__init__()
|
21 |
+
self.inplace = inplace
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
# torch: F.relu6(x + 3., inplace=self.inplace) / 6.
|
25 |
+
# paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
|
26 |
+
return F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
|
27 |
+
|
28 |
+
class GELU(nn.Module):
|
29 |
+
def __init__(self, inplace=True):
|
30 |
+
super(GELU, self).__init__()
|
31 |
+
self.inplace = inplace
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
return torch.nn.functional.gelu(x)
|
35 |
+
|
36 |
+
|
37 |
+
class Swish(nn.Module):
|
38 |
+
def __init__(self, inplace=True):
|
39 |
+
super(Swish, self).__init__()
|
40 |
+
self.inplace = inplace
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
if self.inplace:
|
44 |
+
x.mul_(torch.sigmoid(x))
|
45 |
+
return x
|
46 |
+
else:
|
47 |
+
return x*torch.sigmoid(x)
|
48 |
+
|
49 |
+
|
50 |
+
class Activation(nn.Module):
|
51 |
+
def __init__(self, act_type, inplace=True):
|
52 |
+
super(Activation, self).__init__()
|
53 |
+
act_type = act_type.lower()
|
54 |
+
if act_type == 'relu':
|
55 |
+
self.act = nn.ReLU(inplace=inplace)
|
56 |
+
elif act_type == 'relu6':
|
57 |
+
self.act = nn.ReLU6(inplace=inplace)
|
58 |
+
elif act_type == 'sigmoid':
|
59 |
+
raise NotImplementedError
|
60 |
+
elif act_type == 'hard_sigmoid':
|
61 |
+
self.act = Hsigmoid(inplace)
|
62 |
+
elif act_type == 'hard_swish':
|
63 |
+
self.act = Hswish(inplace=inplace)
|
64 |
+
elif act_type == 'leakyrelu':
|
65 |
+
self.act = nn.LeakyReLU(inplace=inplace)
|
66 |
+
elif act_type == 'gelu':
|
67 |
+
self.act = GELU(inplace=inplace)
|
68 |
+
elif act_type == 'swish':
|
69 |
+
self.act = Swish(inplace=inplace)
|
70 |
+
else:
|
71 |
+
raise NotImplementedError
|
72 |
+
|
73 |
+
def forward(self, inputs):
|
74 |
+
return self.act(inputs)
|
iopaint/model/anytext/ocr_recog/en_dict.txt
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0
|
2 |
+
1
|
3 |
+
2
|
4 |
+
3
|
5 |
+
4
|
6 |
+
5
|
7 |
+
6
|
8 |
+
7
|
9 |
+
8
|
10 |
+
9
|
11 |
+
:
|
12 |
+
;
|
13 |
+
<
|
14 |
+
=
|
15 |
+
>
|
16 |
+
?
|
17 |
+
@
|
18 |
+
A
|
19 |
+
B
|
20 |
+
C
|
21 |
+
D
|
22 |
+
E
|
23 |
+
F
|
24 |
+
G
|
25 |
+
H
|
26 |
+
I
|
27 |
+
J
|
28 |
+
K
|
29 |
+
L
|
30 |
+
M
|
31 |
+
N
|
32 |
+
O
|
33 |
+
P
|
34 |
+
Q
|
35 |
+
R
|
36 |
+
S
|
37 |
+
T
|
38 |
+
U
|
39 |
+
V
|
40 |
+
W
|
41 |
+
X
|
42 |
+
Y
|
43 |
+
Z
|
44 |
+
[
|
45 |
+
\
|
46 |
+
]
|
47 |
+
^
|
48 |
+
_
|
49 |
+
`
|
50 |
+
a
|
51 |
+
b
|
52 |
+
c
|
53 |
+
d
|
54 |
+
e
|
55 |
+
f
|
56 |
+
g
|
57 |
+
h
|
58 |
+
i
|
59 |
+
j
|
60 |
+
k
|
61 |
+
l
|
62 |
+
m
|
63 |
+
n
|
64 |
+
o
|
65 |
+
p
|
66 |
+
q
|
67 |
+
r
|
68 |
+
s
|
69 |
+
t
|
70 |
+
u
|
71 |
+
v
|
72 |
+
w
|
73 |
+
x
|
74 |
+
y
|
75 |
+
z
|
76 |
+
{
|
77 |
+
|
|
78 |
+
}
|
79 |
+
~
|
80 |
+
!
|
81 |
+
"
|
82 |
+
#
|
83 |
+
$
|
84 |
+
%
|
85 |
+
&
|
86 |
+
'
|
87 |
+
(
|
88 |
+
)
|
89 |
+
*
|
90 |
+
+
|
91 |
+
,
|
92 |
+
-
|
93 |
+
.
|
94 |
+
/
|
95 |
+
|
iopaint/model/controlnet.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL.Image
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from diffusers import ControlNetModel
|
5 |
+
from loguru import logger
|
6 |
+
from iopaint.schema import InpaintRequest, ModelType
|
7 |
+
|
8 |
+
from .base import DiffusionInpaintModel
|
9 |
+
from .helper.controlnet_preprocess import (
|
10 |
+
make_canny_control_image,
|
11 |
+
make_openpose_control_image,
|
12 |
+
make_depth_control_image,
|
13 |
+
make_inpaint_control_image,
|
14 |
+
)
|
15 |
+
from .helper.cpu_text_encoder import CPUTextEncoderWrapper
|
16 |
+
from .original_sd_configs import get_config_files
|
17 |
+
from .utils import (
|
18 |
+
get_scheduler,
|
19 |
+
handle_from_pretrained_exceptions,
|
20 |
+
get_torch_dtype,
|
21 |
+
enable_low_mem,
|
22 |
+
is_local_files_only,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class ControlNet(DiffusionInpaintModel):
|
27 |
+
name = "controlnet"
|
28 |
+
pad_mod = 8
|
29 |
+
min_size = 512
|
30 |
+
|
31 |
+
@property
|
32 |
+
def lcm_lora_id(self):
|
33 |
+
if self.model_info.model_type in [
|
34 |
+
ModelType.DIFFUSERS_SD,
|
35 |
+
ModelType.DIFFUSERS_SD_INPAINT,
|
36 |
+
]:
|
37 |
+
return "latent-consistency/lcm-lora-sdv1-5"
|
38 |
+
if self.model_info.model_type in [
|
39 |
+
ModelType.DIFFUSERS_SDXL,
|
40 |
+
ModelType.DIFFUSERS_SDXL_INPAINT,
|
41 |
+
]:
|
42 |
+
return "latent-consistency/lcm-lora-sdxl"
|
43 |
+
raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}")
|
44 |
+
|
45 |
+
def init_model(self, device: torch.device, **kwargs):
|
46 |
+
model_info = kwargs["model_info"]
|
47 |
+
controlnet_method = kwargs["controlnet_method"]
|
48 |
+
|
49 |
+
self.model_info = model_info
|
50 |
+
self.controlnet_method = controlnet_method
|
51 |
+
|
52 |
+
model_kwargs = {
|
53 |
+
**kwargs.get("pipe_components", {}),
|
54 |
+
"local_files_only": is_local_files_only(**kwargs),
|
55 |
+
}
|
56 |
+
self.local_files_only = model_kwargs["local_files_only"]
|
57 |
+
|
58 |
+
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
|
59 |
+
"cpu_offload", False
|
60 |
+
)
|
61 |
+
if disable_nsfw_checker:
|
62 |
+
logger.info("Disable Stable Diffusion Model NSFW checker")
|
63 |
+
model_kwargs.update(
|
64 |
+
dict(
|
65 |
+
safety_checker=None,
|
66 |
+
feature_extractor=None,
|
67 |
+
requires_safety_checker=False,
|
68 |
+
)
|
69 |
+
)
|
70 |
+
|
71 |
+
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
72 |
+
self.torch_dtype = torch_dtype
|
73 |
+
|
74 |
+
if model_info.model_type in [
|
75 |
+
ModelType.DIFFUSERS_SD,
|
76 |
+
ModelType.DIFFUSERS_SD_INPAINT,
|
77 |
+
]:
|
78 |
+
from diffusers import (
|
79 |
+
StableDiffusionControlNetInpaintPipeline as PipeClass,
|
80 |
+
)
|
81 |
+
elif model_info.model_type in [
|
82 |
+
ModelType.DIFFUSERS_SDXL,
|
83 |
+
ModelType.DIFFUSERS_SDXL_INPAINT,
|
84 |
+
]:
|
85 |
+
from diffusers import (
|
86 |
+
StableDiffusionXLControlNetInpaintPipeline as PipeClass,
|
87 |
+
)
|
88 |
+
|
89 |
+
controlnet = ControlNetModel.from_pretrained(
|
90 |
+
pretrained_model_name_or_path=controlnet_method,
|
91 |
+
resume_download=True,
|
92 |
+
local_files_only=model_kwargs["local_files_only"],
|
93 |
+
torch_dtype=self.torch_dtype,
|
94 |
+
)
|
95 |
+
if model_info.is_single_file_diffusers:
|
96 |
+
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
|
97 |
+
model_kwargs["num_in_channels"] = 4
|
98 |
+
else:
|
99 |
+
model_kwargs["num_in_channels"] = 9
|
100 |
+
|
101 |
+
self.model = PipeClass.from_single_file(
|
102 |
+
model_info.path,
|
103 |
+
controlnet=controlnet,
|
104 |
+
load_safety_checker=not disable_nsfw_checker,
|
105 |
+
torch_dtype=torch_dtype,
|
106 |
+
config_files=get_config_files(),
|
107 |
+
**model_kwargs,
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
self.model = handle_from_pretrained_exceptions(
|
111 |
+
PipeClass.from_pretrained,
|
112 |
+
pretrained_model_name_or_path=model_info.path,
|
113 |
+
controlnet=controlnet,
|
114 |
+
variant="fp16",
|
115 |
+
torch_dtype=torch_dtype,
|
116 |
+
**model_kwargs,
|
117 |
+
)
|
118 |
+
|
119 |
+
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
120 |
+
|
121 |
+
if kwargs.get("cpu_offload", False) and use_gpu:
|
122 |
+
logger.info("Enable sequential cpu offload")
|
123 |
+
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
124 |
+
else:
|
125 |
+
self.model = self.model.to(device)
|
126 |
+
if kwargs["sd_cpu_textencoder"]:
|
127 |
+
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
128 |
+
self.model.text_encoder = CPUTextEncoderWrapper(
|
129 |
+
self.model.text_encoder, torch_dtype
|
130 |
+
)
|
131 |
+
|
132 |
+
self.callback = kwargs.pop("callback", None)
|
133 |
+
|
134 |
+
def switch_controlnet_method(self, new_method: str):
|
135 |
+
self.controlnet_method = new_method
|
136 |
+
controlnet = ControlNetModel.from_pretrained(
|
137 |
+
new_method,
|
138 |
+
resume_download=True,
|
139 |
+
local_files_only=self.local_files_only,
|
140 |
+
torch_dtype=self.torch_dtype,
|
141 |
+
).to(self.model.device)
|
142 |
+
self.model.controlnet = controlnet
|
143 |
+
|
144 |
+
def _get_control_image(self, image, mask):
|
145 |
+
if "canny" in self.controlnet_method:
|
146 |
+
control_image = make_canny_control_image(image)
|
147 |
+
elif "openpose" in self.controlnet_method:
|
148 |
+
control_image = make_openpose_control_image(image)
|
149 |
+
elif "depth" in self.controlnet_method:
|
150 |
+
control_image = make_depth_control_image(image)
|
151 |
+
elif "inpaint" in self.controlnet_method:
|
152 |
+
control_image = make_inpaint_control_image(image, mask)
|
153 |
+
else:
|
154 |
+
raise NotImplementedError(f"{self.controlnet_method} not implemented")
|
155 |
+
return control_image
|
156 |
+
|
157 |
+
def forward(self, image, mask, config: InpaintRequest):
|
158 |
+
"""Input image and output image have same size
|
159 |
+
image: [H, W, C] RGB
|
160 |
+
mask: [H, W, 1] 255 means area to repaint
|
161 |
+
return: BGR IMAGE
|
162 |
+
"""
|
163 |
+
scheduler_config = self.model.scheduler.config
|
164 |
+
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
|
165 |
+
self.model.scheduler = scheduler
|
166 |
+
|
167 |
+
img_h, img_w = image.shape[:2]
|
168 |
+
control_image = self._get_control_image(image, mask)
|
169 |
+
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
|
170 |
+
image = PIL.Image.fromarray(image)
|
171 |
+
|
172 |
+
output = self.model(
|
173 |
+
image=image,
|
174 |
+
mask_image=mask_image,
|
175 |
+
control_image=control_image,
|
176 |
+
prompt=config.prompt,
|
177 |
+
negative_prompt=config.negative_prompt,
|
178 |
+
num_inference_steps=config.sd_steps,
|
179 |
+
guidance_scale=config.sd_guidance_scale,
|
180 |
+
output_type="np",
|
181 |
+
callback_on_step_end=self.callback,
|
182 |
+
height=img_h,
|
183 |
+
width=img_w,
|
184 |
+
generator=torch.manual_seed(config.sd_seed),
|
185 |
+
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
|
186 |
+
).images[0]
|
187 |
+
|
188 |
+
output = (output * 255).round().astype("uint8")
|
189 |
+
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
190 |
+
return output
|
iopaint/model/ddim_sampler.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from .utils import make_ddim_timesteps, make_ddim_sampling_parameters, noise_like
|
6 |
+
|
7 |
+
from loguru import logger
|
8 |
+
|
9 |
+
|
10 |
+
class DDIMSampler(object):
|
11 |
+
def __init__(self, model, schedule="linear"):
|
12 |
+
super().__init__()
|
13 |
+
self.model = model
|
14 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
15 |
+
self.schedule = schedule
|
16 |
+
|
17 |
+
def register_buffer(self, name, attr):
|
18 |
+
setattr(self, name, attr)
|
19 |
+
|
20 |
+
def make_schedule(
|
21 |
+
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
22 |
+
):
|
23 |
+
self.ddim_timesteps = make_ddim_timesteps(
|
24 |
+
ddim_discr_method=ddim_discretize,
|
25 |
+
num_ddim_timesteps=ddim_num_steps,
|
26 |
+
# array([1])
|
27 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
28 |
+
verbose=verbose,
|
29 |
+
)
|
30 |
+
alphas_cumprod = self.model.alphas_cumprod # torch.Size([1000])
|
31 |
+
assert (
|
32 |
+
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
33 |
+
), "alphas have to be defined for each timestep"
|
34 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
35 |
+
|
36 |
+
self.register_buffer("betas", to_torch(self.model.betas))
|
37 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
38 |
+
self.register_buffer(
|
39 |
+
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
40 |
+
)
|
41 |
+
|
42 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
43 |
+
self.register_buffer(
|
44 |
+
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
45 |
+
)
|
46 |
+
self.register_buffer(
|
47 |
+
"sqrt_one_minus_alphas_cumprod",
|
48 |
+
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
49 |
+
)
|
50 |
+
self.register_buffer(
|
51 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
52 |
+
)
|
53 |
+
self.register_buffer(
|
54 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
55 |
+
)
|
56 |
+
self.register_buffer(
|
57 |
+
"sqrt_recipm1_alphas_cumprod",
|
58 |
+
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
59 |
+
)
|
60 |
+
|
61 |
+
# ddim sampling parameters
|
62 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
63 |
+
alphacums=alphas_cumprod.cpu(),
|
64 |
+
ddim_timesteps=self.ddim_timesteps,
|
65 |
+
eta=ddim_eta,
|
66 |
+
verbose=verbose,
|
67 |
+
)
|
68 |
+
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
69 |
+
self.register_buffer("ddim_alphas", ddim_alphas)
|
70 |
+
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
71 |
+
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
72 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
73 |
+
(1 - self.alphas_cumprod_prev)
|
74 |
+
/ (1 - self.alphas_cumprod)
|
75 |
+
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
76 |
+
)
|
77 |
+
self.register_buffer(
|
78 |
+
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
79 |
+
)
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def sample(self, steps, conditioning, batch_size, shape):
|
83 |
+
self.make_schedule(ddim_num_steps=steps, ddim_eta=0, verbose=False)
|
84 |
+
# sampling
|
85 |
+
C, H, W = shape
|
86 |
+
size = (batch_size, C, H, W)
|
87 |
+
|
88 |
+
# samples: 1,3,128,128
|
89 |
+
return self.ddim_sampling(
|
90 |
+
conditioning,
|
91 |
+
size,
|
92 |
+
quantize_denoised=False,
|
93 |
+
ddim_use_original_steps=False,
|
94 |
+
noise_dropout=0,
|
95 |
+
temperature=1.0,
|
96 |
+
)
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def ddim_sampling(
|
100 |
+
self,
|
101 |
+
cond,
|
102 |
+
shape,
|
103 |
+
ddim_use_original_steps=False,
|
104 |
+
quantize_denoised=False,
|
105 |
+
temperature=1.0,
|
106 |
+
noise_dropout=0.0,
|
107 |
+
):
|
108 |
+
device = self.model.betas.device
|
109 |
+
b = shape[0]
|
110 |
+
img = torch.randn(shape, device=device, dtype=cond.dtype)
|
111 |
+
timesteps = (
|
112 |
+
self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
113 |
+
)
|
114 |
+
|
115 |
+
time_range = (
|
116 |
+
reversed(range(0, timesteps))
|
117 |
+
if ddim_use_original_steps
|
118 |
+
else np.flip(timesteps)
|
119 |
+
)
|
120 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
121 |
+
logger.info(f"Running DDIM Sampling with {total_steps} timesteps")
|
122 |
+
|
123 |
+
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
124 |
+
|
125 |
+
for i, step in enumerate(iterator):
|
126 |
+
index = total_steps - i - 1
|
127 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
128 |
+
|
129 |
+
outs = self.p_sample_ddim(
|
130 |
+
img,
|
131 |
+
cond,
|
132 |
+
ts,
|
133 |
+
index=index,
|
134 |
+
use_original_steps=ddim_use_original_steps,
|
135 |
+
quantize_denoised=quantize_denoised,
|
136 |
+
temperature=temperature,
|
137 |
+
noise_dropout=noise_dropout,
|
138 |
+
)
|
139 |
+
img, _ = outs
|
140 |
+
|
141 |
+
return img
|
142 |
+
|
143 |
+
@torch.no_grad()
|
144 |
+
def p_sample_ddim(
|
145 |
+
self,
|
146 |
+
x,
|
147 |
+
c,
|
148 |
+
t,
|
149 |
+
index,
|
150 |
+
repeat_noise=False,
|
151 |
+
use_original_steps=False,
|
152 |
+
quantize_denoised=False,
|
153 |
+
temperature=1.0,
|
154 |
+
noise_dropout=0.0,
|
155 |
+
):
|
156 |
+
b, *_, device = *x.shape, x.device
|
157 |
+
e_t = self.model.apply_model(x, t, c)
|
158 |
+
|
159 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
160 |
+
alphas_prev = (
|
161 |
+
self.model.alphas_cumprod_prev
|
162 |
+
if use_original_steps
|
163 |
+
else self.ddim_alphas_prev
|
164 |
+
)
|
165 |
+
sqrt_one_minus_alphas = (
|
166 |
+
self.model.sqrt_one_minus_alphas_cumprod
|
167 |
+
if use_original_steps
|
168 |
+
else self.ddim_sqrt_one_minus_alphas
|
169 |
+
)
|
170 |
+
sigmas = (
|
171 |
+
self.model.ddim_sigmas_for_original_num_steps
|
172 |
+
if use_original_steps
|
173 |
+
else self.ddim_sigmas
|
174 |
+
)
|
175 |
+
# select parameters corresponding to the currently considered timestep
|
176 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
177 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
178 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
179 |
+
sqrt_one_minus_at = torch.full(
|
180 |
+
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
181 |
+
)
|
182 |
+
|
183 |
+
# current prediction for x_0
|
184 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
185 |
+
if quantize_denoised: # 没用
|
186 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
187 |
+
# direction pointing to x_t
|
188 |
+
dir_xt = (1.0 - a_prev - sigma_t ** 2).sqrt() * e_t
|
189 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
190 |
+
if noise_dropout > 0.0: # 没用
|
191 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
192 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
193 |
+
return x_prev, pred_x0
|
iopaint/model/fcf.py
ADDED
@@ -0,0 +1,1737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import torch.fft as fft
|
8 |
+
|
9 |
+
from iopaint.schema import InpaintRequest
|
10 |
+
|
11 |
+
from iopaint.helper import (
|
12 |
+
load_model,
|
13 |
+
get_cache_path_by_url,
|
14 |
+
norm_img,
|
15 |
+
boxes_from_mask,
|
16 |
+
resize_max_size,
|
17 |
+
download_model,
|
18 |
+
)
|
19 |
+
from .base import InpaintModel
|
20 |
+
from torch import conv2d, nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
from .utils import (
|
24 |
+
setup_filter,
|
25 |
+
_parse_scaling,
|
26 |
+
_parse_padding,
|
27 |
+
Conv2dLayer,
|
28 |
+
FullyConnectedLayer,
|
29 |
+
MinibatchStdLayer,
|
30 |
+
activation_funcs,
|
31 |
+
conv2d_resample,
|
32 |
+
bias_act,
|
33 |
+
upsample2d,
|
34 |
+
normalize_2nd_moment,
|
35 |
+
downsample2d,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"):
|
40 |
+
assert isinstance(x, torch.Tensor)
|
41 |
+
return _upfirdn2d_ref(
|
42 |
+
x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
47 |
+
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops."""
|
48 |
+
# Validate arguments.
|
49 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
50 |
+
if f is None:
|
51 |
+
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
52 |
+
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
53 |
+
assert f.dtype == torch.float32 and not f.requires_grad
|
54 |
+
batch_size, num_channels, in_height, in_width = x.shape
|
55 |
+
upx, upy = _parse_scaling(up)
|
56 |
+
downx, downy = _parse_scaling(down)
|
57 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
58 |
+
|
59 |
+
# Upsample by inserting zeros.
|
60 |
+
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
|
61 |
+
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
|
62 |
+
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
|
63 |
+
|
64 |
+
# Pad or crop.
|
65 |
+
x = torch.nn.functional.pad(
|
66 |
+
x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]
|
67 |
+
)
|
68 |
+
x = x[
|
69 |
+
:,
|
70 |
+
:,
|
71 |
+
max(-pady0, 0) : x.shape[2] - max(-pady1, 0),
|
72 |
+
max(-padx0, 0) : x.shape[3] - max(-padx1, 0),
|
73 |
+
]
|
74 |
+
|
75 |
+
# Setup filter.
|
76 |
+
f = f * (gain ** (f.ndim / 2))
|
77 |
+
f = f.to(x.dtype)
|
78 |
+
if not flip_filter:
|
79 |
+
f = f.flip(list(range(f.ndim)))
|
80 |
+
|
81 |
+
# Convolve with the filter.
|
82 |
+
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
|
83 |
+
if f.ndim == 4:
|
84 |
+
x = conv2d(input=x, weight=f, groups=num_channels)
|
85 |
+
else:
|
86 |
+
x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
|
87 |
+
x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
|
88 |
+
|
89 |
+
# Downsample by throwing away pixels.
|
90 |
+
x = x[:, :, ::downy, ::downx]
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
class EncoderEpilogue(torch.nn.Module):
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
in_channels, # Number of input channels.
|
98 |
+
cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label.
|
99 |
+
z_dim, # Output Latent (Z) dimensionality.
|
100 |
+
resolution, # Resolution of this block.
|
101 |
+
img_channels, # Number of input color channels.
|
102 |
+
architecture="resnet", # Architecture: 'orig', 'skip', 'resnet'.
|
103 |
+
mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
|
104 |
+
mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable.
|
105 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
106 |
+
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
107 |
+
):
|
108 |
+
assert architecture in ["orig", "skip", "resnet"]
|
109 |
+
super().__init__()
|
110 |
+
self.in_channels = in_channels
|
111 |
+
self.cmap_dim = cmap_dim
|
112 |
+
self.resolution = resolution
|
113 |
+
self.img_channels = img_channels
|
114 |
+
self.architecture = architecture
|
115 |
+
|
116 |
+
if architecture == "skip":
|
117 |
+
self.fromrgb = Conv2dLayer(
|
118 |
+
self.img_channels, in_channels, kernel_size=1, activation=activation
|
119 |
+
)
|
120 |
+
self.mbstd = (
|
121 |
+
MinibatchStdLayer(
|
122 |
+
group_size=mbstd_group_size, num_channels=mbstd_num_channels
|
123 |
+
)
|
124 |
+
if mbstd_num_channels > 0
|
125 |
+
else None
|
126 |
+
)
|
127 |
+
self.conv = Conv2dLayer(
|
128 |
+
in_channels + mbstd_num_channels,
|
129 |
+
in_channels,
|
130 |
+
kernel_size=3,
|
131 |
+
activation=activation,
|
132 |
+
conv_clamp=conv_clamp,
|
133 |
+
)
|
134 |
+
self.fc = FullyConnectedLayer(
|
135 |
+
in_channels * (resolution**2), z_dim, activation=activation
|
136 |
+
)
|
137 |
+
self.dropout = torch.nn.Dropout(p=0.5)
|
138 |
+
|
139 |
+
def forward(self, x, cmap, force_fp32=False):
|
140 |
+
_ = force_fp32 # unused
|
141 |
+
dtype = torch.float32
|
142 |
+
memory_format = torch.contiguous_format
|
143 |
+
|
144 |
+
# FromRGB.
|
145 |
+
x = x.to(dtype=dtype, memory_format=memory_format)
|
146 |
+
|
147 |
+
# Main layers.
|
148 |
+
if self.mbstd is not None:
|
149 |
+
x = self.mbstd(x)
|
150 |
+
const_e = self.conv(x)
|
151 |
+
x = self.fc(const_e.flatten(1))
|
152 |
+
x = self.dropout(x)
|
153 |
+
|
154 |
+
# Conditioning.
|
155 |
+
if self.cmap_dim > 0:
|
156 |
+
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
|
157 |
+
|
158 |
+
assert x.dtype == dtype
|
159 |
+
return x, const_e
|
160 |
+
|
161 |
+
|
162 |
+
class EncoderBlock(torch.nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
in_channels, # Number of input channels, 0 = first block.
|
166 |
+
tmp_channels, # Number of intermediate channels.
|
167 |
+
out_channels, # Number of output channels.
|
168 |
+
resolution, # Resolution of this block.
|
169 |
+
img_channels, # Number of input color channels.
|
170 |
+
first_layer_idx, # Index of the first layer.
|
171 |
+
architecture="skip", # Architecture: 'orig', 'skip', 'resnet'.
|
172 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
173 |
+
resample_filter=[
|
174 |
+
1,
|
175 |
+
3,
|
176 |
+
3,
|
177 |
+
1,
|
178 |
+
], # Low-pass filter to apply when resampling activations.
|
179 |
+
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
180 |
+
use_fp16=False, # Use FP16 for this block?
|
181 |
+
fp16_channels_last=False, # Use channels-last memory format with FP16?
|
182 |
+
freeze_layers=0, # Freeze-D: Number of layers to freeze.
|
183 |
+
):
|
184 |
+
assert in_channels in [0, tmp_channels]
|
185 |
+
assert architecture in ["orig", "skip", "resnet"]
|
186 |
+
super().__init__()
|
187 |
+
self.in_channels = in_channels
|
188 |
+
self.resolution = resolution
|
189 |
+
self.img_channels = img_channels + 1
|
190 |
+
self.first_layer_idx = first_layer_idx
|
191 |
+
self.architecture = architecture
|
192 |
+
self.use_fp16 = use_fp16
|
193 |
+
self.channels_last = use_fp16 and fp16_channels_last
|
194 |
+
self.register_buffer("resample_filter", setup_filter(resample_filter))
|
195 |
+
|
196 |
+
self.num_layers = 0
|
197 |
+
|
198 |
+
def trainable_gen():
|
199 |
+
while True:
|
200 |
+
layer_idx = self.first_layer_idx + self.num_layers
|
201 |
+
trainable = layer_idx >= freeze_layers
|
202 |
+
self.num_layers += 1
|
203 |
+
yield trainable
|
204 |
+
|
205 |
+
trainable_iter = trainable_gen()
|
206 |
+
|
207 |
+
if in_channels == 0:
|
208 |
+
self.fromrgb = Conv2dLayer(
|
209 |
+
self.img_channels,
|
210 |
+
tmp_channels,
|
211 |
+
kernel_size=1,
|
212 |
+
activation=activation,
|
213 |
+
trainable=next(trainable_iter),
|
214 |
+
conv_clamp=conv_clamp,
|
215 |
+
channels_last=self.channels_last,
|
216 |
+
)
|
217 |
+
|
218 |
+
self.conv0 = Conv2dLayer(
|
219 |
+
tmp_channels,
|
220 |
+
tmp_channels,
|
221 |
+
kernel_size=3,
|
222 |
+
activation=activation,
|
223 |
+
trainable=next(trainable_iter),
|
224 |
+
conv_clamp=conv_clamp,
|
225 |
+
channels_last=self.channels_last,
|
226 |
+
)
|
227 |
+
|
228 |
+
self.conv1 = Conv2dLayer(
|
229 |
+
tmp_channels,
|
230 |
+
out_channels,
|
231 |
+
kernel_size=3,
|
232 |
+
activation=activation,
|
233 |
+
down=2,
|
234 |
+
trainable=next(trainable_iter),
|
235 |
+
resample_filter=resample_filter,
|
236 |
+
conv_clamp=conv_clamp,
|
237 |
+
channels_last=self.channels_last,
|
238 |
+
)
|
239 |
+
|
240 |
+
if architecture == "resnet":
|
241 |
+
self.skip = Conv2dLayer(
|
242 |
+
tmp_channels,
|
243 |
+
out_channels,
|
244 |
+
kernel_size=1,
|
245 |
+
bias=False,
|
246 |
+
down=2,
|
247 |
+
trainable=next(trainable_iter),
|
248 |
+
resample_filter=resample_filter,
|
249 |
+
channels_last=self.channels_last,
|
250 |
+
)
|
251 |
+
|
252 |
+
def forward(self, x, img, force_fp32=False):
|
253 |
+
# dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
254 |
+
dtype = torch.float32
|
255 |
+
memory_format = (
|
256 |
+
torch.channels_last
|
257 |
+
if self.channels_last and not force_fp32
|
258 |
+
else torch.contiguous_format
|
259 |
+
)
|
260 |
+
|
261 |
+
# Input.
|
262 |
+
if x is not None:
|
263 |
+
x = x.to(dtype=dtype, memory_format=memory_format)
|
264 |
+
|
265 |
+
# FromRGB.
|
266 |
+
if self.in_channels == 0:
|
267 |
+
img = img.to(dtype=dtype, memory_format=memory_format)
|
268 |
+
y = self.fromrgb(img)
|
269 |
+
x = x + y if x is not None else y
|
270 |
+
img = (
|
271 |
+
downsample2d(img, self.resample_filter)
|
272 |
+
if self.architecture == "skip"
|
273 |
+
else None
|
274 |
+
)
|
275 |
+
|
276 |
+
# Main layers.
|
277 |
+
if self.architecture == "resnet":
|
278 |
+
y = self.skip(x, gain=np.sqrt(0.5))
|
279 |
+
x = self.conv0(x)
|
280 |
+
feat = x.clone()
|
281 |
+
x = self.conv1(x, gain=np.sqrt(0.5))
|
282 |
+
x = y.add_(x)
|
283 |
+
else:
|
284 |
+
x = self.conv0(x)
|
285 |
+
feat = x.clone()
|
286 |
+
x = self.conv1(x)
|
287 |
+
|
288 |
+
assert x.dtype == dtype
|
289 |
+
return x, img, feat
|
290 |
+
|
291 |
+
|
292 |
+
class EncoderNetwork(torch.nn.Module):
|
293 |
+
def __init__(
|
294 |
+
self,
|
295 |
+
c_dim, # Conditioning label (C) dimensionality.
|
296 |
+
z_dim, # Input latent (Z) dimensionality.
|
297 |
+
img_resolution, # Input resolution.
|
298 |
+
img_channels, # Number of input color channels.
|
299 |
+
architecture="orig", # Architecture: 'orig', 'skip', 'resnet'.
|
300 |
+
channel_base=16384, # Overall multiplier for the number of channels.
|
301 |
+
channel_max=512, # Maximum number of channels in any layer.
|
302 |
+
num_fp16_res=0, # Use FP16 for the N highest resolutions.
|
303 |
+
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
304 |
+
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
|
305 |
+
block_kwargs={}, # Arguments for DiscriminatorBlock.
|
306 |
+
mapping_kwargs={}, # Arguments for MappingNetwork.
|
307 |
+
epilogue_kwargs={}, # Arguments for EncoderEpilogue.
|
308 |
+
):
|
309 |
+
super().__init__()
|
310 |
+
self.c_dim = c_dim
|
311 |
+
self.z_dim = z_dim
|
312 |
+
self.img_resolution = img_resolution
|
313 |
+
self.img_resolution_log2 = int(np.log2(img_resolution))
|
314 |
+
self.img_channels = img_channels
|
315 |
+
self.block_resolutions = [
|
316 |
+
2**i for i in range(self.img_resolution_log2, 2, -1)
|
317 |
+
]
|
318 |
+
channels_dict = {
|
319 |
+
res: min(channel_base // res, channel_max)
|
320 |
+
for res in self.block_resolutions + [4]
|
321 |
+
}
|
322 |
+
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
|
323 |
+
|
324 |
+
if cmap_dim is None:
|
325 |
+
cmap_dim = channels_dict[4]
|
326 |
+
if c_dim == 0:
|
327 |
+
cmap_dim = 0
|
328 |
+
|
329 |
+
common_kwargs = dict(
|
330 |
+
img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp
|
331 |
+
)
|
332 |
+
cur_layer_idx = 0
|
333 |
+
for res in self.block_resolutions:
|
334 |
+
in_channels = channels_dict[res] if res < img_resolution else 0
|
335 |
+
tmp_channels = channels_dict[res]
|
336 |
+
out_channels = channels_dict[res // 2]
|
337 |
+
use_fp16 = res >= fp16_resolution
|
338 |
+
use_fp16 = False
|
339 |
+
block = EncoderBlock(
|
340 |
+
in_channels,
|
341 |
+
tmp_channels,
|
342 |
+
out_channels,
|
343 |
+
resolution=res,
|
344 |
+
first_layer_idx=cur_layer_idx,
|
345 |
+
use_fp16=use_fp16,
|
346 |
+
**block_kwargs,
|
347 |
+
**common_kwargs,
|
348 |
+
)
|
349 |
+
setattr(self, f"b{res}", block)
|
350 |
+
cur_layer_idx += block.num_layers
|
351 |
+
if c_dim > 0:
|
352 |
+
self.mapping = MappingNetwork(
|
353 |
+
z_dim=0,
|
354 |
+
c_dim=c_dim,
|
355 |
+
w_dim=cmap_dim,
|
356 |
+
num_ws=None,
|
357 |
+
w_avg_beta=None,
|
358 |
+
**mapping_kwargs,
|
359 |
+
)
|
360 |
+
self.b4 = EncoderEpilogue(
|
361 |
+
channels_dict[4],
|
362 |
+
cmap_dim=cmap_dim,
|
363 |
+
z_dim=z_dim * 2,
|
364 |
+
resolution=4,
|
365 |
+
**epilogue_kwargs,
|
366 |
+
**common_kwargs,
|
367 |
+
)
|
368 |
+
|
369 |
+
def forward(self, img, c, **block_kwargs):
|
370 |
+
x = None
|
371 |
+
feats = {}
|
372 |
+
for res in self.block_resolutions:
|
373 |
+
block = getattr(self, f"b{res}")
|
374 |
+
x, img, feat = block(x, img, **block_kwargs)
|
375 |
+
feats[res] = feat
|
376 |
+
|
377 |
+
cmap = None
|
378 |
+
if self.c_dim > 0:
|
379 |
+
cmap = self.mapping(None, c)
|
380 |
+
x, const_e = self.b4(x, cmap)
|
381 |
+
feats[4] = const_e
|
382 |
+
|
383 |
+
B, _ = x.shape
|
384 |
+
z = torch.zeros(
|
385 |
+
(B, self.z_dim), requires_grad=False, dtype=x.dtype, device=x.device
|
386 |
+
) ## Noise for Co-Modulation
|
387 |
+
return x, z, feats
|
388 |
+
|
389 |
+
|
390 |
+
def fma(a, b, c): # => a * b + c
|
391 |
+
return _FusedMultiplyAdd.apply(a, b, c)
|
392 |
+
|
393 |
+
|
394 |
+
class _FusedMultiplyAdd(torch.autograd.Function): # a * b + c
|
395 |
+
@staticmethod
|
396 |
+
def forward(ctx, a, b, c): # pylint: disable=arguments-differ
|
397 |
+
out = torch.addcmul(c, a, b)
|
398 |
+
ctx.save_for_backward(a, b)
|
399 |
+
ctx.c_shape = c.shape
|
400 |
+
return out
|
401 |
+
|
402 |
+
@staticmethod
|
403 |
+
def backward(ctx, dout): # pylint: disable=arguments-differ
|
404 |
+
a, b = ctx.saved_tensors
|
405 |
+
c_shape = ctx.c_shape
|
406 |
+
da = None
|
407 |
+
db = None
|
408 |
+
dc = None
|
409 |
+
|
410 |
+
if ctx.needs_input_grad[0]:
|
411 |
+
da = _unbroadcast(dout * b, a.shape)
|
412 |
+
|
413 |
+
if ctx.needs_input_grad[1]:
|
414 |
+
db = _unbroadcast(dout * a, b.shape)
|
415 |
+
|
416 |
+
if ctx.needs_input_grad[2]:
|
417 |
+
dc = _unbroadcast(dout, c_shape)
|
418 |
+
|
419 |
+
return da, db, dc
|
420 |
+
|
421 |
+
|
422 |
+
def _unbroadcast(x, shape):
|
423 |
+
extra_dims = x.ndim - len(shape)
|
424 |
+
assert extra_dims >= 0
|
425 |
+
dim = [
|
426 |
+
i
|
427 |
+
for i in range(x.ndim)
|
428 |
+
if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1)
|
429 |
+
]
|
430 |
+
if len(dim):
|
431 |
+
x = x.sum(dim=dim, keepdim=True)
|
432 |
+
if extra_dims:
|
433 |
+
x = x.reshape(-1, *x.shape[extra_dims + 1 :])
|
434 |
+
assert x.shape == shape
|
435 |
+
return x
|
436 |
+
|
437 |
+
|
438 |
+
def modulated_conv2d(
|
439 |
+
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
|
440 |
+
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
|
441 |
+
styles, # Modulation coefficients of shape [batch_size, in_channels].
|
442 |
+
noise=None, # Optional noise tensor to add to the output activations.
|
443 |
+
up=1, # Integer upsampling factor.
|
444 |
+
down=1, # Integer downsampling factor.
|
445 |
+
padding=0, # Padding with respect to the upsampled image.
|
446 |
+
resample_filter=None,
|
447 |
+
# Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
|
448 |
+
demodulate=True, # Apply weight demodulation?
|
449 |
+
flip_weight=True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
|
450 |
+
fused_modconv=True, # Perform modulation, convolution, and demodulation as a single fused operation?
|
451 |
+
):
|
452 |
+
batch_size = x.shape[0]
|
453 |
+
out_channels, in_channels, kh, kw = weight.shape
|
454 |
+
|
455 |
+
# Pre-normalize inputs to avoid FP16 overflow.
|
456 |
+
if x.dtype == torch.float16 and demodulate:
|
457 |
+
weight = weight * (
|
458 |
+
1
|
459 |
+
/ np.sqrt(in_channels * kh * kw)
|
460 |
+
/ weight.norm(float("inf"), dim=[1, 2, 3], keepdim=True)
|
461 |
+
) # max_Ikk
|
462 |
+
styles = styles / styles.norm(float("inf"), dim=1, keepdim=True) # max_I
|
463 |
+
|
464 |
+
# Calculate per-sample weights and demodulation coefficients.
|
465 |
+
w = None
|
466 |
+
dcoefs = None
|
467 |
+
if demodulate or fused_modconv:
|
468 |
+
w = weight.unsqueeze(0) # [NOIkk]
|
469 |
+
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
|
470 |
+
if demodulate:
|
471 |
+
dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() # [NO]
|
472 |
+
if demodulate and fused_modconv:
|
473 |
+
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]
|
474 |
+
# Execute by scaling the activations before and after the convolution.
|
475 |
+
if not fused_modconv:
|
476 |
+
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
|
477 |
+
x = conv2d_resample.conv2d_resample(
|
478 |
+
x=x,
|
479 |
+
w=weight.to(x.dtype),
|
480 |
+
f=resample_filter,
|
481 |
+
up=up,
|
482 |
+
down=down,
|
483 |
+
padding=padding,
|
484 |
+
flip_weight=flip_weight,
|
485 |
+
)
|
486 |
+
if demodulate and noise is not None:
|
487 |
+
x = fma(
|
488 |
+
x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)
|
489 |
+
)
|
490 |
+
elif demodulate:
|
491 |
+
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
|
492 |
+
elif noise is not None:
|
493 |
+
x = x.add_(noise.to(x.dtype))
|
494 |
+
return x
|
495 |
+
|
496 |
+
# Execute as one fused op using grouped convolution.
|
497 |
+
batch_size = int(batch_size)
|
498 |
+
x = x.reshape(1, -1, *x.shape[2:])
|
499 |
+
w = w.reshape(-1, in_channels, kh, kw)
|
500 |
+
x = conv2d_resample(
|
501 |
+
x=x,
|
502 |
+
w=w.to(x.dtype),
|
503 |
+
f=resample_filter,
|
504 |
+
up=up,
|
505 |
+
down=down,
|
506 |
+
padding=padding,
|
507 |
+
groups=batch_size,
|
508 |
+
flip_weight=flip_weight,
|
509 |
+
)
|
510 |
+
x = x.reshape(batch_size, -1, *x.shape[2:])
|
511 |
+
if noise is not None:
|
512 |
+
x = x.add_(noise)
|
513 |
+
return x
|
514 |
+
|
515 |
+
|
516 |
+
class SynthesisLayer(torch.nn.Module):
|
517 |
+
def __init__(
|
518 |
+
self,
|
519 |
+
in_channels, # Number of input channels.
|
520 |
+
out_channels, # Number of output channels.
|
521 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
522 |
+
resolution, # Resolution of this layer.
|
523 |
+
kernel_size=3, # Convolution kernel size.
|
524 |
+
up=1, # Integer upsampling factor.
|
525 |
+
use_noise=True, # Enable noise input?
|
526 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
527 |
+
resample_filter=[
|
528 |
+
1,
|
529 |
+
3,
|
530 |
+
3,
|
531 |
+
1,
|
532 |
+
], # Low-pass filter to apply when resampling activations.
|
533 |
+
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
534 |
+
channels_last=False, # Use channels_last format for the weights?
|
535 |
+
):
|
536 |
+
super().__init__()
|
537 |
+
self.resolution = resolution
|
538 |
+
self.up = up
|
539 |
+
self.use_noise = use_noise
|
540 |
+
self.activation = activation
|
541 |
+
self.conv_clamp = conv_clamp
|
542 |
+
self.register_buffer("resample_filter", setup_filter(resample_filter))
|
543 |
+
self.padding = kernel_size // 2
|
544 |
+
self.act_gain = activation_funcs[activation].def_gain
|
545 |
+
|
546 |
+
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
|
547 |
+
memory_format = (
|
548 |
+
torch.channels_last if channels_last else torch.contiguous_format
|
549 |
+
)
|
550 |
+
self.weight = torch.nn.Parameter(
|
551 |
+
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
|
552 |
+
memory_format=memory_format
|
553 |
+
)
|
554 |
+
)
|
555 |
+
if use_noise:
|
556 |
+
self.register_buffer("noise_const", torch.randn([resolution, resolution]))
|
557 |
+
self.noise_strength = torch.nn.Parameter(torch.zeros([]))
|
558 |
+
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
|
559 |
+
|
560 |
+
def forward(self, x, w, noise_mode="none", fused_modconv=True, gain=1):
|
561 |
+
assert noise_mode in ["random", "const", "none"]
|
562 |
+
in_resolution = self.resolution // self.up
|
563 |
+
styles = self.affine(w)
|
564 |
+
|
565 |
+
noise = None
|
566 |
+
if self.use_noise and noise_mode == "random":
|
567 |
+
noise = (
|
568 |
+
torch.randn(
|
569 |
+
[x.shape[0], 1, self.resolution, self.resolution], device=x.device
|
570 |
+
)
|
571 |
+
* self.noise_strength
|
572 |
+
)
|
573 |
+
if self.use_noise and noise_mode == "const":
|
574 |
+
noise = self.noise_const * self.noise_strength
|
575 |
+
|
576 |
+
flip_weight = self.up == 1 # slightly faster
|
577 |
+
x = modulated_conv2d(
|
578 |
+
x=x,
|
579 |
+
weight=self.weight,
|
580 |
+
styles=styles,
|
581 |
+
noise=noise,
|
582 |
+
up=self.up,
|
583 |
+
padding=self.padding,
|
584 |
+
resample_filter=self.resample_filter,
|
585 |
+
flip_weight=flip_weight,
|
586 |
+
fused_modconv=fused_modconv,
|
587 |
+
)
|
588 |
+
|
589 |
+
act_gain = self.act_gain * gain
|
590 |
+
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
|
591 |
+
x = F.leaky_relu(x, negative_slope=0.2, inplace=False)
|
592 |
+
if act_gain != 1:
|
593 |
+
x = x * act_gain
|
594 |
+
if act_clamp is not None:
|
595 |
+
x = x.clamp(-act_clamp, act_clamp)
|
596 |
+
return x
|
597 |
+
|
598 |
+
|
599 |
+
class ToRGBLayer(torch.nn.Module):
|
600 |
+
def __init__(
|
601 |
+
self,
|
602 |
+
in_channels,
|
603 |
+
out_channels,
|
604 |
+
w_dim,
|
605 |
+
kernel_size=1,
|
606 |
+
conv_clamp=None,
|
607 |
+
channels_last=False,
|
608 |
+
):
|
609 |
+
super().__init__()
|
610 |
+
self.conv_clamp = conv_clamp
|
611 |
+
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
|
612 |
+
memory_format = (
|
613 |
+
torch.channels_last if channels_last else torch.contiguous_format
|
614 |
+
)
|
615 |
+
self.weight = torch.nn.Parameter(
|
616 |
+
torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
|
617 |
+
memory_format=memory_format
|
618 |
+
)
|
619 |
+
)
|
620 |
+
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
|
621 |
+
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
|
622 |
+
|
623 |
+
def forward(self, x, w, fused_modconv=True):
|
624 |
+
styles = self.affine(w) * self.weight_gain
|
625 |
+
x = modulated_conv2d(
|
626 |
+
x=x,
|
627 |
+
weight=self.weight,
|
628 |
+
styles=styles,
|
629 |
+
demodulate=False,
|
630 |
+
fused_modconv=fused_modconv,
|
631 |
+
)
|
632 |
+
x = bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
|
633 |
+
return x
|
634 |
+
|
635 |
+
|
636 |
+
class SynthesisForeword(torch.nn.Module):
|
637 |
+
def __init__(
|
638 |
+
self,
|
639 |
+
z_dim, # Output Latent (Z) dimensionality.
|
640 |
+
resolution, # Resolution of this block.
|
641 |
+
in_channels,
|
642 |
+
img_channels, # Number of input color channels.
|
643 |
+
architecture="skip", # Architecture: 'orig', 'skip', 'resnet'.
|
644 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
645 |
+
):
|
646 |
+
super().__init__()
|
647 |
+
self.in_channels = in_channels
|
648 |
+
self.z_dim = z_dim
|
649 |
+
self.resolution = resolution
|
650 |
+
self.img_channels = img_channels
|
651 |
+
self.architecture = architecture
|
652 |
+
|
653 |
+
self.fc = FullyConnectedLayer(
|
654 |
+
self.z_dim, (self.z_dim // 2) * 4 * 4, activation=activation
|
655 |
+
)
|
656 |
+
self.conv = SynthesisLayer(
|
657 |
+
self.in_channels, self.in_channels, w_dim=(z_dim // 2) * 3, resolution=4
|
658 |
+
)
|
659 |
+
|
660 |
+
if architecture == "skip":
|
661 |
+
self.torgb = ToRGBLayer(
|
662 |
+
self.in_channels,
|
663 |
+
self.img_channels,
|
664 |
+
kernel_size=1,
|
665 |
+
w_dim=(z_dim // 2) * 3,
|
666 |
+
)
|
667 |
+
|
668 |
+
def forward(self, x, ws, feats, img, force_fp32=False):
|
669 |
+
_ = force_fp32 # unused
|
670 |
+
dtype = torch.float32
|
671 |
+
memory_format = torch.contiguous_format
|
672 |
+
|
673 |
+
x_global = x.clone()
|
674 |
+
# ToRGB.
|
675 |
+
x = self.fc(x)
|
676 |
+
x = x.view(-1, self.z_dim // 2, 4, 4)
|
677 |
+
x = x.to(dtype=dtype, memory_format=memory_format)
|
678 |
+
|
679 |
+
# Main layers.
|
680 |
+
x_skip = feats[4].clone()
|
681 |
+
x = x + x_skip
|
682 |
+
|
683 |
+
mod_vector = []
|
684 |
+
mod_vector.append(ws[:, 0])
|
685 |
+
mod_vector.append(x_global.clone())
|
686 |
+
mod_vector = torch.cat(mod_vector, dim=1)
|
687 |
+
|
688 |
+
x = self.conv(x, mod_vector)
|
689 |
+
|
690 |
+
mod_vector = []
|
691 |
+
mod_vector.append(ws[:, 2 * 2 - 3])
|
692 |
+
mod_vector.append(x_global.clone())
|
693 |
+
mod_vector = torch.cat(mod_vector, dim=1)
|
694 |
+
|
695 |
+
if self.architecture == "skip":
|
696 |
+
img = self.torgb(x, mod_vector)
|
697 |
+
img = img.to(dtype=torch.float32, memory_format=torch.contiguous_format)
|
698 |
+
|
699 |
+
assert x.dtype == dtype
|
700 |
+
return x, img
|
701 |
+
|
702 |
+
|
703 |
+
class SELayer(nn.Module):
|
704 |
+
def __init__(self, channel, reduction=16):
|
705 |
+
super(SELayer, self).__init__()
|
706 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
707 |
+
self.fc = nn.Sequential(
|
708 |
+
nn.Linear(channel, channel // reduction, bias=False),
|
709 |
+
nn.ReLU(inplace=False),
|
710 |
+
nn.Linear(channel // reduction, channel, bias=False),
|
711 |
+
nn.Sigmoid(),
|
712 |
+
)
|
713 |
+
|
714 |
+
def forward(self, x):
|
715 |
+
b, c, _, _ = x.size()
|
716 |
+
y = self.avg_pool(x).view(b, c)
|
717 |
+
y = self.fc(y).view(b, c, 1, 1)
|
718 |
+
res = x * y.expand_as(x)
|
719 |
+
return res
|
720 |
+
|
721 |
+
|
722 |
+
class FourierUnit(nn.Module):
|
723 |
+
def __init__(
|
724 |
+
self,
|
725 |
+
in_channels,
|
726 |
+
out_channels,
|
727 |
+
groups=1,
|
728 |
+
spatial_scale_factor=None,
|
729 |
+
spatial_scale_mode="bilinear",
|
730 |
+
spectral_pos_encoding=False,
|
731 |
+
use_se=False,
|
732 |
+
se_kwargs=None,
|
733 |
+
ffc3d=False,
|
734 |
+
fft_norm="ortho",
|
735 |
+
):
|
736 |
+
# bn_layer not used
|
737 |
+
super(FourierUnit, self).__init__()
|
738 |
+
self.groups = groups
|
739 |
+
|
740 |
+
self.conv_layer = torch.nn.Conv2d(
|
741 |
+
in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
|
742 |
+
out_channels=out_channels * 2,
|
743 |
+
kernel_size=1,
|
744 |
+
stride=1,
|
745 |
+
padding=0,
|
746 |
+
groups=self.groups,
|
747 |
+
bias=False,
|
748 |
+
)
|
749 |
+
self.relu = torch.nn.ReLU(inplace=False)
|
750 |
+
|
751 |
+
# squeeze and excitation block
|
752 |
+
self.use_se = use_se
|
753 |
+
if use_se:
|
754 |
+
if se_kwargs is None:
|
755 |
+
se_kwargs = {}
|
756 |
+
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
|
757 |
+
|
758 |
+
self.spatial_scale_factor = spatial_scale_factor
|
759 |
+
self.spatial_scale_mode = spatial_scale_mode
|
760 |
+
self.spectral_pos_encoding = spectral_pos_encoding
|
761 |
+
self.ffc3d = ffc3d
|
762 |
+
self.fft_norm = fft_norm
|
763 |
+
|
764 |
+
def forward(self, x):
|
765 |
+
batch = x.shape[0]
|
766 |
+
|
767 |
+
if self.spatial_scale_factor is not None:
|
768 |
+
orig_size = x.shape[-2:]
|
769 |
+
x = F.interpolate(
|
770 |
+
x,
|
771 |
+
scale_factor=self.spatial_scale_factor,
|
772 |
+
mode=self.spatial_scale_mode,
|
773 |
+
align_corners=False,
|
774 |
+
)
|
775 |
+
|
776 |
+
r_size = x.size()
|
777 |
+
# (batch, c, h, w/2+1, 2)
|
778 |
+
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
|
779 |
+
ffted = fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
|
780 |
+
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
|
781 |
+
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
|
782 |
+
ffted = ffted.view(
|
783 |
+
(
|
784 |
+
batch,
|
785 |
+
-1,
|
786 |
+
)
|
787 |
+
+ ffted.size()[3:]
|
788 |
+
)
|
789 |
+
|
790 |
+
if self.spectral_pos_encoding:
|
791 |
+
height, width = ffted.shape[-2:]
|
792 |
+
coords_vert = (
|
793 |
+
torch.linspace(0, 1, height)[None, None, :, None]
|
794 |
+
.expand(batch, 1, height, width)
|
795 |
+
.to(ffted)
|
796 |
+
)
|
797 |
+
coords_hor = (
|
798 |
+
torch.linspace(0, 1, width)[None, None, None, :]
|
799 |
+
.expand(batch, 1, height, width)
|
800 |
+
.to(ffted)
|
801 |
+
)
|
802 |
+
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
|
803 |
+
|
804 |
+
if self.use_se:
|
805 |
+
ffted = self.se(ffted)
|
806 |
+
|
807 |
+
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
|
808 |
+
ffted = self.relu(ffted)
|
809 |
+
|
810 |
+
ffted = (
|
811 |
+
ffted.view(
|
812 |
+
(
|
813 |
+
batch,
|
814 |
+
-1,
|
815 |
+
2,
|
816 |
+
)
|
817 |
+
+ ffted.size()[2:]
|
818 |
+
)
|
819 |
+
.permute(0, 1, 3, 4, 2)
|
820 |
+
.contiguous()
|
821 |
+
) # (batch,c, t, h, w/2+1, 2)
|
822 |
+
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
|
823 |
+
|
824 |
+
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
|
825 |
+
output = torch.fft.irfftn(
|
826 |
+
ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm
|
827 |
+
)
|
828 |
+
|
829 |
+
if self.spatial_scale_factor is not None:
|
830 |
+
output = F.interpolate(
|
831 |
+
output,
|
832 |
+
size=orig_size,
|
833 |
+
mode=self.spatial_scale_mode,
|
834 |
+
align_corners=False,
|
835 |
+
)
|
836 |
+
|
837 |
+
return output
|
838 |
+
|
839 |
+
|
840 |
+
class SpectralTransform(nn.Module):
|
841 |
+
def __init__(
|
842 |
+
self,
|
843 |
+
in_channels,
|
844 |
+
out_channels,
|
845 |
+
stride=1,
|
846 |
+
groups=1,
|
847 |
+
enable_lfu=True,
|
848 |
+
**fu_kwargs,
|
849 |
+
):
|
850 |
+
# bn_layer not used
|
851 |
+
super(SpectralTransform, self).__init__()
|
852 |
+
self.enable_lfu = enable_lfu
|
853 |
+
if stride == 2:
|
854 |
+
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
|
855 |
+
else:
|
856 |
+
self.downsample = nn.Identity()
|
857 |
+
|
858 |
+
self.stride = stride
|
859 |
+
self.conv1 = nn.Sequential(
|
860 |
+
nn.Conv2d(
|
861 |
+
in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False
|
862 |
+
),
|
863 |
+
# nn.BatchNorm2d(out_channels // 2),
|
864 |
+
nn.ReLU(inplace=True),
|
865 |
+
)
|
866 |
+
self.fu = FourierUnit(out_channels // 2, out_channels // 2, groups, **fu_kwargs)
|
867 |
+
if self.enable_lfu:
|
868 |
+
self.lfu = FourierUnit(out_channels // 2, out_channels // 2, groups)
|
869 |
+
self.conv2 = torch.nn.Conv2d(
|
870 |
+
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False
|
871 |
+
)
|
872 |
+
|
873 |
+
def forward(self, x):
|
874 |
+
x = self.downsample(x)
|
875 |
+
x = self.conv1(x)
|
876 |
+
output = self.fu(x)
|
877 |
+
|
878 |
+
if self.enable_lfu:
|
879 |
+
n, c, h, w = x.shape
|
880 |
+
split_no = 2
|
881 |
+
split_s = h // split_no
|
882 |
+
xs = torch.cat(
|
883 |
+
torch.split(x[:, : c // 4], split_s, dim=-2), dim=1
|
884 |
+
).contiguous()
|
885 |
+
xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous()
|
886 |
+
xs = self.lfu(xs)
|
887 |
+
xs = xs.repeat(1, 1, split_no, split_no).contiguous()
|
888 |
+
else:
|
889 |
+
xs = 0
|
890 |
+
|
891 |
+
output = self.conv2(x + output + xs)
|
892 |
+
|
893 |
+
return output
|
894 |
+
|
895 |
+
|
896 |
+
class FFC(nn.Module):
|
897 |
+
def __init__(
|
898 |
+
self,
|
899 |
+
in_channels,
|
900 |
+
out_channels,
|
901 |
+
kernel_size,
|
902 |
+
ratio_gin,
|
903 |
+
ratio_gout,
|
904 |
+
stride=1,
|
905 |
+
padding=0,
|
906 |
+
dilation=1,
|
907 |
+
groups=1,
|
908 |
+
bias=False,
|
909 |
+
enable_lfu=True,
|
910 |
+
padding_type="reflect",
|
911 |
+
gated=False,
|
912 |
+
**spectral_kwargs,
|
913 |
+
):
|
914 |
+
super(FFC, self).__init__()
|
915 |
+
|
916 |
+
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
|
917 |
+
self.stride = stride
|
918 |
+
|
919 |
+
in_cg = int(in_channels * ratio_gin)
|
920 |
+
in_cl = in_channels - in_cg
|
921 |
+
out_cg = int(out_channels * ratio_gout)
|
922 |
+
out_cl = out_channels - out_cg
|
923 |
+
# groups_g = 1 if groups == 1 else int(groups * ratio_gout)
|
924 |
+
# groups_l = 1 if groups == 1 else groups - groups_g
|
925 |
+
|
926 |
+
self.ratio_gin = ratio_gin
|
927 |
+
self.ratio_gout = ratio_gout
|
928 |
+
self.global_in_num = in_cg
|
929 |
+
|
930 |
+
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
|
931 |
+
self.convl2l = module(
|
932 |
+
in_cl,
|
933 |
+
out_cl,
|
934 |
+
kernel_size,
|
935 |
+
stride,
|
936 |
+
padding,
|
937 |
+
dilation,
|
938 |
+
groups,
|
939 |
+
bias,
|
940 |
+
padding_mode=padding_type,
|
941 |
+
)
|
942 |
+
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
|
943 |
+
self.convl2g = module(
|
944 |
+
in_cl,
|
945 |
+
out_cg,
|
946 |
+
kernel_size,
|
947 |
+
stride,
|
948 |
+
padding,
|
949 |
+
dilation,
|
950 |
+
groups,
|
951 |
+
bias,
|
952 |
+
padding_mode=padding_type,
|
953 |
+
)
|
954 |
+
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
|
955 |
+
self.convg2l = module(
|
956 |
+
in_cg,
|
957 |
+
out_cl,
|
958 |
+
kernel_size,
|
959 |
+
stride,
|
960 |
+
padding,
|
961 |
+
dilation,
|
962 |
+
groups,
|
963 |
+
bias,
|
964 |
+
padding_mode=padding_type,
|
965 |
+
)
|
966 |
+
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
|
967 |
+
self.convg2g = module(
|
968 |
+
in_cg,
|
969 |
+
out_cg,
|
970 |
+
stride,
|
971 |
+
1 if groups == 1 else groups // 2,
|
972 |
+
enable_lfu,
|
973 |
+
**spectral_kwargs,
|
974 |
+
)
|
975 |
+
|
976 |
+
self.gated = gated
|
977 |
+
module = (
|
978 |
+
nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
|
979 |
+
)
|
980 |
+
self.gate = module(in_channels, 2, 1)
|
981 |
+
|
982 |
+
def forward(self, x, fname=None):
|
983 |
+
x_l, x_g = x if type(x) is tuple else (x, 0)
|
984 |
+
out_xl, out_xg = 0, 0
|
985 |
+
|
986 |
+
if self.gated:
|
987 |
+
total_input_parts = [x_l]
|
988 |
+
if torch.is_tensor(x_g):
|
989 |
+
total_input_parts.append(x_g)
|
990 |
+
total_input = torch.cat(total_input_parts, dim=1)
|
991 |
+
|
992 |
+
gates = torch.sigmoid(self.gate(total_input))
|
993 |
+
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
|
994 |
+
else:
|
995 |
+
g2l_gate, l2g_gate = 1, 1
|
996 |
+
|
997 |
+
spec_x = self.convg2g(x_g)
|
998 |
+
|
999 |
+
if self.ratio_gout != 1:
|
1000 |
+
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
|
1001 |
+
if self.ratio_gout != 0:
|
1002 |
+
out_xg = self.convl2g(x_l) * l2g_gate + spec_x
|
1003 |
+
|
1004 |
+
return out_xl, out_xg
|
1005 |
+
|
1006 |
+
|
1007 |
+
class FFC_BN_ACT(nn.Module):
|
1008 |
+
def __init__(
|
1009 |
+
self,
|
1010 |
+
in_channels,
|
1011 |
+
out_channels,
|
1012 |
+
kernel_size,
|
1013 |
+
ratio_gin,
|
1014 |
+
ratio_gout,
|
1015 |
+
stride=1,
|
1016 |
+
padding=0,
|
1017 |
+
dilation=1,
|
1018 |
+
groups=1,
|
1019 |
+
bias=False,
|
1020 |
+
norm_layer=nn.SyncBatchNorm,
|
1021 |
+
activation_layer=nn.Identity,
|
1022 |
+
padding_type="reflect",
|
1023 |
+
enable_lfu=True,
|
1024 |
+
**kwargs,
|
1025 |
+
):
|
1026 |
+
super(FFC_BN_ACT, self).__init__()
|
1027 |
+
self.ffc = FFC(
|
1028 |
+
in_channels,
|
1029 |
+
out_channels,
|
1030 |
+
kernel_size,
|
1031 |
+
ratio_gin,
|
1032 |
+
ratio_gout,
|
1033 |
+
stride,
|
1034 |
+
padding,
|
1035 |
+
dilation,
|
1036 |
+
groups,
|
1037 |
+
bias,
|
1038 |
+
enable_lfu,
|
1039 |
+
padding_type=padding_type,
|
1040 |
+
**kwargs,
|
1041 |
+
)
|
1042 |
+
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
|
1043 |
+
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
|
1044 |
+
global_channels = int(out_channels * ratio_gout)
|
1045 |
+
# self.bn_l = lnorm(out_channels - global_channels)
|
1046 |
+
# self.bn_g = gnorm(global_channels)
|
1047 |
+
|
1048 |
+
lact = nn.Identity if ratio_gout == 1 else activation_layer
|
1049 |
+
gact = nn.Identity if ratio_gout == 0 else activation_layer
|
1050 |
+
self.act_l = lact(inplace=True)
|
1051 |
+
self.act_g = gact(inplace=True)
|
1052 |
+
|
1053 |
+
def forward(self, x, fname=None):
|
1054 |
+
x_l, x_g = self.ffc(
|
1055 |
+
x,
|
1056 |
+
fname=fname,
|
1057 |
+
)
|
1058 |
+
x_l = self.act_l(x_l)
|
1059 |
+
x_g = self.act_g(x_g)
|
1060 |
+
return x_l, x_g
|
1061 |
+
|
1062 |
+
|
1063 |
+
class FFCResnetBlock(nn.Module):
|
1064 |
+
def __init__(
|
1065 |
+
self,
|
1066 |
+
dim,
|
1067 |
+
padding_type,
|
1068 |
+
norm_layer,
|
1069 |
+
activation_layer=nn.ReLU,
|
1070 |
+
dilation=1,
|
1071 |
+
spatial_transform_kwargs=None,
|
1072 |
+
inline=False,
|
1073 |
+
ratio_gin=0.75,
|
1074 |
+
ratio_gout=0.75,
|
1075 |
+
):
|
1076 |
+
super().__init__()
|
1077 |
+
self.conv1 = FFC_BN_ACT(
|
1078 |
+
dim,
|
1079 |
+
dim,
|
1080 |
+
kernel_size=3,
|
1081 |
+
padding=dilation,
|
1082 |
+
dilation=dilation,
|
1083 |
+
norm_layer=norm_layer,
|
1084 |
+
activation_layer=activation_layer,
|
1085 |
+
padding_type=padding_type,
|
1086 |
+
ratio_gin=ratio_gin,
|
1087 |
+
ratio_gout=ratio_gout,
|
1088 |
+
)
|
1089 |
+
self.conv2 = FFC_BN_ACT(
|
1090 |
+
dim,
|
1091 |
+
dim,
|
1092 |
+
kernel_size=3,
|
1093 |
+
padding=dilation,
|
1094 |
+
dilation=dilation,
|
1095 |
+
norm_layer=norm_layer,
|
1096 |
+
activation_layer=activation_layer,
|
1097 |
+
padding_type=padding_type,
|
1098 |
+
ratio_gin=ratio_gin,
|
1099 |
+
ratio_gout=ratio_gout,
|
1100 |
+
)
|
1101 |
+
self.inline = inline
|
1102 |
+
|
1103 |
+
def forward(self, x, fname=None):
|
1104 |
+
if self.inline:
|
1105 |
+
x_l, x_g = (
|
1106 |
+
x[:, : -self.conv1.ffc.global_in_num],
|
1107 |
+
x[:, -self.conv1.ffc.global_in_num :],
|
1108 |
+
)
|
1109 |
+
else:
|
1110 |
+
x_l, x_g = x if type(x) is tuple else (x, 0)
|
1111 |
+
|
1112 |
+
id_l, id_g = x_l, x_g
|
1113 |
+
|
1114 |
+
x_l, x_g = self.conv1((x_l, x_g), fname=fname)
|
1115 |
+
x_l, x_g = self.conv2((x_l, x_g), fname=fname)
|
1116 |
+
|
1117 |
+
x_l, x_g = id_l + x_l, id_g + x_g
|
1118 |
+
out = x_l, x_g
|
1119 |
+
if self.inline:
|
1120 |
+
out = torch.cat(out, dim=1)
|
1121 |
+
return out
|
1122 |
+
|
1123 |
+
|
1124 |
+
class ConcatTupleLayer(nn.Module):
|
1125 |
+
def forward(self, x):
|
1126 |
+
assert isinstance(x, tuple)
|
1127 |
+
x_l, x_g = x
|
1128 |
+
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
|
1129 |
+
if not torch.is_tensor(x_g):
|
1130 |
+
return x_l
|
1131 |
+
return torch.cat(x, dim=1)
|
1132 |
+
|
1133 |
+
|
1134 |
+
class FFCBlock(torch.nn.Module):
|
1135 |
+
def __init__(
|
1136 |
+
self,
|
1137 |
+
dim, # Number of output/input channels.
|
1138 |
+
kernel_size, # Width and height of the convolution kernel.
|
1139 |
+
padding,
|
1140 |
+
ratio_gin=0.75,
|
1141 |
+
ratio_gout=0.75,
|
1142 |
+
activation="linear", # Activation function: 'relu', 'lrelu', etc.
|
1143 |
+
):
|
1144 |
+
super().__init__()
|
1145 |
+
if activation == "linear":
|
1146 |
+
self.activation = nn.Identity
|
1147 |
+
else:
|
1148 |
+
self.activation = nn.ReLU
|
1149 |
+
self.padding = padding
|
1150 |
+
self.kernel_size = kernel_size
|
1151 |
+
self.ffc_block = FFCResnetBlock(
|
1152 |
+
dim=dim,
|
1153 |
+
padding_type="reflect",
|
1154 |
+
norm_layer=nn.SyncBatchNorm,
|
1155 |
+
activation_layer=self.activation,
|
1156 |
+
dilation=1,
|
1157 |
+
ratio_gin=ratio_gin,
|
1158 |
+
ratio_gout=ratio_gout,
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
self.concat_layer = ConcatTupleLayer()
|
1162 |
+
|
1163 |
+
def forward(self, gen_ft, mask, fname=None):
|
1164 |
+
x = gen_ft.float()
|
1165 |
+
|
1166 |
+
x_l, x_g = (
|
1167 |
+
x[:, : -self.ffc_block.conv1.ffc.global_in_num],
|
1168 |
+
x[:, -self.ffc_block.conv1.ffc.global_in_num :],
|
1169 |
+
)
|
1170 |
+
id_l, id_g = x_l, x_g
|
1171 |
+
|
1172 |
+
x_l, x_g = self.ffc_block((x_l, x_g), fname=fname)
|
1173 |
+
x_l, x_g = id_l + x_l, id_g + x_g
|
1174 |
+
x = self.concat_layer((x_l, x_g))
|
1175 |
+
|
1176 |
+
return x + gen_ft.float()
|
1177 |
+
|
1178 |
+
|
1179 |
+
class FFCSkipLayer(torch.nn.Module):
|
1180 |
+
def __init__(
|
1181 |
+
self,
|
1182 |
+
dim, # Number of input/output channels.
|
1183 |
+
kernel_size=3, # Convolution kernel size.
|
1184 |
+
ratio_gin=0.75,
|
1185 |
+
ratio_gout=0.75,
|
1186 |
+
):
|
1187 |
+
super().__init__()
|
1188 |
+
self.padding = kernel_size // 2
|
1189 |
+
|
1190 |
+
self.ffc_act = FFCBlock(
|
1191 |
+
dim=dim,
|
1192 |
+
kernel_size=kernel_size,
|
1193 |
+
activation=nn.ReLU,
|
1194 |
+
padding=self.padding,
|
1195 |
+
ratio_gin=ratio_gin,
|
1196 |
+
ratio_gout=ratio_gout,
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
def forward(self, gen_ft, mask, fname=None):
|
1200 |
+
x = self.ffc_act(gen_ft, mask, fname=fname)
|
1201 |
+
return x
|
1202 |
+
|
1203 |
+
|
1204 |
+
class SynthesisBlock(torch.nn.Module):
|
1205 |
+
def __init__(
|
1206 |
+
self,
|
1207 |
+
in_channels, # Number of input channels, 0 = first block.
|
1208 |
+
out_channels, # Number of output channels.
|
1209 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
1210 |
+
resolution, # Resolution of this block.
|
1211 |
+
img_channels, # Number of output color channels.
|
1212 |
+
is_last, # Is this the last block?
|
1213 |
+
architecture="skip", # Architecture: 'orig', 'skip', 'resnet'.
|
1214 |
+
resample_filter=[
|
1215 |
+
1,
|
1216 |
+
3,
|
1217 |
+
3,
|
1218 |
+
1,
|
1219 |
+
], # Low-pass filter to apply when resampling activations.
|
1220 |
+
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
1221 |
+
use_fp16=False, # Use FP16 for this block?
|
1222 |
+
fp16_channels_last=False, # Use channels-last memory format with FP16?
|
1223 |
+
**layer_kwargs, # Arguments for SynthesisLayer.
|
1224 |
+
):
|
1225 |
+
assert architecture in ["orig", "skip", "resnet"]
|
1226 |
+
super().__init__()
|
1227 |
+
self.in_channels = in_channels
|
1228 |
+
self.w_dim = w_dim
|
1229 |
+
self.resolution = resolution
|
1230 |
+
self.img_channels = img_channels
|
1231 |
+
self.is_last = is_last
|
1232 |
+
self.architecture = architecture
|
1233 |
+
self.use_fp16 = use_fp16
|
1234 |
+
self.channels_last = use_fp16 and fp16_channels_last
|
1235 |
+
self.register_buffer("resample_filter", setup_filter(resample_filter))
|
1236 |
+
self.num_conv = 0
|
1237 |
+
self.num_torgb = 0
|
1238 |
+
self.res_ffc = {4: 0, 8: 0, 16: 0, 32: 1, 64: 1, 128: 1, 256: 1, 512: 1}
|
1239 |
+
|
1240 |
+
if in_channels != 0 and resolution >= 8:
|
1241 |
+
self.ffc_skip = nn.ModuleList()
|
1242 |
+
for _ in range(self.res_ffc[resolution]):
|
1243 |
+
self.ffc_skip.append(FFCSkipLayer(dim=out_channels))
|
1244 |
+
|
1245 |
+
if in_channels == 0:
|
1246 |
+
self.const = torch.nn.Parameter(
|
1247 |
+
torch.randn([out_channels, resolution, resolution])
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
if in_channels != 0:
|
1251 |
+
self.conv0 = SynthesisLayer(
|
1252 |
+
in_channels,
|
1253 |
+
out_channels,
|
1254 |
+
w_dim=w_dim * 3,
|
1255 |
+
resolution=resolution,
|
1256 |
+
up=2,
|
1257 |
+
resample_filter=resample_filter,
|
1258 |
+
conv_clamp=conv_clamp,
|
1259 |
+
channels_last=self.channels_last,
|
1260 |
+
**layer_kwargs,
|
1261 |
+
)
|
1262 |
+
self.num_conv += 1
|
1263 |
+
|
1264 |
+
self.conv1 = SynthesisLayer(
|
1265 |
+
out_channels,
|
1266 |
+
out_channels,
|
1267 |
+
w_dim=w_dim * 3,
|
1268 |
+
resolution=resolution,
|
1269 |
+
conv_clamp=conv_clamp,
|
1270 |
+
channels_last=self.channels_last,
|
1271 |
+
**layer_kwargs,
|
1272 |
+
)
|
1273 |
+
self.num_conv += 1
|
1274 |
+
|
1275 |
+
if is_last or architecture == "skip":
|
1276 |
+
self.torgb = ToRGBLayer(
|
1277 |
+
out_channels,
|
1278 |
+
img_channels,
|
1279 |
+
w_dim=w_dim * 3,
|
1280 |
+
conv_clamp=conv_clamp,
|
1281 |
+
channels_last=self.channels_last,
|
1282 |
+
)
|
1283 |
+
self.num_torgb += 1
|
1284 |
+
|
1285 |
+
if in_channels != 0 and architecture == "resnet":
|
1286 |
+
self.skip = Conv2dLayer(
|
1287 |
+
in_channels,
|
1288 |
+
out_channels,
|
1289 |
+
kernel_size=1,
|
1290 |
+
bias=False,
|
1291 |
+
up=2,
|
1292 |
+
resample_filter=resample_filter,
|
1293 |
+
channels_last=self.channels_last,
|
1294 |
+
)
|
1295 |
+
|
1296 |
+
def forward(
|
1297 |
+
self,
|
1298 |
+
x,
|
1299 |
+
mask,
|
1300 |
+
feats,
|
1301 |
+
img,
|
1302 |
+
ws,
|
1303 |
+
fname=None,
|
1304 |
+
force_fp32=False,
|
1305 |
+
fused_modconv=None,
|
1306 |
+
**layer_kwargs,
|
1307 |
+
):
|
1308 |
+
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
|
1309 |
+
dtype = torch.float32
|
1310 |
+
memory_format = (
|
1311 |
+
torch.channels_last
|
1312 |
+
if self.channels_last and not force_fp32
|
1313 |
+
else torch.contiguous_format
|
1314 |
+
)
|
1315 |
+
if fused_modconv is None:
|
1316 |
+
fused_modconv = (not self.training) and (
|
1317 |
+
dtype == torch.float32 or int(x.shape[0]) == 1
|
1318 |
+
)
|
1319 |
+
|
1320 |
+
x = x.to(dtype=dtype, memory_format=memory_format)
|
1321 |
+
x_skip = (
|
1322 |
+
feats[self.resolution].clone().to(dtype=dtype, memory_format=memory_format)
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
# Main layers.
|
1326 |
+
if self.in_channels == 0:
|
1327 |
+
x = self.conv1(x, ws[1], fused_modconv=fused_modconv, **layer_kwargs)
|
1328 |
+
elif self.architecture == "resnet":
|
1329 |
+
y = self.skip(x, gain=np.sqrt(0.5))
|
1330 |
+
x = self.conv0(
|
1331 |
+
x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs
|
1332 |
+
)
|
1333 |
+
if len(self.ffc_skip) > 0:
|
1334 |
+
mask = F.interpolate(
|
1335 |
+
mask,
|
1336 |
+
size=x_skip.shape[2:],
|
1337 |
+
)
|
1338 |
+
z = x + x_skip
|
1339 |
+
for fres in self.ffc_skip:
|
1340 |
+
z = fres(z, mask)
|
1341 |
+
x = x + z
|
1342 |
+
else:
|
1343 |
+
x = x + x_skip
|
1344 |
+
x = self.conv1(
|
1345 |
+
x,
|
1346 |
+
ws[1].clone(),
|
1347 |
+
fused_modconv=fused_modconv,
|
1348 |
+
gain=np.sqrt(0.5),
|
1349 |
+
**layer_kwargs,
|
1350 |
+
)
|
1351 |
+
x = y.add_(x)
|
1352 |
+
else:
|
1353 |
+
x = self.conv0(
|
1354 |
+
x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs
|
1355 |
+
)
|
1356 |
+
if len(self.ffc_skip) > 0:
|
1357 |
+
mask = F.interpolate(
|
1358 |
+
mask,
|
1359 |
+
size=x_skip.shape[2:],
|
1360 |
+
)
|
1361 |
+
z = x + x_skip
|
1362 |
+
for fres in self.ffc_skip:
|
1363 |
+
z = fres(z, mask)
|
1364 |
+
x = x + z
|
1365 |
+
else:
|
1366 |
+
x = x + x_skip
|
1367 |
+
x = self.conv1(
|
1368 |
+
x, ws[1].clone(), fused_modconv=fused_modconv, **layer_kwargs
|
1369 |
+
)
|
1370 |
+
# ToRGB.
|
1371 |
+
if img is not None:
|
1372 |
+
img = upsample2d(img, self.resample_filter)
|
1373 |
+
if self.is_last or self.architecture == "skip":
|
1374 |
+
y = self.torgb(x, ws[2].clone(), fused_modconv=fused_modconv)
|
1375 |
+
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
|
1376 |
+
img = img.add_(y) if img is not None else y
|
1377 |
+
|
1378 |
+
x = x.to(dtype=dtype)
|
1379 |
+
assert x.dtype == dtype
|
1380 |
+
assert img is None or img.dtype == torch.float32
|
1381 |
+
return x, img
|
1382 |
+
|
1383 |
+
|
1384 |
+
class SynthesisNetwork(torch.nn.Module):
|
1385 |
+
def __init__(
|
1386 |
+
self,
|
1387 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
1388 |
+
z_dim, # Output Latent (Z) dimensionality.
|
1389 |
+
img_resolution, # Output image resolution.
|
1390 |
+
img_channels, # Number of color channels.
|
1391 |
+
channel_base=16384, # Overall multiplier for the number of channels.
|
1392 |
+
channel_max=512, # Maximum number of channels in any layer.
|
1393 |
+
num_fp16_res=0, # Use FP16 for the N highest resolutions.
|
1394 |
+
**block_kwargs, # Arguments for SynthesisBlock.
|
1395 |
+
):
|
1396 |
+
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
|
1397 |
+
super().__init__()
|
1398 |
+
self.w_dim = w_dim
|
1399 |
+
self.img_resolution = img_resolution
|
1400 |
+
self.img_resolution_log2 = int(np.log2(img_resolution))
|
1401 |
+
self.img_channels = img_channels
|
1402 |
+
self.block_resolutions = [
|
1403 |
+
2**i for i in range(3, self.img_resolution_log2 + 1)
|
1404 |
+
]
|
1405 |
+
channels_dict = {
|
1406 |
+
res: min(channel_base // res, channel_max) for res in self.block_resolutions
|
1407 |
+
}
|
1408 |
+
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
|
1409 |
+
|
1410 |
+
self.foreword = SynthesisForeword(
|
1411 |
+
img_channels=img_channels,
|
1412 |
+
in_channels=min(channel_base // 4, channel_max),
|
1413 |
+
z_dim=z_dim * 2,
|
1414 |
+
resolution=4,
|
1415 |
+
)
|
1416 |
+
|
1417 |
+
self.num_ws = self.img_resolution_log2 * 2 - 2
|
1418 |
+
for res in self.block_resolutions:
|
1419 |
+
if res // 2 in channels_dict.keys():
|
1420 |
+
in_channels = channels_dict[res // 2] if res > 4 else 0
|
1421 |
+
else:
|
1422 |
+
in_channels = min(channel_base // (res // 2), channel_max)
|
1423 |
+
out_channels = channels_dict[res]
|
1424 |
+
use_fp16 = res >= fp16_resolution
|
1425 |
+
use_fp16 = False
|
1426 |
+
is_last = res == self.img_resolution
|
1427 |
+
block = SynthesisBlock(
|
1428 |
+
in_channels,
|
1429 |
+
out_channels,
|
1430 |
+
w_dim=w_dim,
|
1431 |
+
resolution=res,
|
1432 |
+
img_channels=img_channels,
|
1433 |
+
is_last=is_last,
|
1434 |
+
use_fp16=use_fp16,
|
1435 |
+
**block_kwargs,
|
1436 |
+
)
|
1437 |
+
setattr(self, f"b{res}", block)
|
1438 |
+
|
1439 |
+
def forward(self, x_global, mask, feats, ws, fname=None, **block_kwargs):
|
1440 |
+
img = None
|
1441 |
+
|
1442 |
+
x, img = self.foreword(x_global, ws, feats, img)
|
1443 |
+
|
1444 |
+
for res in self.block_resolutions:
|
1445 |
+
block = getattr(self, f"b{res}")
|
1446 |
+
mod_vector0 = []
|
1447 |
+
mod_vector0.append(ws[:, int(np.log2(res)) * 2 - 5])
|
1448 |
+
mod_vector0.append(x_global.clone())
|
1449 |
+
mod_vector0 = torch.cat(mod_vector0, dim=1)
|
1450 |
+
|
1451 |
+
mod_vector1 = []
|
1452 |
+
mod_vector1.append(ws[:, int(np.log2(res)) * 2 - 4])
|
1453 |
+
mod_vector1.append(x_global.clone())
|
1454 |
+
mod_vector1 = torch.cat(mod_vector1, dim=1)
|
1455 |
+
|
1456 |
+
mod_vector_rgb = []
|
1457 |
+
mod_vector_rgb.append(ws[:, int(np.log2(res)) * 2 - 3])
|
1458 |
+
mod_vector_rgb.append(x_global.clone())
|
1459 |
+
mod_vector_rgb = torch.cat(mod_vector_rgb, dim=1)
|
1460 |
+
x, img = block(
|
1461 |
+
x,
|
1462 |
+
mask,
|
1463 |
+
feats,
|
1464 |
+
img,
|
1465 |
+
(mod_vector0, mod_vector1, mod_vector_rgb),
|
1466 |
+
fname=fname,
|
1467 |
+
**block_kwargs,
|
1468 |
+
)
|
1469 |
+
return img
|
1470 |
+
|
1471 |
+
|
1472 |
+
class MappingNetwork(torch.nn.Module):
|
1473 |
+
def __init__(
|
1474 |
+
self,
|
1475 |
+
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
|
1476 |
+
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
|
1477 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
1478 |
+
num_ws, # Number of intermediate latents to output, None = do not broadcast.
|
1479 |
+
num_layers=8, # Number of mapping layers.
|
1480 |
+
embed_features=None, # Label embedding dimensionality, None = same as w_dim.
|
1481 |
+
layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim.
|
1482 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
1483 |
+
lr_multiplier=0.01, # Learning rate multiplier for the mapping layers.
|
1484 |
+
w_avg_beta=0.995, # Decay for tracking the moving average of W during training, None = do not track.
|
1485 |
+
):
|
1486 |
+
super().__init__()
|
1487 |
+
self.z_dim = z_dim
|
1488 |
+
self.c_dim = c_dim
|
1489 |
+
self.w_dim = w_dim
|
1490 |
+
self.num_ws = num_ws
|
1491 |
+
self.num_layers = num_layers
|
1492 |
+
self.w_avg_beta = w_avg_beta
|
1493 |
+
|
1494 |
+
if embed_features is None:
|
1495 |
+
embed_features = w_dim
|
1496 |
+
if c_dim == 0:
|
1497 |
+
embed_features = 0
|
1498 |
+
if layer_features is None:
|
1499 |
+
layer_features = w_dim
|
1500 |
+
features_list = (
|
1501 |
+
[z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
|
1502 |
+
)
|
1503 |
+
|
1504 |
+
if c_dim > 0:
|
1505 |
+
self.embed = FullyConnectedLayer(c_dim, embed_features)
|
1506 |
+
for idx in range(num_layers):
|
1507 |
+
in_features = features_list[idx]
|
1508 |
+
out_features = features_list[idx + 1]
|
1509 |
+
layer = FullyConnectedLayer(
|
1510 |
+
in_features,
|
1511 |
+
out_features,
|
1512 |
+
activation=activation,
|
1513 |
+
lr_multiplier=lr_multiplier,
|
1514 |
+
)
|
1515 |
+
setattr(self, f"fc{idx}", layer)
|
1516 |
+
|
1517 |
+
if num_ws is not None and w_avg_beta is not None:
|
1518 |
+
self.register_buffer("w_avg", torch.zeros([w_dim]))
|
1519 |
+
|
1520 |
+
def forward(
|
1521 |
+
self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
|
1522 |
+
):
|
1523 |
+
# Embed, normalize, and concat inputs.
|
1524 |
+
x = None
|
1525 |
+
with torch.autograd.profiler.record_function("input"):
|
1526 |
+
if self.z_dim > 0:
|
1527 |
+
x = normalize_2nd_moment(z.to(torch.float32))
|
1528 |
+
if self.c_dim > 0:
|
1529 |
+
y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
|
1530 |
+
x = torch.cat([x, y], dim=1) if x is not None else y
|
1531 |
+
|
1532 |
+
# Main layers.
|
1533 |
+
for idx in range(self.num_layers):
|
1534 |
+
layer = getattr(self, f"fc{idx}")
|
1535 |
+
x = layer(x)
|
1536 |
+
|
1537 |
+
# Update moving average of W.
|
1538 |
+
if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
|
1539 |
+
with torch.autograd.profiler.record_function("update_w_avg"):
|
1540 |
+
self.w_avg.copy_(
|
1541 |
+
x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)
|
1542 |
+
)
|
1543 |
+
|
1544 |
+
# Broadcast.
|
1545 |
+
if self.num_ws is not None:
|
1546 |
+
with torch.autograd.profiler.record_function("broadcast"):
|
1547 |
+
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
|
1548 |
+
|
1549 |
+
# Apply truncation.
|
1550 |
+
if truncation_psi != 1:
|
1551 |
+
with torch.autograd.profiler.record_function("truncate"):
|
1552 |
+
assert self.w_avg_beta is not None
|
1553 |
+
if self.num_ws is None or truncation_cutoff is None:
|
1554 |
+
x = self.w_avg.lerp(x, truncation_psi)
|
1555 |
+
else:
|
1556 |
+
x[:, :truncation_cutoff] = self.w_avg.lerp(
|
1557 |
+
x[:, :truncation_cutoff], truncation_psi
|
1558 |
+
)
|
1559 |
+
return x
|
1560 |
+
|
1561 |
+
|
1562 |
+
class Generator(torch.nn.Module):
|
1563 |
+
def __init__(
|
1564 |
+
self,
|
1565 |
+
z_dim, # Input latent (Z) dimensionality.
|
1566 |
+
c_dim, # Conditioning label (C) dimensionality.
|
1567 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
1568 |
+
img_resolution, # Output resolution.
|
1569 |
+
img_channels, # Number of output color channels.
|
1570 |
+
encoder_kwargs={}, # Arguments for EncoderNetwork.
|
1571 |
+
mapping_kwargs={}, # Arguments for MappingNetwork.
|
1572 |
+
synthesis_kwargs={}, # Arguments for SynthesisNetwork.
|
1573 |
+
):
|
1574 |
+
super().__init__()
|
1575 |
+
self.z_dim = z_dim
|
1576 |
+
self.c_dim = c_dim
|
1577 |
+
self.w_dim = w_dim
|
1578 |
+
self.img_resolution = img_resolution
|
1579 |
+
self.img_channels = img_channels
|
1580 |
+
self.encoder = EncoderNetwork(
|
1581 |
+
c_dim=c_dim,
|
1582 |
+
z_dim=z_dim,
|
1583 |
+
img_resolution=img_resolution,
|
1584 |
+
img_channels=img_channels,
|
1585 |
+
**encoder_kwargs,
|
1586 |
+
)
|
1587 |
+
self.synthesis = SynthesisNetwork(
|
1588 |
+
z_dim=z_dim,
|
1589 |
+
w_dim=w_dim,
|
1590 |
+
img_resolution=img_resolution,
|
1591 |
+
img_channels=img_channels,
|
1592 |
+
**synthesis_kwargs,
|
1593 |
+
)
|
1594 |
+
self.num_ws = self.synthesis.num_ws
|
1595 |
+
self.mapping = MappingNetwork(
|
1596 |
+
z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs
|
1597 |
+
)
|
1598 |
+
|
1599 |
+
def forward(
|
1600 |
+
self,
|
1601 |
+
img,
|
1602 |
+
c,
|
1603 |
+
fname=None,
|
1604 |
+
truncation_psi=1,
|
1605 |
+
truncation_cutoff=None,
|
1606 |
+
**synthesis_kwargs,
|
1607 |
+
):
|
1608 |
+
mask = img[:, -1].unsqueeze(1)
|
1609 |
+
x_global, z, feats = self.encoder(img, c)
|
1610 |
+
ws = self.mapping(
|
1611 |
+
z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff
|
1612 |
+
)
|
1613 |
+
img = self.synthesis(x_global, mask, feats, ws, fname=fname, **synthesis_kwargs)
|
1614 |
+
return img
|
1615 |
+
|
1616 |
+
|
1617 |
+
FCF_MODEL_URL = os.environ.get(
|
1618 |
+
"FCF_MODEL_URL",
|
1619 |
+
"https://github.com/Sanster/models/releases/download/add_fcf/places_512_G.pth",
|
1620 |
+
)
|
1621 |
+
FCF_MODEL_MD5 = os.environ.get("FCF_MODEL_MD5", "3323152bc01bf1c56fd8aba74435a211")
|
1622 |
+
|
1623 |
+
|
1624 |
+
class FcF(InpaintModel):
|
1625 |
+
name = "fcf"
|
1626 |
+
min_size = 512
|
1627 |
+
pad_mod = 512
|
1628 |
+
pad_to_square = True
|
1629 |
+
is_erase_model = True
|
1630 |
+
|
1631 |
+
def init_model(self, device, **kwargs):
|
1632 |
+
seed = 0
|
1633 |
+
random.seed(seed)
|
1634 |
+
np.random.seed(seed)
|
1635 |
+
torch.manual_seed(seed)
|
1636 |
+
torch.cuda.manual_seed_all(seed)
|
1637 |
+
torch.backends.cudnn.deterministic = True
|
1638 |
+
torch.backends.cudnn.benchmark = False
|
1639 |
+
|
1640 |
+
kwargs = {
|
1641 |
+
"channel_base": 1 * 32768,
|
1642 |
+
"channel_max": 512,
|
1643 |
+
"num_fp16_res": 4,
|
1644 |
+
"conv_clamp": 256,
|
1645 |
+
}
|
1646 |
+
G = Generator(
|
1647 |
+
z_dim=512,
|
1648 |
+
c_dim=0,
|
1649 |
+
w_dim=512,
|
1650 |
+
img_resolution=512,
|
1651 |
+
img_channels=3,
|
1652 |
+
synthesis_kwargs=kwargs,
|
1653 |
+
encoder_kwargs=kwargs,
|
1654 |
+
mapping_kwargs={"num_layers": 2},
|
1655 |
+
)
|
1656 |
+
self.model = load_model(G, FCF_MODEL_URL, device, FCF_MODEL_MD5)
|
1657 |
+
self.label = torch.zeros([1, self.model.c_dim], device=device)
|
1658 |
+
|
1659 |
+
@staticmethod
|
1660 |
+
def download():
|
1661 |
+
download_model(FCF_MODEL_URL, FCF_MODEL_MD5)
|
1662 |
+
|
1663 |
+
@staticmethod
|
1664 |
+
def is_downloaded() -> bool:
|
1665 |
+
return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL))
|
1666 |
+
|
1667 |
+
@torch.no_grad()
|
1668 |
+
def __call__(self, image, mask, config: InpaintRequest):
|
1669 |
+
"""
|
1670 |
+
images: [H, W, C] RGB, not normalized
|
1671 |
+
masks: [H, W]
|
1672 |
+
return: BGR IMAGE
|
1673 |
+
"""
|
1674 |
+
if image.shape[0] == 512 and image.shape[1] == 512:
|
1675 |
+
return self._pad_forward(image, mask, config)
|
1676 |
+
|
1677 |
+
boxes = boxes_from_mask(mask)
|
1678 |
+
crop_result = []
|
1679 |
+
config.hd_strategy_crop_margin = 128
|
1680 |
+
for box in boxes:
|
1681 |
+
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
|
1682 |
+
origin_size = crop_image.shape[:2]
|
1683 |
+
resize_image = resize_max_size(crop_image, size_limit=512)
|
1684 |
+
resize_mask = resize_max_size(crop_mask, size_limit=512)
|
1685 |
+
inpaint_result = self._pad_forward(resize_image, resize_mask, config)
|
1686 |
+
|
1687 |
+
# only paste masked area result
|
1688 |
+
inpaint_result = cv2.resize(
|
1689 |
+
inpaint_result,
|
1690 |
+
(origin_size[1], origin_size[0]),
|
1691 |
+
interpolation=cv2.INTER_CUBIC,
|
1692 |
+
)
|
1693 |
+
|
1694 |
+
original_pixel_indices = crop_mask < 127
|
1695 |
+
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][
|
1696 |
+
original_pixel_indices
|
1697 |
+
]
|
1698 |
+
|
1699 |
+
crop_result.append((inpaint_result, crop_box))
|
1700 |
+
|
1701 |
+
inpaint_result = image[:, :, ::-1].copy()
|
1702 |
+
for crop_image, crop_box in crop_result:
|
1703 |
+
x1, y1, x2, y2 = crop_box
|
1704 |
+
inpaint_result[y1:y2, x1:x2, :] = crop_image
|
1705 |
+
|
1706 |
+
return inpaint_result
|
1707 |
+
|
1708 |
+
def forward(self, image, mask, config: InpaintRequest):
|
1709 |
+
"""Input images and output images have same size
|
1710 |
+
images: [H, W, C] RGB
|
1711 |
+
masks: [H, W] mask area == 255
|
1712 |
+
return: BGR IMAGE
|
1713 |
+
"""
|
1714 |
+
|
1715 |
+
image = norm_img(image) # [0, 1]
|
1716 |
+
image = image * 2 - 1 # [0, 1] -> [-1, 1]
|
1717 |
+
mask = (mask > 120) * 255
|
1718 |
+
mask = norm_img(mask)
|
1719 |
+
|
1720 |
+
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
1721 |
+
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
1722 |
+
|
1723 |
+
erased_img = image * (1 - mask)
|
1724 |
+
input_image = torch.cat([0.5 - mask, erased_img], dim=1)
|
1725 |
+
|
1726 |
+
output = self.model(
|
1727 |
+
input_image, self.label, truncation_psi=0.1, noise_mode="none"
|
1728 |
+
)
|
1729 |
+
output = (
|
1730 |
+
(output.permute(0, 2, 3, 1) * 127.5 + 127.5)
|
1731 |
+
.round()
|
1732 |
+
.clamp(0, 255)
|
1733 |
+
.to(torch.uint8)
|
1734 |
+
)
|
1735 |
+
output = output[0].cpu().numpy()
|
1736 |
+
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
1737 |
+
return cur_res
|
iopaint/model/helper/controlnet_preprocess.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import PIL
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from iopaint.helper import pad_img_to_modulo
|
8 |
+
|
9 |
+
|
10 |
+
def make_canny_control_image(image: np.ndarray) -> Image:
|
11 |
+
canny_image = cv2.Canny(image, 100, 200)
|
12 |
+
canny_image = canny_image[:, :, None]
|
13 |
+
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
14 |
+
canny_image = PIL.Image.fromarray(canny_image)
|
15 |
+
control_image = canny_image
|
16 |
+
return control_image
|
17 |
+
|
18 |
+
|
19 |
+
def make_openpose_control_image(image: np.ndarray) -> Image:
|
20 |
+
from controlnet_aux import OpenposeDetector
|
21 |
+
|
22 |
+
processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
23 |
+
control_image = processor(image, hand_and_face=True)
|
24 |
+
return control_image
|
25 |
+
|
26 |
+
|
27 |
+
def resize_image(input_image, resolution):
|
28 |
+
H, W, C = input_image.shape
|
29 |
+
H = float(H)
|
30 |
+
W = float(W)
|
31 |
+
k = float(resolution) / min(H, W)
|
32 |
+
H *= k
|
33 |
+
W *= k
|
34 |
+
H = int(np.round(H / 64.0)) * 64
|
35 |
+
W = int(np.round(W / 64.0)) * 64
|
36 |
+
img = cv2.resize(
|
37 |
+
input_image,
|
38 |
+
(W, H),
|
39 |
+
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
|
40 |
+
)
|
41 |
+
return img
|
42 |
+
|
43 |
+
|
44 |
+
def make_depth_control_image(image: np.ndarray) -> Image:
|
45 |
+
from controlnet_aux import MidasDetector
|
46 |
+
|
47 |
+
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
48 |
+
|
49 |
+
origin_height, origin_width = image.shape[:2]
|
50 |
+
pad_image = pad_img_to_modulo(image, mod=64, square=False, min_size=512)
|
51 |
+
depth_image = midas(pad_image)
|
52 |
+
depth_image = depth_image[0:origin_height, 0:origin_width]
|
53 |
+
depth_image = depth_image[:, :, None]
|
54 |
+
depth_image = np.concatenate([depth_image, depth_image, depth_image], axis=2)
|
55 |
+
control_image = PIL.Image.fromarray(depth_image)
|
56 |
+
return control_image
|
57 |
+
|
58 |
+
|
59 |
+
def make_inpaint_control_image(image: np.ndarray, mask: np.ndarray) -> torch.Tensor:
|
60 |
+
"""
|
61 |
+
image: [H, W, C] RGB
|
62 |
+
mask: [H, W, 1] 255 means area to repaint
|
63 |
+
"""
|
64 |
+
image = image.astype(np.float32) / 255.0
|
65 |
+
image[mask[:, :, -1] > 128] = -1.0 # set as masked pixel
|
66 |
+
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
67 |
+
image = torch.from_numpy(image)
|
68 |
+
return image
|
iopaint/model/helper/cpu_text_encoder.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import PreTrainedModel
|
3 |
+
|
4 |
+
from ..utils import torch_gc
|
5 |
+
|
6 |
+
|
7 |
+
class CPUTextEncoderWrapper(PreTrainedModel):
|
8 |
+
def __init__(self, text_encoder, torch_dtype):
|
9 |
+
super().__init__(text_encoder.config)
|
10 |
+
self.config = text_encoder.config
|
11 |
+
self._device = text_encoder.device
|
12 |
+
# cpu not support float16
|
13 |
+
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
|
14 |
+
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
|
15 |
+
self.torch_dtype = torch_dtype
|
16 |
+
del text_encoder
|
17 |
+
torch_gc()
|
18 |
+
|
19 |
+
def __call__(self, x, **kwargs):
|
20 |
+
input_device = x.device
|
21 |
+
original_output = self.text_encoder(x.to(self.text_encoder.device), **kwargs)
|
22 |
+
for k, v in original_output.items():
|
23 |
+
if isinstance(v, tuple):
|
24 |
+
original_output[k] = [
|
25 |
+
v[i].to(input_device).to(self.torch_dtype) for i in range(len(v))
|
26 |
+
]
|
27 |
+
else:
|
28 |
+
original_output[k] = v.to(input_device).to(self.torch_dtype)
|
29 |
+
return original_output
|
30 |
+
|
31 |
+
@property
|
32 |
+
def dtype(self):
|
33 |
+
return self.torch_dtype
|
34 |
+
|
35 |
+
@property
|
36 |
+
def device(self) -> torch.device:
|
37 |
+
"""
|
38 |
+
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
|
39 |
+
device).
|
40 |
+
"""
|
41 |
+
return self._device
|
iopaint/model/helper/g_diffuser_bot.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# code copy from: https://github.com/parlance-zz/g-diffuser-bot
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def np_img_grey_to_rgb(data):
|
7 |
+
if data.ndim == 3:
|
8 |
+
return data
|
9 |
+
return np.expand_dims(data, 2) * np.ones((1, 1, 3))
|
10 |
+
|
11 |
+
|
12 |
+
def convolve(data1, data2): # fast convolution with fft
|
13 |
+
if data1.ndim != data2.ndim: # promote to rgb if mismatch
|
14 |
+
if data1.ndim < 3:
|
15 |
+
data1 = np_img_grey_to_rgb(data1)
|
16 |
+
if data2.ndim < 3:
|
17 |
+
data2 = np_img_grey_to_rgb(data2)
|
18 |
+
return ifft2(fft2(data1) * fft2(data2))
|
19 |
+
|
20 |
+
|
21 |
+
def fft2(data):
|
22 |
+
if data.ndim > 2: # multiple channels
|
23 |
+
out_fft = np.zeros(
|
24 |
+
(data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128
|
25 |
+
)
|
26 |
+
for c in range(data.shape[2]):
|
27 |
+
c_data = data[:, :, c]
|
28 |
+
out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho")
|
29 |
+
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
|
30 |
+
else: # single channel
|
31 |
+
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
32 |
+
out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho")
|
33 |
+
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
|
34 |
+
|
35 |
+
return out_fft
|
36 |
+
|
37 |
+
|
38 |
+
def ifft2(data):
|
39 |
+
if data.ndim > 2: # multiple channels
|
40 |
+
out_ifft = np.zeros(
|
41 |
+
(data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128
|
42 |
+
)
|
43 |
+
for c in range(data.shape[2]):
|
44 |
+
c_data = data[:, :, c]
|
45 |
+
out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho")
|
46 |
+
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
|
47 |
+
else: # single channel
|
48 |
+
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
49 |
+
out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho")
|
50 |
+
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
|
51 |
+
|
52 |
+
return out_ifft
|
53 |
+
|
54 |
+
|
55 |
+
def get_gradient_kernel(width, height, std=3.14, mode="linear"):
|
56 |
+
window_scale_x = float(
|
57 |
+
width / min(width, height)
|
58 |
+
) # for non-square aspect ratios we still want a circular kernel
|
59 |
+
window_scale_y = float(height / min(width, height))
|
60 |
+
if mode == "gaussian":
|
61 |
+
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
|
62 |
+
kx = np.exp(-x * x * std)
|
63 |
+
if window_scale_x != window_scale_y:
|
64 |
+
y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y
|
65 |
+
ky = np.exp(-y * y * std)
|
66 |
+
else:
|
67 |
+
y = x
|
68 |
+
ky = kx
|
69 |
+
return np.outer(kx, ky)
|
70 |
+
elif mode == "linear":
|
71 |
+
x = (np.arange(width) / width * 2.0 - 1.0) * window_scale_x
|
72 |
+
if window_scale_x != window_scale_y:
|
73 |
+
y = (np.arange(height) / height * 2.0 - 1.0) * window_scale_y
|
74 |
+
else:
|
75 |
+
y = x
|
76 |
+
return np.clip(1.0 - np.sqrt(np.add.outer(x * x, y * y)) * std / 3.14, 0.0, 1.0)
|
77 |
+
else:
|
78 |
+
raise Exception("Error: Unknown mode in get_gradient_kernel: {0}".format(mode))
|
79 |
+
|
80 |
+
|
81 |
+
def image_blur(data, std=3.14, mode="linear"):
|
82 |
+
width = data.shape[0]
|
83 |
+
height = data.shape[1]
|
84 |
+
kernel = get_gradient_kernel(width, height, std, mode=mode)
|
85 |
+
return np.real(convolve(data, kernel / np.sqrt(np.sum(kernel * kernel))))
|
86 |
+
|
87 |
+
|
88 |
+
def soften_mask(mask_img, softness, space):
|
89 |
+
if softness == 0:
|
90 |
+
return mask_img
|
91 |
+
softness = min(softness, 1.0)
|
92 |
+
space = np.clip(space, 0.0, 1.0)
|
93 |
+
original_max_opacity = np.max(mask_img)
|
94 |
+
out_mask = mask_img <= 0.0
|
95 |
+
blurred_mask = image_blur(mask_img, 3.5 / softness, mode="linear")
|
96 |
+
blurred_mask = np.maximum(blurred_mask - np.max(blurred_mask[out_mask]), 0.0)
|
97 |
+
mask_img *= blurred_mask # preserve partial opacity in original input mask
|
98 |
+
mask_img /= np.max(mask_img) # renormalize
|
99 |
+
mask_img = np.clip(mask_img - space, 0.0, 1.0) # make space
|
100 |
+
mask_img /= np.max(mask_img) # and renormalize again
|
101 |
+
mask_img *= original_max_opacity # restore original max opacity
|
102 |
+
return mask_img
|
103 |
+
|
104 |
+
|
105 |
+
def expand_image(
|
106 |
+
cv2_img, top: int, right: int, bottom: int, left: int, softness: float, space: float
|
107 |
+
):
|
108 |
+
assert cv2_img.shape[2] == 3
|
109 |
+
origin_h, origin_w = cv2_img.shape[:2]
|
110 |
+
new_width = cv2_img.shape[1] + left + right
|
111 |
+
new_height = cv2_img.shape[0] + top + bottom
|
112 |
+
|
113 |
+
# TODO: which is better?
|
114 |
+
# new_img = np.random.randint(0, 255, (new_height, new_width, 3), np.uint8)
|
115 |
+
new_img = cv2.copyMakeBorder(
|
116 |
+
cv2_img, top, bottom, left, right, cv2.BORDER_REPLICATE
|
117 |
+
)
|
118 |
+
mask_img = np.zeros((new_height, new_width), np.uint8)
|
119 |
+
mask_img[top : top + cv2_img.shape[0], left : left + cv2_img.shape[1]] = 255
|
120 |
+
|
121 |
+
if softness > 0.0:
|
122 |
+
mask_img = soften_mask(mask_img / 255.0, softness / 100.0, space / 100.0)
|
123 |
+
mask_img = (np.clip(mask_img, 0.0, 1.0) * 255.0).astype(np.uint8)
|
124 |
+
|
125 |
+
mask_image = 255.0 - mask_img # extract mask from alpha channel and invert
|
126 |
+
rgb_init_image = (
|
127 |
+
0.0 + new_img[:, :, 0:3]
|
128 |
+
) # strip mask from init_img leaving only rgb channels
|
129 |
+
|
130 |
+
hard_mask = np.zeros_like(cv2_img[:, :, 0])
|
131 |
+
if top != 0:
|
132 |
+
hard_mask[0 : origin_h // 2, :] = 255
|
133 |
+
if bottom != 0:
|
134 |
+
hard_mask[origin_h // 2 :, :] = 255
|
135 |
+
if left != 0:
|
136 |
+
hard_mask[:, 0 : origin_w // 2] = 255
|
137 |
+
if right != 0:
|
138 |
+
hard_mask[:, origin_w // 2 :] = 255
|
139 |
+
|
140 |
+
hard_mask = cv2.copyMakeBorder(
|
141 |
+
hard_mask, top, bottom, left, right, cv2.BORDER_DEFAULT, value=255
|
142 |
+
)
|
143 |
+
mask_image = np.where(hard_mask > 0, mask_image, 0)
|
144 |
+
return rgb_init_image.astype(np.uint8), mask_image.astype(np.uint8)
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
from pathlib import Path
|
149 |
+
|
150 |
+
current_dir = Path(__file__).parent.absolute().resolve()
|
151 |
+
image_path = current_dir.parent / "tests" / "bunny.jpeg"
|
152 |
+
init_image = cv2.imread(str(image_path))
|
153 |
+
init_image, mask_image = expand_image(
|
154 |
+
init_image,
|
155 |
+
top=100,
|
156 |
+
right=100,
|
157 |
+
bottom=100,
|
158 |
+
left=100,
|
159 |
+
softness=20,
|
160 |
+
space=20,
|
161 |
+
)
|
162 |
+
print(mask_image.dtype, mask_image.min(), mask_image.max())
|
163 |
+
print(init_image.dtype, init_image.min(), init_image.max())
|
164 |
+
mask_image = mask_image.astype(np.uint8)
|
165 |
+
init_image = init_image.astype(np.uint8)
|
166 |
+
cv2.imwrite("expanded_image.png", init_image)
|
167 |
+
cv2.imwrite("expanded_mask.png", mask_image)
|
iopaint/model/instruct_pix2pix.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL.Image
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from loguru import logger
|
5 |
+
|
6 |
+
from iopaint.const import INSTRUCT_PIX2PIX_NAME
|
7 |
+
from .base import DiffusionInpaintModel
|
8 |
+
from iopaint.schema import InpaintRequest
|
9 |
+
from .utils import get_torch_dtype, enable_low_mem, is_local_files_only
|
10 |
+
|
11 |
+
|
12 |
+
class InstructPix2Pix(DiffusionInpaintModel):
|
13 |
+
name = INSTRUCT_PIX2PIX_NAME
|
14 |
+
pad_mod = 8
|
15 |
+
min_size = 512
|
16 |
+
|
17 |
+
def init_model(self, device: torch.device, **kwargs):
|
18 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline
|
19 |
+
|
20 |
+
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
21 |
+
|
22 |
+
model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
|
23 |
+
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
|
24 |
+
logger.info("Disable Stable Diffusion Model NSFW checker")
|
25 |
+
model_kwargs.update(
|
26 |
+
dict(
|
27 |
+
safety_checker=None,
|
28 |
+
feature_extractor=None,
|
29 |
+
requires_safety_checker=False,
|
30 |
+
)
|
31 |
+
)
|
32 |
+
|
33 |
+
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
34 |
+
self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs
|
35 |
+
)
|
36 |
+
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
37 |
+
|
38 |
+
if kwargs.get("cpu_offload", False) and use_gpu:
|
39 |
+
logger.info("Enable sequential cpu offload")
|
40 |
+
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
41 |
+
else:
|
42 |
+
self.model = self.model.to(device)
|
43 |
+
|
44 |
+
def forward(self, image, mask, config: InpaintRequest):
|
45 |
+
"""Input image and output image have same size
|
46 |
+
image: [H, W, C] RGB
|
47 |
+
mask: [H, W, 1] 255 means area to repaint
|
48 |
+
return: BGR IMAGE
|
49 |
+
edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
|
50 |
+
"""
|
51 |
+
output = self.model(
|
52 |
+
image=PIL.Image.fromarray(image),
|
53 |
+
prompt=config.prompt,
|
54 |
+
negative_prompt=config.negative_prompt,
|
55 |
+
num_inference_steps=config.sd_steps,
|
56 |
+
image_guidance_scale=config.p2p_image_guidance_scale,
|
57 |
+
guidance_scale=config.sd_guidance_scale,
|
58 |
+
output_type="np",
|
59 |
+
generator=torch.manual_seed(config.sd_seed),
|
60 |
+
).images[0]
|
61 |
+
|
62 |
+
output = (output * 255).round().astype("uint8")
|
63 |
+
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
64 |
+
return output
|
iopaint/model/kandinsky.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL.Image
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from iopaint.const import KANDINSKY22_NAME
|
7 |
+
from .base import DiffusionInpaintModel
|
8 |
+
from iopaint.schema import InpaintRequest
|
9 |
+
from .utils import get_torch_dtype, enable_low_mem, is_local_files_only
|
10 |
+
|
11 |
+
|
12 |
+
class Kandinsky(DiffusionInpaintModel):
|
13 |
+
pad_mod = 64
|
14 |
+
min_size = 512
|
15 |
+
|
16 |
+
def init_model(self, device: torch.device, **kwargs):
|
17 |
+
from diffusers import AutoPipelineForInpainting
|
18 |
+
|
19 |
+
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
20 |
+
|
21 |
+
model_kwargs = {
|
22 |
+
"torch_dtype": torch_dtype,
|
23 |
+
"local_files_only": is_local_files_only(**kwargs),
|
24 |
+
}
|
25 |
+
self.model = AutoPipelineForInpainting.from_pretrained(
|
26 |
+
self.name, **model_kwargs
|
27 |
+
).to(device)
|
28 |
+
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
29 |
+
|
30 |
+
self.callback = kwargs.pop("callback", None)
|
31 |
+
|
32 |
+
def forward(self, image, mask, config: InpaintRequest):
|
33 |
+
"""Input image and output image have same size
|
34 |
+
image: [H, W, C] RGB
|
35 |
+
mask: [H, W, 1] 255 means area to repaint
|
36 |
+
return: BGR IMAGE
|
37 |
+
"""
|
38 |
+
self.set_scheduler(config)
|
39 |
+
|
40 |
+
generator = torch.manual_seed(config.sd_seed)
|
41 |
+
mask = mask.astype(np.float32) / 255
|
42 |
+
img_h, img_w = image.shape[:2]
|
43 |
+
|
44 |
+
# kandinsky 没有 strength
|
45 |
+
output = self.model(
|
46 |
+
prompt=config.prompt,
|
47 |
+
negative_prompt=config.negative_prompt,
|
48 |
+
image=PIL.Image.fromarray(image),
|
49 |
+
mask_image=mask[:, :, 0],
|
50 |
+
height=img_h,
|
51 |
+
width=img_w,
|
52 |
+
num_inference_steps=config.sd_steps,
|
53 |
+
guidance_scale=config.sd_guidance_scale,
|
54 |
+
output_type="np",
|
55 |
+
callback_on_step_end=self.callback,
|
56 |
+
generator=generator,
|
57 |
+
).images[0]
|
58 |
+
|
59 |
+
output = (output * 255).round().astype("uint8")
|
60 |
+
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
61 |
+
return output
|
62 |
+
|
63 |
+
|
64 |
+
class Kandinsky22(Kandinsky):
|
65 |
+
name = KANDINSKY22_NAME
|
iopaint/model/lama.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from iopaint.helper import (
|
8 |
+
norm_img,
|
9 |
+
get_cache_path_by_url,
|
10 |
+
load_jit_model,
|
11 |
+
download_model,
|
12 |
+
)
|
13 |
+
from iopaint.schema import InpaintRequest
|
14 |
+
from .base import InpaintModel
|
15 |
+
|
16 |
+
LAMA_MODEL_URL = os.environ.get(
|
17 |
+
"LAMA_MODEL_URL",
|
18 |
+
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
19 |
+
)
|
20 |
+
LAMA_MODEL_MD5 = os.environ.get("LAMA_MODEL_MD5", "e3aa4aaa15225a33ec84f9f4bc47e500")
|
21 |
+
|
22 |
+
|
23 |
+
class LaMa(InpaintModel):
|
24 |
+
name = "lama"
|
25 |
+
pad_mod = 8
|
26 |
+
is_erase_model = True
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def download():
|
30 |
+
download_model(LAMA_MODEL_URL, LAMA_MODEL_MD5)
|
31 |
+
|
32 |
+
def init_model(self, device, **kwargs):
|
33 |
+
self.model = load_jit_model(LAMA_MODEL_URL, device, LAMA_MODEL_MD5).eval()
|
34 |
+
|
35 |
+
@staticmethod
|
36 |
+
def is_downloaded() -> bool:
|
37 |
+
return os.path.exists(get_cache_path_by_url(LAMA_MODEL_URL))
|
38 |
+
|
39 |
+
def forward(self, image, mask, config: InpaintRequest):
|
40 |
+
"""Input image and output image have same size
|
41 |
+
image: [H, W, C] RGB
|
42 |
+
mask: [H, W]
|
43 |
+
return: BGR IMAGE
|
44 |
+
"""
|
45 |
+
image = norm_img(image)
|
46 |
+
mask = norm_img(mask)
|
47 |
+
|
48 |
+
mask = (mask > 0) * 1
|
49 |
+
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
50 |
+
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
51 |
+
|
52 |
+
inpainted_image = self.model(image, mask)
|
53 |
+
|
54 |
+
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
|
55 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
|
56 |
+
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
|
57 |
+
return cur_res
|
iopaint/model/ldm.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from loguru import logger
|
6 |
+
|
7 |
+
from .base import InpaintModel
|
8 |
+
from .ddim_sampler import DDIMSampler
|
9 |
+
from .plms_sampler import PLMSSampler
|
10 |
+
from iopaint.schema import InpaintRequest, LDMSampler
|
11 |
+
|
12 |
+
torch.manual_seed(42)
|
13 |
+
import torch.nn as nn
|
14 |
+
from iopaint.helper import (
|
15 |
+
download_model,
|
16 |
+
norm_img,
|
17 |
+
get_cache_path_by_url,
|
18 |
+
load_jit_model,
|
19 |
+
)
|
20 |
+
from .utils import (
|
21 |
+
make_beta_schedule,
|
22 |
+
timestep_embedding,
|
23 |
+
)
|
24 |
+
|
25 |
+
LDM_ENCODE_MODEL_URL = os.environ.get(
|
26 |
+
"LDM_ENCODE_MODEL_URL",
|
27 |
+
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_encode.pt",
|
28 |
+
)
|
29 |
+
LDM_ENCODE_MODEL_MD5 = os.environ.get(
|
30 |
+
"LDM_ENCODE_MODEL_MD5", "23239fc9081956a3e70de56472b3f296"
|
31 |
+
)
|
32 |
+
|
33 |
+
LDM_DECODE_MODEL_URL = os.environ.get(
|
34 |
+
"LDM_DECODE_MODEL_URL",
|
35 |
+
"https://github.com/Sanster/models/releases/download/add_ldm/cond_stage_model_decode.pt",
|
36 |
+
)
|
37 |
+
LDM_DECODE_MODEL_MD5 = os.environ.get(
|
38 |
+
"LDM_DECODE_MODEL_MD5", "fe419cd15a750d37a4733589d0d3585c"
|
39 |
+
)
|
40 |
+
|
41 |
+
LDM_DIFFUSION_MODEL_URL = os.environ.get(
|
42 |
+
"LDM_DIFFUSION_MODEL_URL",
|
43 |
+
"https://github.com/Sanster/models/releases/download/add_ldm/diffusion.pt",
|
44 |
+
)
|
45 |
+
|
46 |
+
LDM_DIFFUSION_MODEL_MD5 = os.environ.get(
|
47 |
+
"LDM_DIFFUSION_MODEL_MD5", "b0afda12bf790c03aba2a7431f11d22d"
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
class DDPM(nn.Module):
|
52 |
+
# classic DDPM with Gaussian diffusion, in image space
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
device,
|
56 |
+
timesteps=1000,
|
57 |
+
beta_schedule="linear",
|
58 |
+
linear_start=0.0015,
|
59 |
+
linear_end=0.0205,
|
60 |
+
cosine_s=0.008,
|
61 |
+
original_elbo_weight=0.0,
|
62 |
+
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
63 |
+
l_simple_weight=1.0,
|
64 |
+
parameterization="eps", # all assuming fixed variance schedules
|
65 |
+
use_positional_encodings=False,
|
66 |
+
):
|
67 |
+
super().__init__()
|
68 |
+
self.device = device
|
69 |
+
self.parameterization = parameterization
|
70 |
+
self.use_positional_encodings = use_positional_encodings
|
71 |
+
|
72 |
+
self.v_posterior = v_posterior
|
73 |
+
self.original_elbo_weight = original_elbo_weight
|
74 |
+
self.l_simple_weight = l_simple_weight
|
75 |
+
|
76 |
+
self.register_schedule(
|
77 |
+
beta_schedule=beta_schedule,
|
78 |
+
timesteps=timesteps,
|
79 |
+
linear_start=linear_start,
|
80 |
+
linear_end=linear_end,
|
81 |
+
cosine_s=cosine_s,
|
82 |
+
)
|
83 |
+
|
84 |
+
def register_schedule(
|
85 |
+
self,
|
86 |
+
given_betas=None,
|
87 |
+
beta_schedule="linear",
|
88 |
+
timesteps=1000,
|
89 |
+
linear_start=1e-4,
|
90 |
+
linear_end=2e-2,
|
91 |
+
cosine_s=8e-3,
|
92 |
+
):
|
93 |
+
betas = make_beta_schedule(
|
94 |
+
self.device,
|
95 |
+
beta_schedule,
|
96 |
+
timesteps,
|
97 |
+
linear_start=linear_start,
|
98 |
+
linear_end=linear_end,
|
99 |
+
cosine_s=cosine_s,
|
100 |
+
)
|
101 |
+
alphas = 1.0 - betas
|
102 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
103 |
+
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
|
104 |
+
|
105 |
+
(timesteps,) = betas.shape
|
106 |
+
self.num_timesteps = int(timesteps)
|
107 |
+
self.linear_start = linear_start
|
108 |
+
self.linear_end = linear_end
|
109 |
+
assert (
|
110 |
+
alphas_cumprod.shape[0] == self.num_timesteps
|
111 |
+
), "alphas have to be defined for each timestep"
|
112 |
+
|
113 |
+
to_torch = lambda x: torch.tensor(x, dtype=torch.float32).to(self.device)
|
114 |
+
|
115 |
+
self.register_buffer("betas", to_torch(betas))
|
116 |
+
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
117 |
+
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
|
118 |
+
|
119 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
120 |
+
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
|
121 |
+
self.register_buffer(
|
122 |
+
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
|
123 |
+
)
|
124 |
+
self.register_buffer(
|
125 |
+
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
|
126 |
+
)
|
127 |
+
self.register_buffer(
|
128 |
+
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
|
129 |
+
)
|
130 |
+
self.register_buffer(
|
131 |
+
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
|
132 |
+
)
|
133 |
+
|
134 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
135 |
+
posterior_variance = (1 - self.v_posterior) * betas * (
|
136 |
+
1.0 - alphas_cumprod_prev
|
137 |
+
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
|
138 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
139 |
+
self.register_buffer("posterior_variance", to_torch(posterior_variance))
|
140 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
141 |
+
self.register_buffer(
|
142 |
+
"posterior_log_variance_clipped",
|
143 |
+
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
|
144 |
+
)
|
145 |
+
self.register_buffer(
|
146 |
+
"posterior_mean_coef1",
|
147 |
+
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
|
148 |
+
)
|
149 |
+
self.register_buffer(
|
150 |
+
"posterior_mean_coef2",
|
151 |
+
to_torch(
|
152 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
|
153 |
+
),
|
154 |
+
)
|
155 |
+
|
156 |
+
if self.parameterization == "eps":
|
157 |
+
lvlb_weights = self.betas**2 / (
|
158 |
+
2
|
159 |
+
* self.posterior_variance
|
160 |
+
* to_torch(alphas)
|
161 |
+
* (1 - self.alphas_cumprod)
|
162 |
+
)
|
163 |
+
elif self.parameterization == "x0":
|
164 |
+
lvlb_weights = (
|
165 |
+
0.5
|
166 |
+
* np.sqrt(torch.Tensor(alphas_cumprod))
|
167 |
+
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
raise NotImplementedError("mu not supported")
|
171 |
+
# TODO how to choose this term
|
172 |
+
lvlb_weights[0] = lvlb_weights[1]
|
173 |
+
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
|
174 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
175 |
+
|
176 |
+
|
177 |
+
class LatentDiffusion(DDPM):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
diffusion_model,
|
181 |
+
device,
|
182 |
+
cond_stage_key="image",
|
183 |
+
cond_stage_trainable=False,
|
184 |
+
concat_mode=True,
|
185 |
+
scale_factor=1.0,
|
186 |
+
scale_by_std=False,
|
187 |
+
*args,
|
188 |
+
**kwargs,
|
189 |
+
):
|
190 |
+
self.num_timesteps_cond = 1
|
191 |
+
self.scale_by_std = scale_by_std
|
192 |
+
super().__init__(device, *args, **kwargs)
|
193 |
+
self.diffusion_model = diffusion_model
|
194 |
+
self.concat_mode = concat_mode
|
195 |
+
self.cond_stage_trainable = cond_stage_trainable
|
196 |
+
self.cond_stage_key = cond_stage_key
|
197 |
+
self.num_downs = 2
|
198 |
+
self.scale_factor = scale_factor
|
199 |
+
|
200 |
+
def make_cond_schedule(
|
201 |
+
self,
|
202 |
+
):
|
203 |
+
self.cond_ids = torch.full(
|
204 |
+
size=(self.num_timesteps,),
|
205 |
+
fill_value=self.num_timesteps - 1,
|
206 |
+
dtype=torch.long,
|
207 |
+
)
|
208 |
+
ids = torch.round(
|
209 |
+
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
210 |
+
).long()
|
211 |
+
self.cond_ids[: self.num_timesteps_cond] = ids
|
212 |
+
|
213 |
+
def register_schedule(
|
214 |
+
self,
|
215 |
+
given_betas=None,
|
216 |
+
beta_schedule="linear",
|
217 |
+
timesteps=1000,
|
218 |
+
linear_start=1e-4,
|
219 |
+
linear_end=2e-2,
|
220 |
+
cosine_s=8e-3,
|
221 |
+
):
|
222 |
+
super().register_schedule(
|
223 |
+
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
|
224 |
+
)
|
225 |
+
|
226 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
227 |
+
if self.shorten_cond_schedule:
|
228 |
+
self.make_cond_schedule()
|
229 |
+
|
230 |
+
def apply_model(self, x_noisy, t, cond):
|
231 |
+
# x_recon = self.model(x_noisy, t, cond['c_concat'][0]) # cond['c_concat'][0].shape 1,4,128,128
|
232 |
+
t_emb = timestep_embedding(x_noisy.device, t, 256, repeat_only=False)
|
233 |
+
x_recon = self.diffusion_model(x_noisy, t_emb, cond)
|
234 |
+
return x_recon
|
235 |
+
|
236 |
+
|
237 |
+
class LDM(InpaintModel):
|
238 |
+
name = "ldm"
|
239 |
+
pad_mod = 32
|
240 |
+
is_erase_model = True
|
241 |
+
|
242 |
+
def __init__(self, device, fp16: bool = True, **kwargs):
|
243 |
+
self.fp16 = fp16
|
244 |
+
super().__init__(device)
|
245 |
+
self.device = device
|
246 |
+
|
247 |
+
def init_model(self, device, **kwargs):
|
248 |
+
self.diffusion_model = load_jit_model(
|
249 |
+
LDM_DIFFUSION_MODEL_URL, device, LDM_DIFFUSION_MODEL_MD5
|
250 |
+
)
|
251 |
+
self.cond_stage_model_decode = load_jit_model(
|
252 |
+
LDM_DECODE_MODEL_URL, device, LDM_DECODE_MODEL_MD5
|
253 |
+
)
|
254 |
+
self.cond_stage_model_encode = load_jit_model(
|
255 |
+
LDM_ENCODE_MODEL_URL, device, LDM_ENCODE_MODEL_MD5
|
256 |
+
)
|
257 |
+
if self.fp16 and "cuda" in str(device):
|
258 |
+
self.diffusion_model = self.diffusion_model.half()
|
259 |
+
self.cond_stage_model_decode = self.cond_stage_model_decode.half()
|
260 |
+
self.cond_stage_model_encode = self.cond_stage_model_encode.half()
|
261 |
+
|
262 |
+
self.model = LatentDiffusion(self.diffusion_model, device)
|
263 |
+
|
264 |
+
@staticmethod
|
265 |
+
def download():
|
266 |
+
download_model(LDM_DIFFUSION_MODEL_URL, LDM_DIFFUSION_MODEL_MD5)
|
267 |
+
download_model(LDM_DECODE_MODEL_URL, LDM_DECODE_MODEL_MD5)
|
268 |
+
download_model(LDM_ENCODE_MODEL_URL, LDM_ENCODE_MODEL_MD5)
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def is_downloaded() -> bool:
|
272 |
+
model_paths = [
|
273 |
+
get_cache_path_by_url(LDM_DIFFUSION_MODEL_URL),
|
274 |
+
get_cache_path_by_url(LDM_DECODE_MODEL_URL),
|
275 |
+
get_cache_path_by_url(LDM_ENCODE_MODEL_URL),
|
276 |
+
]
|
277 |
+
return all([os.path.exists(it) for it in model_paths])
|
278 |
+
|
279 |
+
@torch.cuda.amp.autocast()
|
280 |
+
def forward(self, image, mask, config: InpaintRequest):
|
281 |
+
"""
|
282 |
+
image: [H, W, C] RGB
|
283 |
+
mask: [H, W, 1]
|
284 |
+
return: BGR IMAGE
|
285 |
+
"""
|
286 |
+
# image [1,3,512,512] float32
|
287 |
+
# mask: [1,1,512,512] float32
|
288 |
+
# masked_image: [1,3,512,512] float32
|
289 |
+
if config.ldm_sampler == LDMSampler.ddim:
|
290 |
+
sampler = DDIMSampler(self.model)
|
291 |
+
elif config.ldm_sampler == LDMSampler.plms:
|
292 |
+
sampler = PLMSSampler(self.model)
|
293 |
+
else:
|
294 |
+
raise ValueError()
|
295 |
+
|
296 |
+
steps = config.ldm_steps
|
297 |
+
image = norm_img(image)
|
298 |
+
mask = norm_img(mask)
|
299 |
+
|
300 |
+
mask[mask < 0.5] = 0
|
301 |
+
mask[mask >= 0.5] = 1
|
302 |
+
|
303 |
+
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
304 |
+
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
305 |
+
masked_image = (1 - mask) * image
|
306 |
+
|
307 |
+
mask = self._norm(mask)
|
308 |
+
masked_image = self._norm(masked_image)
|
309 |
+
|
310 |
+
c = self.cond_stage_model_encode(masked_image)
|
311 |
+
torch.cuda.empty_cache()
|
312 |
+
|
313 |
+
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # 1,1,128,128
|
314 |
+
c = torch.cat((c, cc), dim=1) # 1,4,128,128
|
315 |
+
|
316 |
+
shape = (c.shape[1] - 1,) + c.shape[2:]
|
317 |
+
samples_ddim = sampler.sample(
|
318 |
+
steps=steps, conditioning=c, batch_size=c.shape[0], shape=shape
|
319 |
+
)
|
320 |
+
torch.cuda.empty_cache()
|
321 |
+
x_samples_ddim = self.cond_stage_model_decode(
|
322 |
+
samples_ddim
|
323 |
+
) # samples_ddim: 1, 3, 128, 128 float32
|
324 |
+
torch.cuda.empty_cache()
|
325 |
+
|
326 |
+
# image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
|
327 |
+
# mask = torch.clamp((mask + 1.0) / 2.0, min=0.0, max=1.0)
|
328 |
+
inpainted_image = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
329 |
+
|
330 |
+
# inpainted = (1 - mask) * image + mask * predicted_image
|
331 |
+
inpainted_image = inpainted_image.cpu().numpy().transpose(0, 2, 3, 1)[0] * 255
|
332 |
+
inpainted_image = inpainted_image.astype(np.uint8)[:, :, ::-1]
|
333 |
+
return inpainted_image
|
334 |
+
|
335 |
+
def _norm(self, tensor):
|
336 |
+
return tensor * 2.0 - 1.0
|
iopaint/model/manga.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import time
|
8 |
+
from loguru import logger
|
9 |
+
|
10 |
+
from iopaint.helper import get_cache_path_by_url, load_jit_model, download_model
|
11 |
+
from .base import InpaintModel
|
12 |
+
from iopaint.schema import InpaintRequest
|
13 |
+
|
14 |
+
|
15 |
+
MANGA_INPAINTOR_MODEL_URL = os.environ.get(
|
16 |
+
"MANGA_INPAINTOR_MODEL_URL",
|
17 |
+
"https://github.com/Sanster/models/releases/download/manga/manga_inpaintor.jit",
|
18 |
+
)
|
19 |
+
MANGA_INPAINTOR_MODEL_MD5 = os.environ.get(
|
20 |
+
"MANGA_INPAINTOR_MODEL_MD5", "7d8b269c4613b6b3768af714610da86c"
|
21 |
+
)
|
22 |
+
|
23 |
+
MANGA_LINE_MODEL_URL = os.environ.get(
|
24 |
+
"MANGA_LINE_MODEL_URL",
|
25 |
+
"https://github.com/Sanster/models/releases/download/manga/erika.jit",
|
26 |
+
)
|
27 |
+
MANGA_LINE_MODEL_MD5 = os.environ.get(
|
28 |
+
"MANGA_LINE_MODEL_MD5", "0c926d5a4af8450b0d00bc5b9a095644"
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class Manga(InpaintModel):
|
33 |
+
name = "manga"
|
34 |
+
pad_mod = 16
|
35 |
+
is_erase_model = True
|
36 |
+
|
37 |
+
def init_model(self, device, **kwargs):
|
38 |
+
self.inpaintor_model = load_jit_model(
|
39 |
+
MANGA_INPAINTOR_MODEL_URL, device, MANGA_INPAINTOR_MODEL_MD5
|
40 |
+
)
|
41 |
+
self.line_model = load_jit_model(
|
42 |
+
MANGA_LINE_MODEL_URL, device, MANGA_LINE_MODEL_MD5
|
43 |
+
)
|
44 |
+
self.seed = 42
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def download():
|
48 |
+
download_model(MANGA_INPAINTOR_MODEL_URL, MANGA_INPAINTOR_MODEL_MD5)
|
49 |
+
download_model(MANGA_LINE_MODEL_URL, MANGA_LINE_MODEL_MD5)
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def is_downloaded() -> bool:
|
53 |
+
model_paths = [
|
54 |
+
get_cache_path_by_url(MANGA_INPAINTOR_MODEL_URL),
|
55 |
+
get_cache_path_by_url(MANGA_LINE_MODEL_URL),
|
56 |
+
]
|
57 |
+
return all([os.path.exists(it) for it in model_paths])
|
58 |
+
|
59 |
+
def forward(self, image, mask, config: InpaintRequest):
|
60 |
+
"""
|
61 |
+
image: [H, W, C] RGB
|
62 |
+
mask: [H, W, 1]
|
63 |
+
return: BGR IMAGE
|
64 |
+
"""
|
65 |
+
seed = self.seed
|
66 |
+
random.seed(seed)
|
67 |
+
np.random.seed(seed)
|
68 |
+
torch.manual_seed(seed)
|
69 |
+
torch.cuda.manual_seed_all(seed)
|
70 |
+
|
71 |
+
gray_img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
72 |
+
gray_img = torch.from_numpy(
|
73 |
+
gray_img[np.newaxis, np.newaxis, :, :].astype(np.float32)
|
74 |
+
).to(self.device)
|
75 |
+
start = time.time()
|
76 |
+
lines = self.line_model(gray_img)
|
77 |
+
torch.cuda.empty_cache()
|
78 |
+
lines = torch.clamp(lines, 0, 255)
|
79 |
+
logger.info(f"erika_model time: {time.time() - start}")
|
80 |
+
|
81 |
+
mask = torch.from_numpy(mask[np.newaxis, :, :, :]).to(self.device)
|
82 |
+
mask = mask.permute(0, 3, 1, 2)
|
83 |
+
mask = torch.where(mask > 0.5, 1.0, 0.0)
|
84 |
+
noise = torch.randn_like(mask)
|
85 |
+
ones = torch.ones_like(mask)
|
86 |
+
|
87 |
+
gray_img = gray_img / 255 * 2 - 1.0
|
88 |
+
lines = lines / 255 * 2 - 1.0
|
89 |
+
|
90 |
+
start = time.time()
|
91 |
+
inpainted_image = self.inpaintor_model(gray_img, lines, mask, noise, ones)
|
92 |
+
logger.info(f"image_inpaintor_model time: {time.time() - start}")
|
93 |
+
|
94 |
+
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
|
95 |
+
cur_res = (cur_res * 127.5 + 127.5).astype(np.uint8)
|
96 |
+
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_GRAY2BGR)
|
97 |
+
return cur_res
|
iopaint/model/mat.py
ADDED
@@ -0,0 +1,1945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torch.utils.checkpoint as checkpoint
|
10 |
+
|
11 |
+
from iopaint.helper import (
|
12 |
+
load_model,
|
13 |
+
get_cache_path_by_url,
|
14 |
+
norm_img,
|
15 |
+
download_model,
|
16 |
+
)
|
17 |
+
from iopaint.schema import InpaintRequest
|
18 |
+
from .base import InpaintModel
|
19 |
+
from .utils import (
|
20 |
+
setup_filter,
|
21 |
+
Conv2dLayer,
|
22 |
+
FullyConnectedLayer,
|
23 |
+
conv2d_resample,
|
24 |
+
bias_act,
|
25 |
+
upsample2d,
|
26 |
+
activation_funcs,
|
27 |
+
MinibatchStdLayer,
|
28 |
+
to_2tuple,
|
29 |
+
normalize_2nd_moment,
|
30 |
+
set_seed,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
class ModulatedConv2d(nn.Module):
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
in_channels, # Number of input channels.
|
38 |
+
out_channels, # Number of output channels.
|
39 |
+
kernel_size, # Width and height of the convolution kernel.
|
40 |
+
style_dim, # dimension of the style code
|
41 |
+
demodulate=True, # perfrom demodulation
|
42 |
+
up=1, # Integer upsampling factor.
|
43 |
+
down=1, # Integer downsampling factor.
|
44 |
+
resample_filter=[
|
45 |
+
1,
|
46 |
+
3,
|
47 |
+
3,
|
48 |
+
1,
|
49 |
+
], # Low-pass filter to apply when resampling activations.
|
50 |
+
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
|
51 |
+
):
|
52 |
+
super().__init__()
|
53 |
+
self.demodulate = demodulate
|
54 |
+
|
55 |
+
self.weight = torch.nn.Parameter(
|
56 |
+
torch.randn([1, out_channels, in_channels, kernel_size, kernel_size])
|
57 |
+
)
|
58 |
+
self.out_channels = out_channels
|
59 |
+
self.kernel_size = kernel_size
|
60 |
+
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
|
61 |
+
self.padding = self.kernel_size // 2
|
62 |
+
self.up = up
|
63 |
+
self.down = down
|
64 |
+
self.register_buffer("resample_filter", setup_filter(resample_filter))
|
65 |
+
self.conv_clamp = conv_clamp
|
66 |
+
|
67 |
+
self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1)
|
68 |
+
|
69 |
+
def forward(self, x, style):
|
70 |
+
batch, in_channels, height, width = x.shape
|
71 |
+
style = self.affine(style).view(batch, 1, in_channels, 1, 1)
|
72 |
+
weight = self.weight * self.weight_gain * style
|
73 |
+
|
74 |
+
if self.demodulate:
|
75 |
+
decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt()
|
76 |
+
weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1)
|
77 |
+
|
78 |
+
weight = weight.view(
|
79 |
+
batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size
|
80 |
+
)
|
81 |
+
x = x.view(1, batch * in_channels, height, width)
|
82 |
+
x = conv2d_resample(
|
83 |
+
x=x,
|
84 |
+
w=weight,
|
85 |
+
f=self.resample_filter,
|
86 |
+
up=self.up,
|
87 |
+
down=self.down,
|
88 |
+
padding=self.padding,
|
89 |
+
groups=batch,
|
90 |
+
)
|
91 |
+
out = x.view(batch, self.out_channels, *x.shape[2:])
|
92 |
+
|
93 |
+
return out
|
94 |
+
|
95 |
+
|
96 |
+
class StyleConv(torch.nn.Module):
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
in_channels, # Number of input channels.
|
100 |
+
out_channels, # Number of output channels.
|
101 |
+
style_dim, # Intermediate latent (W) dimensionality.
|
102 |
+
resolution, # Resolution of this layer.
|
103 |
+
kernel_size=3, # Convolution kernel size.
|
104 |
+
up=1, # Integer upsampling factor.
|
105 |
+
use_noise=False, # Enable noise input?
|
106 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
107 |
+
resample_filter=[
|
108 |
+
1,
|
109 |
+
3,
|
110 |
+
3,
|
111 |
+
1,
|
112 |
+
], # Low-pass filter to apply when resampling activations.
|
113 |
+
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
|
114 |
+
demodulate=True, # perform demodulation
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
self.conv = ModulatedConv2d(
|
119 |
+
in_channels=in_channels,
|
120 |
+
out_channels=out_channels,
|
121 |
+
kernel_size=kernel_size,
|
122 |
+
style_dim=style_dim,
|
123 |
+
demodulate=demodulate,
|
124 |
+
up=up,
|
125 |
+
resample_filter=resample_filter,
|
126 |
+
conv_clamp=conv_clamp,
|
127 |
+
)
|
128 |
+
|
129 |
+
self.use_noise = use_noise
|
130 |
+
self.resolution = resolution
|
131 |
+
if use_noise:
|
132 |
+
self.register_buffer("noise_const", torch.randn([resolution, resolution]))
|
133 |
+
self.noise_strength = torch.nn.Parameter(torch.zeros([]))
|
134 |
+
|
135 |
+
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
|
136 |
+
self.activation = activation
|
137 |
+
self.act_gain = activation_funcs[activation].def_gain
|
138 |
+
self.conv_clamp = conv_clamp
|
139 |
+
|
140 |
+
def forward(self, x, style, noise_mode="random", gain=1):
|
141 |
+
x = self.conv(x, style)
|
142 |
+
|
143 |
+
assert noise_mode in ["random", "const", "none"]
|
144 |
+
|
145 |
+
if self.use_noise:
|
146 |
+
if noise_mode == "random":
|
147 |
+
xh, xw = x.size()[-2:]
|
148 |
+
noise = (
|
149 |
+
torch.randn([x.shape[0], 1, xh, xw], device=x.device)
|
150 |
+
* self.noise_strength
|
151 |
+
)
|
152 |
+
if noise_mode == "const":
|
153 |
+
noise = self.noise_const * self.noise_strength
|
154 |
+
x = x + noise
|
155 |
+
|
156 |
+
act_gain = self.act_gain * gain
|
157 |
+
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
|
158 |
+
out = bias_act(
|
159 |
+
x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp
|
160 |
+
)
|
161 |
+
|
162 |
+
return out
|
163 |
+
|
164 |
+
|
165 |
+
class ToRGB(torch.nn.Module):
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
in_channels,
|
169 |
+
out_channels,
|
170 |
+
style_dim,
|
171 |
+
kernel_size=1,
|
172 |
+
resample_filter=[1, 3, 3, 1],
|
173 |
+
conv_clamp=None,
|
174 |
+
demodulate=False,
|
175 |
+
):
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
self.conv = ModulatedConv2d(
|
179 |
+
in_channels=in_channels,
|
180 |
+
out_channels=out_channels,
|
181 |
+
kernel_size=kernel_size,
|
182 |
+
style_dim=style_dim,
|
183 |
+
demodulate=demodulate,
|
184 |
+
resample_filter=resample_filter,
|
185 |
+
conv_clamp=conv_clamp,
|
186 |
+
)
|
187 |
+
self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
|
188 |
+
self.register_buffer("resample_filter", setup_filter(resample_filter))
|
189 |
+
self.conv_clamp = conv_clamp
|
190 |
+
|
191 |
+
def forward(self, x, style, skip=None):
|
192 |
+
x = self.conv(x, style)
|
193 |
+
out = bias_act(x, self.bias, clamp=self.conv_clamp)
|
194 |
+
|
195 |
+
if skip is not None:
|
196 |
+
if skip.shape != out.shape:
|
197 |
+
skip = upsample2d(skip, self.resample_filter)
|
198 |
+
out = out + skip
|
199 |
+
|
200 |
+
return out
|
201 |
+
|
202 |
+
|
203 |
+
def get_style_code(a, b):
|
204 |
+
return torch.cat([a, b], dim=1)
|
205 |
+
|
206 |
+
|
207 |
+
class DecBlockFirst(nn.Module):
|
208 |
+
def __init__(
|
209 |
+
self,
|
210 |
+
in_channels,
|
211 |
+
out_channels,
|
212 |
+
activation,
|
213 |
+
style_dim,
|
214 |
+
use_noise,
|
215 |
+
demodulate,
|
216 |
+
img_channels,
|
217 |
+
):
|
218 |
+
super().__init__()
|
219 |
+
self.fc = FullyConnectedLayer(
|
220 |
+
in_features=in_channels * 2,
|
221 |
+
out_features=in_channels * 4**2,
|
222 |
+
activation=activation,
|
223 |
+
)
|
224 |
+
self.conv = StyleConv(
|
225 |
+
in_channels=in_channels,
|
226 |
+
out_channels=out_channels,
|
227 |
+
style_dim=style_dim,
|
228 |
+
resolution=4,
|
229 |
+
kernel_size=3,
|
230 |
+
use_noise=use_noise,
|
231 |
+
activation=activation,
|
232 |
+
demodulate=demodulate,
|
233 |
+
)
|
234 |
+
self.toRGB = ToRGB(
|
235 |
+
in_channels=out_channels,
|
236 |
+
out_channels=img_channels,
|
237 |
+
style_dim=style_dim,
|
238 |
+
kernel_size=1,
|
239 |
+
demodulate=False,
|
240 |
+
)
|
241 |
+
|
242 |
+
def forward(self, x, ws, gs, E_features, noise_mode="random"):
|
243 |
+
x = self.fc(x).view(x.shape[0], -1, 4, 4)
|
244 |
+
x = x + E_features[2]
|
245 |
+
style = get_style_code(ws[:, 0], gs)
|
246 |
+
x = self.conv(x, style, noise_mode=noise_mode)
|
247 |
+
style = get_style_code(ws[:, 1], gs)
|
248 |
+
img = self.toRGB(x, style, skip=None)
|
249 |
+
|
250 |
+
return x, img
|
251 |
+
|
252 |
+
|
253 |
+
class DecBlockFirstV2(nn.Module):
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
in_channels,
|
257 |
+
out_channels,
|
258 |
+
activation,
|
259 |
+
style_dim,
|
260 |
+
use_noise,
|
261 |
+
demodulate,
|
262 |
+
img_channels,
|
263 |
+
):
|
264 |
+
super().__init__()
|
265 |
+
self.conv0 = Conv2dLayer(
|
266 |
+
in_channels=in_channels,
|
267 |
+
out_channels=in_channels,
|
268 |
+
kernel_size=3,
|
269 |
+
activation=activation,
|
270 |
+
)
|
271 |
+
self.conv1 = StyleConv(
|
272 |
+
in_channels=in_channels,
|
273 |
+
out_channels=out_channels,
|
274 |
+
style_dim=style_dim,
|
275 |
+
resolution=4,
|
276 |
+
kernel_size=3,
|
277 |
+
use_noise=use_noise,
|
278 |
+
activation=activation,
|
279 |
+
demodulate=demodulate,
|
280 |
+
)
|
281 |
+
self.toRGB = ToRGB(
|
282 |
+
in_channels=out_channels,
|
283 |
+
out_channels=img_channels,
|
284 |
+
style_dim=style_dim,
|
285 |
+
kernel_size=1,
|
286 |
+
demodulate=False,
|
287 |
+
)
|
288 |
+
|
289 |
+
def forward(self, x, ws, gs, E_features, noise_mode="random"):
|
290 |
+
# x = self.fc(x).view(x.shape[0], -1, 4, 4)
|
291 |
+
x = self.conv0(x)
|
292 |
+
x = x + E_features[2]
|
293 |
+
style = get_style_code(ws[:, 0], gs)
|
294 |
+
x = self.conv1(x, style, noise_mode=noise_mode)
|
295 |
+
style = get_style_code(ws[:, 1], gs)
|
296 |
+
img = self.toRGB(x, style, skip=None)
|
297 |
+
|
298 |
+
return x, img
|
299 |
+
|
300 |
+
|
301 |
+
class DecBlock(nn.Module):
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
res,
|
305 |
+
in_channels,
|
306 |
+
out_channels,
|
307 |
+
activation,
|
308 |
+
style_dim,
|
309 |
+
use_noise,
|
310 |
+
demodulate,
|
311 |
+
img_channels,
|
312 |
+
): # res = 2, ..., resolution_log2
|
313 |
+
super().__init__()
|
314 |
+
self.res = res
|
315 |
+
|
316 |
+
self.conv0 = StyleConv(
|
317 |
+
in_channels=in_channels,
|
318 |
+
out_channels=out_channels,
|
319 |
+
style_dim=style_dim,
|
320 |
+
resolution=2**res,
|
321 |
+
kernel_size=3,
|
322 |
+
up=2,
|
323 |
+
use_noise=use_noise,
|
324 |
+
activation=activation,
|
325 |
+
demodulate=demodulate,
|
326 |
+
)
|
327 |
+
self.conv1 = StyleConv(
|
328 |
+
in_channels=out_channels,
|
329 |
+
out_channels=out_channels,
|
330 |
+
style_dim=style_dim,
|
331 |
+
resolution=2**res,
|
332 |
+
kernel_size=3,
|
333 |
+
use_noise=use_noise,
|
334 |
+
activation=activation,
|
335 |
+
demodulate=demodulate,
|
336 |
+
)
|
337 |
+
self.toRGB = ToRGB(
|
338 |
+
in_channels=out_channels,
|
339 |
+
out_channels=img_channels,
|
340 |
+
style_dim=style_dim,
|
341 |
+
kernel_size=1,
|
342 |
+
demodulate=False,
|
343 |
+
)
|
344 |
+
|
345 |
+
def forward(self, x, img, ws, gs, E_features, noise_mode="random"):
|
346 |
+
style = get_style_code(ws[:, self.res * 2 - 5], gs)
|
347 |
+
x = self.conv0(x, style, noise_mode=noise_mode)
|
348 |
+
x = x + E_features[self.res]
|
349 |
+
style = get_style_code(ws[:, self.res * 2 - 4], gs)
|
350 |
+
x = self.conv1(x, style, noise_mode=noise_mode)
|
351 |
+
style = get_style_code(ws[:, self.res * 2 - 3], gs)
|
352 |
+
img = self.toRGB(x, style, skip=img)
|
353 |
+
|
354 |
+
return x, img
|
355 |
+
|
356 |
+
|
357 |
+
class MappingNet(torch.nn.Module):
|
358 |
+
def __init__(
|
359 |
+
self,
|
360 |
+
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
|
361 |
+
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
|
362 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
363 |
+
num_ws, # Number of intermediate latents to output, None = do not broadcast.
|
364 |
+
num_layers=8, # Number of mapping layers.
|
365 |
+
embed_features=None, # Label embedding dimensionality, None = same as w_dim.
|
366 |
+
layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim.
|
367 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
368 |
+
lr_multiplier=0.01, # Learning rate multiplier for the mapping layers.
|
369 |
+
w_avg_beta=0.995, # Decay for tracking the moving average of W during training, None = do not track.
|
370 |
+
torch_dtype=torch.float32,
|
371 |
+
):
|
372 |
+
super().__init__()
|
373 |
+
self.z_dim = z_dim
|
374 |
+
self.c_dim = c_dim
|
375 |
+
self.w_dim = w_dim
|
376 |
+
self.num_ws = num_ws
|
377 |
+
self.num_layers = num_layers
|
378 |
+
self.w_avg_beta = w_avg_beta
|
379 |
+
self.torch_dtype = torch_dtype
|
380 |
+
|
381 |
+
if embed_features is None:
|
382 |
+
embed_features = w_dim
|
383 |
+
if c_dim == 0:
|
384 |
+
embed_features = 0
|
385 |
+
if layer_features is None:
|
386 |
+
layer_features = w_dim
|
387 |
+
features_list = (
|
388 |
+
[z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
|
389 |
+
)
|
390 |
+
|
391 |
+
if c_dim > 0:
|
392 |
+
self.embed = FullyConnectedLayer(c_dim, embed_features)
|
393 |
+
for idx in range(num_layers):
|
394 |
+
in_features = features_list[idx]
|
395 |
+
out_features = features_list[idx + 1]
|
396 |
+
layer = FullyConnectedLayer(
|
397 |
+
in_features,
|
398 |
+
out_features,
|
399 |
+
activation=activation,
|
400 |
+
lr_multiplier=lr_multiplier,
|
401 |
+
)
|
402 |
+
setattr(self, f"fc{idx}", layer)
|
403 |
+
|
404 |
+
if num_ws is not None and w_avg_beta is not None:
|
405 |
+
self.register_buffer("w_avg", torch.zeros([w_dim]))
|
406 |
+
|
407 |
+
def forward(
|
408 |
+
self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
|
409 |
+
):
|
410 |
+
# Embed, normalize, and concat inputs.
|
411 |
+
x = None
|
412 |
+
if self.z_dim > 0:
|
413 |
+
x = normalize_2nd_moment(z)
|
414 |
+
if self.c_dim > 0:
|
415 |
+
y = normalize_2nd_moment(self.embed(c))
|
416 |
+
x = torch.cat([x, y], dim=1) if x is not None else y
|
417 |
+
|
418 |
+
# Main layers.
|
419 |
+
for idx in range(self.num_layers):
|
420 |
+
layer = getattr(self, f"fc{idx}")
|
421 |
+
x = layer(x)
|
422 |
+
|
423 |
+
# Update moving average of W.
|
424 |
+
if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
|
425 |
+
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
|
426 |
+
|
427 |
+
# Broadcast.
|
428 |
+
if self.num_ws is not None:
|
429 |
+
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
|
430 |
+
|
431 |
+
# Apply truncation.
|
432 |
+
if truncation_psi != 1:
|
433 |
+
assert self.w_avg_beta is not None
|
434 |
+
if self.num_ws is None or truncation_cutoff is None:
|
435 |
+
x = self.w_avg.lerp(x, truncation_psi)
|
436 |
+
else:
|
437 |
+
x[:, :truncation_cutoff] = self.w_avg.lerp(
|
438 |
+
x[:, :truncation_cutoff], truncation_psi
|
439 |
+
)
|
440 |
+
|
441 |
+
return x
|
442 |
+
|
443 |
+
|
444 |
+
class DisFromRGB(nn.Module):
|
445 |
+
def __init__(
|
446 |
+
self, in_channels, out_channels, activation
|
447 |
+
): # res = 2, ..., resolution_log2
|
448 |
+
super().__init__()
|
449 |
+
self.conv = Conv2dLayer(
|
450 |
+
in_channels=in_channels,
|
451 |
+
out_channels=out_channels,
|
452 |
+
kernel_size=1,
|
453 |
+
activation=activation,
|
454 |
+
)
|
455 |
+
|
456 |
+
def forward(self, x):
|
457 |
+
return self.conv(x)
|
458 |
+
|
459 |
+
|
460 |
+
class DisBlock(nn.Module):
|
461 |
+
def __init__(
|
462 |
+
self, in_channels, out_channels, activation
|
463 |
+
): # res = 2, ..., resolution_log2
|
464 |
+
super().__init__()
|
465 |
+
self.conv0 = Conv2dLayer(
|
466 |
+
in_channels=in_channels,
|
467 |
+
out_channels=in_channels,
|
468 |
+
kernel_size=3,
|
469 |
+
activation=activation,
|
470 |
+
)
|
471 |
+
self.conv1 = Conv2dLayer(
|
472 |
+
in_channels=in_channels,
|
473 |
+
out_channels=out_channels,
|
474 |
+
kernel_size=3,
|
475 |
+
down=2,
|
476 |
+
activation=activation,
|
477 |
+
)
|
478 |
+
self.skip = Conv2dLayer(
|
479 |
+
in_channels=in_channels,
|
480 |
+
out_channels=out_channels,
|
481 |
+
kernel_size=1,
|
482 |
+
down=2,
|
483 |
+
bias=False,
|
484 |
+
)
|
485 |
+
|
486 |
+
def forward(self, x):
|
487 |
+
skip = self.skip(x, gain=np.sqrt(0.5))
|
488 |
+
x = self.conv0(x)
|
489 |
+
x = self.conv1(x, gain=np.sqrt(0.5))
|
490 |
+
out = skip + x
|
491 |
+
|
492 |
+
return out
|
493 |
+
|
494 |
+
|
495 |
+
class Discriminator(torch.nn.Module):
|
496 |
+
def __init__(
|
497 |
+
self,
|
498 |
+
c_dim, # Conditioning label (C) dimensionality.
|
499 |
+
img_resolution, # Input resolution.
|
500 |
+
img_channels, # Number of input color channels.
|
501 |
+
channel_base=32768, # Overall multiplier for the number of channels.
|
502 |
+
channel_max=512, # Maximum number of channels in any layer.
|
503 |
+
channel_decay=1,
|
504 |
+
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
|
505 |
+
activation="lrelu",
|
506 |
+
mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
|
507 |
+
mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable.
|
508 |
+
):
|
509 |
+
super().__init__()
|
510 |
+
self.c_dim = c_dim
|
511 |
+
self.img_resolution = img_resolution
|
512 |
+
self.img_channels = img_channels
|
513 |
+
|
514 |
+
resolution_log2 = int(np.log2(img_resolution))
|
515 |
+
assert img_resolution == 2**resolution_log2 and img_resolution >= 4
|
516 |
+
self.resolution_log2 = resolution_log2
|
517 |
+
|
518 |
+
def nf(stage):
|
519 |
+
return np.clip(
|
520 |
+
int(channel_base / 2 ** (stage * channel_decay)), 1, channel_max
|
521 |
+
)
|
522 |
+
|
523 |
+
if cmap_dim == None:
|
524 |
+
cmap_dim = nf(2)
|
525 |
+
if c_dim == 0:
|
526 |
+
cmap_dim = 0
|
527 |
+
self.cmap_dim = cmap_dim
|
528 |
+
|
529 |
+
if c_dim > 0:
|
530 |
+
self.mapping = MappingNet(
|
531 |
+
z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None
|
532 |
+
)
|
533 |
+
|
534 |
+
Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)]
|
535 |
+
for res in range(resolution_log2, 2, -1):
|
536 |
+
Dis.append(DisBlock(nf(res), nf(res - 1), activation))
|
537 |
+
|
538 |
+
if mbstd_num_channels > 0:
|
539 |
+
Dis.append(
|
540 |
+
MinibatchStdLayer(
|
541 |
+
group_size=mbstd_group_size, num_channels=mbstd_num_channels
|
542 |
+
)
|
543 |
+
)
|
544 |
+
Dis.append(
|
545 |
+
Conv2dLayer(
|
546 |
+
nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation
|
547 |
+
)
|
548 |
+
)
|
549 |
+
self.Dis = nn.Sequential(*Dis)
|
550 |
+
|
551 |
+
self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
|
552 |
+
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
|
553 |
+
|
554 |
+
def forward(self, images_in, masks_in, c):
|
555 |
+
x = torch.cat([masks_in - 0.5, images_in], dim=1)
|
556 |
+
x = self.Dis(x)
|
557 |
+
x = self.fc1(self.fc0(x.flatten(start_dim=1)))
|
558 |
+
|
559 |
+
if self.c_dim > 0:
|
560 |
+
cmap = self.mapping(None, c)
|
561 |
+
|
562 |
+
if self.cmap_dim > 0:
|
563 |
+
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
|
564 |
+
|
565 |
+
return x
|
566 |
+
|
567 |
+
|
568 |
+
def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512):
|
569 |
+
NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512}
|
570 |
+
return NF[2**stage]
|
571 |
+
|
572 |
+
|
573 |
+
class Mlp(nn.Module):
|
574 |
+
def __init__(
|
575 |
+
self,
|
576 |
+
in_features,
|
577 |
+
hidden_features=None,
|
578 |
+
out_features=None,
|
579 |
+
act_layer=nn.GELU,
|
580 |
+
drop=0.0,
|
581 |
+
):
|
582 |
+
super().__init__()
|
583 |
+
out_features = out_features or in_features
|
584 |
+
hidden_features = hidden_features or in_features
|
585 |
+
self.fc1 = FullyConnectedLayer(
|
586 |
+
in_features=in_features, out_features=hidden_features, activation="lrelu"
|
587 |
+
)
|
588 |
+
self.fc2 = FullyConnectedLayer(
|
589 |
+
in_features=hidden_features, out_features=out_features
|
590 |
+
)
|
591 |
+
|
592 |
+
def forward(self, x):
|
593 |
+
x = self.fc1(x)
|
594 |
+
x = self.fc2(x)
|
595 |
+
return x
|
596 |
+
|
597 |
+
|
598 |
+
def window_partition(x, window_size):
|
599 |
+
"""
|
600 |
+
Args:
|
601 |
+
x: (B, H, W, C)
|
602 |
+
window_size (int): window size
|
603 |
+
Returns:
|
604 |
+
windows: (num_windows*B, window_size, window_size, C)
|
605 |
+
"""
|
606 |
+
B, H, W, C = x.shape
|
607 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
608 |
+
windows = (
|
609 |
+
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
610 |
+
)
|
611 |
+
return windows
|
612 |
+
|
613 |
+
|
614 |
+
def window_reverse(windows, window_size: int, H: int, W: int):
|
615 |
+
"""
|
616 |
+
Args:
|
617 |
+
windows: (num_windows*B, window_size, window_size, C)
|
618 |
+
window_size (int): Window size
|
619 |
+
H (int): Height of image
|
620 |
+
W (int): Width of image
|
621 |
+
Returns:
|
622 |
+
x: (B, H, W, C)
|
623 |
+
"""
|
624 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
625 |
+
# B = windows.shape[0] / (H * W / window_size / window_size)
|
626 |
+
x = windows.view(
|
627 |
+
B, H // window_size, W // window_size, window_size, window_size, -1
|
628 |
+
)
|
629 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
630 |
+
return x
|
631 |
+
|
632 |
+
|
633 |
+
class Conv2dLayerPartial(nn.Module):
|
634 |
+
def __init__(
|
635 |
+
self,
|
636 |
+
in_channels, # Number of input channels.
|
637 |
+
out_channels, # Number of output channels.
|
638 |
+
kernel_size, # Width and height of the convolution kernel.
|
639 |
+
bias=True, # Apply additive bias before the activation function?
|
640 |
+
activation="linear", # Activation function: 'relu', 'lrelu', etc.
|
641 |
+
up=1, # Integer upsampling factor.
|
642 |
+
down=1, # Integer downsampling factor.
|
643 |
+
resample_filter=[
|
644 |
+
1,
|
645 |
+
3,
|
646 |
+
3,
|
647 |
+
1,
|
648 |
+
], # Low-pass filter to apply when resampling activations.
|
649 |
+
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
|
650 |
+
trainable=True, # Update the weights of this layer during training?
|
651 |
+
):
|
652 |
+
super().__init__()
|
653 |
+
self.conv = Conv2dLayer(
|
654 |
+
in_channels,
|
655 |
+
out_channels,
|
656 |
+
kernel_size,
|
657 |
+
bias,
|
658 |
+
activation,
|
659 |
+
up,
|
660 |
+
down,
|
661 |
+
resample_filter,
|
662 |
+
conv_clamp,
|
663 |
+
trainable,
|
664 |
+
)
|
665 |
+
|
666 |
+
self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size)
|
667 |
+
self.slide_winsize = kernel_size**2
|
668 |
+
self.stride = down
|
669 |
+
self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0
|
670 |
+
|
671 |
+
def forward(self, x, mask=None):
|
672 |
+
if mask is not None:
|
673 |
+
with torch.no_grad():
|
674 |
+
if self.weight_maskUpdater.type() != x.type():
|
675 |
+
self.weight_maskUpdater = self.weight_maskUpdater.to(x)
|
676 |
+
update_mask = F.conv2d(
|
677 |
+
mask,
|
678 |
+
self.weight_maskUpdater,
|
679 |
+
bias=None,
|
680 |
+
stride=self.stride,
|
681 |
+
padding=self.padding,
|
682 |
+
)
|
683 |
+
mask_ratio = self.slide_winsize / (update_mask.to(torch.float32) + 1e-8)
|
684 |
+
update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1
|
685 |
+
mask_ratio = torch.mul(mask_ratio, update_mask).to(x.dtype)
|
686 |
+
x = self.conv(x)
|
687 |
+
x = torch.mul(x, mask_ratio)
|
688 |
+
return x, update_mask
|
689 |
+
else:
|
690 |
+
x = self.conv(x)
|
691 |
+
return x, None
|
692 |
+
|
693 |
+
|
694 |
+
class WindowAttention(nn.Module):
|
695 |
+
r"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
696 |
+
It supports both of shifted and non-shifted window.
|
697 |
+
Args:
|
698 |
+
dim (int): Number of input channels.
|
699 |
+
window_size (tuple[int]): The height and width of the window.
|
700 |
+
num_heads (int): Number of attention heads.
|
701 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
702 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
703 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
704 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
705 |
+
"""
|
706 |
+
|
707 |
+
def __init__(
|
708 |
+
self,
|
709 |
+
dim,
|
710 |
+
window_size,
|
711 |
+
num_heads,
|
712 |
+
down_ratio=1,
|
713 |
+
qkv_bias=True,
|
714 |
+
qk_scale=None,
|
715 |
+
attn_drop=0.0,
|
716 |
+
proj_drop=0.0,
|
717 |
+
):
|
718 |
+
super().__init__()
|
719 |
+
self.dim = dim
|
720 |
+
self.window_size = window_size # Wh, Ww
|
721 |
+
self.num_heads = num_heads
|
722 |
+
head_dim = dim // num_heads
|
723 |
+
self.scale = qk_scale or head_dim**-0.5
|
724 |
+
|
725 |
+
self.q = FullyConnectedLayer(in_features=dim, out_features=dim)
|
726 |
+
self.k = FullyConnectedLayer(in_features=dim, out_features=dim)
|
727 |
+
self.v = FullyConnectedLayer(in_features=dim, out_features=dim)
|
728 |
+
self.proj = FullyConnectedLayer(in_features=dim, out_features=dim)
|
729 |
+
|
730 |
+
self.softmax = nn.Softmax(dim=-1)
|
731 |
+
|
732 |
+
def forward(self, x, mask_windows=None, mask=None):
|
733 |
+
"""
|
734 |
+
Args:
|
735 |
+
x: input features with shape of (num_windows*B, N, C)
|
736 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
737 |
+
"""
|
738 |
+
B_, N, C = x.shape
|
739 |
+
norm_x = F.normalize(x, p=2.0, dim=-1, eps=torch.finfo(x.dtype).eps)
|
740 |
+
q = (
|
741 |
+
self.q(norm_x)
|
742 |
+
.reshape(B_, N, self.num_heads, C // self.num_heads)
|
743 |
+
.permute(0, 2, 1, 3)
|
744 |
+
)
|
745 |
+
k = (
|
746 |
+
self.k(norm_x)
|
747 |
+
.view(B_, -1, self.num_heads, C // self.num_heads)
|
748 |
+
.permute(0, 2, 3, 1)
|
749 |
+
)
|
750 |
+
v = (
|
751 |
+
self.v(x)
|
752 |
+
.view(B_, -1, self.num_heads, C // self.num_heads)
|
753 |
+
.permute(0, 2, 1, 3)
|
754 |
+
)
|
755 |
+
|
756 |
+
attn = (q @ k) * self.scale
|
757 |
+
|
758 |
+
if mask is not None:
|
759 |
+
nW = mask.shape[0]
|
760 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
|
761 |
+
1
|
762 |
+
).unsqueeze(0)
|
763 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
764 |
+
|
765 |
+
if mask_windows is not None:
|
766 |
+
attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1)
|
767 |
+
attn = attn + attn_mask_windows.masked_fill(
|
768 |
+
attn_mask_windows == 0, float(-100.0)
|
769 |
+
).masked_fill(attn_mask_windows == 1, float(0.0))
|
770 |
+
with torch.no_grad():
|
771 |
+
mask_windows = torch.clamp(
|
772 |
+
torch.sum(mask_windows, dim=1, keepdim=True), 0, 1
|
773 |
+
).repeat(1, N, 1)
|
774 |
+
|
775 |
+
attn = self.softmax(attn)
|
776 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
777 |
+
x = self.proj(x)
|
778 |
+
return x, mask_windows
|
779 |
+
|
780 |
+
|
781 |
+
class SwinTransformerBlock(nn.Module):
|
782 |
+
r"""Swin Transformer Block.
|
783 |
+
Args:
|
784 |
+
dim (int): Number of input channels.
|
785 |
+
input_resolution (tuple[int]): Input resulotion.
|
786 |
+
num_heads (int): Number of attention heads.
|
787 |
+
window_size (int): Window size.
|
788 |
+
shift_size (int): Shift size for SW-MSA.
|
789 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
790 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
791 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
792 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
793 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
794 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
795 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
796 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
797 |
+
"""
|
798 |
+
|
799 |
+
def __init__(
|
800 |
+
self,
|
801 |
+
dim,
|
802 |
+
input_resolution,
|
803 |
+
num_heads,
|
804 |
+
down_ratio=1,
|
805 |
+
window_size=7,
|
806 |
+
shift_size=0,
|
807 |
+
mlp_ratio=4.0,
|
808 |
+
qkv_bias=True,
|
809 |
+
qk_scale=None,
|
810 |
+
drop=0.0,
|
811 |
+
attn_drop=0.0,
|
812 |
+
drop_path=0.0,
|
813 |
+
act_layer=nn.GELU,
|
814 |
+
norm_layer=nn.LayerNorm,
|
815 |
+
):
|
816 |
+
super().__init__()
|
817 |
+
self.dim = dim
|
818 |
+
self.input_resolution = input_resolution
|
819 |
+
self.num_heads = num_heads
|
820 |
+
self.window_size = window_size
|
821 |
+
self.shift_size = shift_size
|
822 |
+
self.mlp_ratio = mlp_ratio
|
823 |
+
if min(self.input_resolution) <= self.window_size:
|
824 |
+
# if window size is larger than input resolution, we don't partition windows
|
825 |
+
self.shift_size = 0
|
826 |
+
self.window_size = min(self.input_resolution)
|
827 |
+
assert (
|
828 |
+
0 <= self.shift_size < self.window_size
|
829 |
+
), "shift_size must in 0-window_size"
|
830 |
+
|
831 |
+
if self.shift_size > 0:
|
832 |
+
down_ratio = 1
|
833 |
+
self.attn = WindowAttention(
|
834 |
+
dim,
|
835 |
+
window_size=to_2tuple(self.window_size),
|
836 |
+
num_heads=num_heads,
|
837 |
+
down_ratio=down_ratio,
|
838 |
+
qkv_bias=qkv_bias,
|
839 |
+
qk_scale=qk_scale,
|
840 |
+
attn_drop=attn_drop,
|
841 |
+
proj_drop=drop,
|
842 |
+
)
|
843 |
+
|
844 |
+
self.fuse = FullyConnectedLayer(
|
845 |
+
in_features=dim * 2, out_features=dim, activation="lrelu"
|
846 |
+
)
|
847 |
+
|
848 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
849 |
+
self.mlp = Mlp(
|
850 |
+
in_features=dim,
|
851 |
+
hidden_features=mlp_hidden_dim,
|
852 |
+
act_layer=act_layer,
|
853 |
+
drop=drop,
|
854 |
+
)
|
855 |
+
|
856 |
+
if self.shift_size > 0:
|
857 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
858 |
+
else:
|
859 |
+
attn_mask = None
|
860 |
+
|
861 |
+
self.register_buffer("attn_mask", attn_mask)
|
862 |
+
|
863 |
+
def calculate_mask(self, x_size):
|
864 |
+
# calculate attention mask for SW-MSA
|
865 |
+
H, W = x_size
|
866 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
867 |
+
h_slices = (
|
868 |
+
slice(0, -self.window_size),
|
869 |
+
slice(-self.window_size, -self.shift_size),
|
870 |
+
slice(-self.shift_size, None),
|
871 |
+
)
|
872 |
+
w_slices = (
|
873 |
+
slice(0, -self.window_size),
|
874 |
+
slice(-self.window_size, -self.shift_size),
|
875 |
+
slice(-self.shift_size, None),
|
876 |
+
)
|
877 |
+
cnt = 0
|
878 |
+
for h in h_slices:
|
879 |
+
for w in w_slices:
|
880 |
+
img_mask[:, h, w, :] = cnt
|
881 |
+
cnt += 1
|
882 |
+
|
883 |
+
mask_windows = window_partition(
|
884 |
+
img_mask, self.window_size
|
885 |
+
) # nW, window_size, window_size, 1
|
886 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
887 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
888 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
889 |
+
attn_mask == 0, float(0.0)
|
890 |
+
)
|
891 |
+
|
892 |
+
return attn_mask
|
893 |
+
|
894 |
+
def forward(self, x, x_size, mask=None):
|
895 |
+
# H, W = self.input_resolution
|
896 |
+
H, W = x_size
|
897 |
+
B, L, C = x.shape
|
898 |
+
# assert L == H * W, "input feature has wrong size"
|
899 |
+
|
900 |
+
shortcut = x
|
901 |
+
x = x.view(B, H, W, C)
|
902 |
+
if mask is not None:
|
903 |
+
mask = mask.view(B, H, W, 1)
|
904 |
+
|
905 |
+
# cyclic shift
|
906 |
+
if self.shift_size > 0:
|
907 |
+
shifted_x = torch.roll(
|
908 |
+
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
|
909 |
+
)
|
910 |
+
if mask is not None:
|
911 |
+
shifted_mask = torch.roll(
|
912 |
+
mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
|
913 |
+
)
|
914 |
+
else:
|
915 |
+
shifted_x = x
|
916 |
+
if mask is not None:
|
917 |
+
shifted_mask = mask
|
918 |
+
|
919 |
+
# partition windows
|
920 |
+
x_windows = window_partition(
|
921 |
+
shifted_x, self.window_size
|
922 |
+
) # nW*B, window_size, window_size, C
|
923 |
+
x_windows = x_windows.view(
|
924 |
+
-1, self.window_size * self.window_size, C
|
925 |
+
) # nW*B, window_size*window_size, C
|
926 |
+
if mask is not None:
|
927 |
+
mask_windows = window_partition(shifted_mask, self.window_size)
|
928 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1)
|
929 |
+
else:
|
930 |
+
mask_windows = None
|
931 |
+
|
932 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
933 |
+
if self.input_resolution == x_size:
|
934 |
+
attn_windows, mask_windows = self.attn(
|
935 |
+
x_windows, mask_windows, mask=self.attn_mask
|
936 |
+
) # nW*B, window_size*window_size, C
|
937 |
+
else:
|
938 |
+
attn_windows, mask_windows = self.attn(
|
939 |
+
x_windows,
|
940 |
+
mask_windows,
|
941 |
+
mask=self.calculate_mask(x_size).to(x.dtype).to(x.device),
|
942 |
+
) # nW*B, window_size*window_size, C
|
943 |
+
|
944 |
+
# merge windows
|
945 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
946 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
947 |
+
if mask is not None:
|
948 |
+
mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1)
|
949 |
+
shifted_mask = window_reverse(mask_windows, self.window_size, H, W)
|
950 |
+
|
951 |
+
# reverse cyclic shift
|
952 |
+
if self.shift_size > 0:
|
953 |
+
x = torch.roll(
|
954 |
+
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
|
955 |
+
)
|
956 |
+
if mask is not None:
|
957 |
+
mask = torch.roll(
|
958 |
+
shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
|
959 |
+
)
|
960 |
+
else:
|
961 |
+
x = shifted_x
|
962 |
+
if mask is not None:
|
963 |
+
mask = shifted_mask
|
964 |
+
x = x.view(B, H * W, C)
|
965 |
+
if mask is not None:
|
966 |
+
mask = mask.view(B, H * W, 1)
|
967 |
+
|
968 |
+
# FFN
|
969 |
+
x = self.fuse(torch.cat([shortcut, x], dim=-1))
|
970 |
+
x = self.mlp(x)
|
971 |
+
|
972 |
+
return x, mask
|
973 |
+
|
974 |
+
|
975 |
+
class PatchMerging(nn.Module):
|
976 |
+
def __init__(self, in_channels, out_channels, down=2):
|
977 |
+
super().__init__()
|
978 |
+
self.conv = Conv2dLayerPartial(
|
979 |
+
in_channels=in_channels,
|
980 |
+
out_channels=out_channels,
|
981 |
+
kernel_size=3,
|
982 |
+
activation="lrelu",
|
983 |
+
down=down,
|
984 |
+
)
|
985 |
+
self.down = down
|
986 |
+
|
987 |
+
def forward(self, x, x_size, mask=None):
|
988 |
+
x = token2feature(x, x_size)
|
989 |
+
if mask is not None:
|
990 |
+
mask = token2feature(mask, x_size)
|
991 |
+
x, mask = self.conv(x, mask)
|
992 |
+
if self.down != 1:
|
993 |
+
ratio = 1 / self.down
|
994 |
+
x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio))
|
995 |
+
x = feature2token(x)
|
996 |
+
if mask is not None:
|
997 |
+
mask = feature2token(mask)
|
998 |
+
return x, x_size, mask
|
999 |
+
|
1000 |
+
|
1001 |
+
class PatchUpsampling(nn.Module):
|
1002 |
+
def __init__(self, in_channels, out_channels, up=2):
|
1003 |
+
super().__init__()
|
1004 |
+
self.conv = Conv2dLayerPartial(
|
1005 |
+
in_channels=in_channels,
|
1006 |
+
out_channels=out_channels,
|
1007 |
+
kernel_size=3,
|
1008 |
+
activation="lrelu",
|
1009 |
+
up=up,
|
1010 |
+
)
|
1011 |
+
self.up = up
|
1012 |
+
|
1013 |
+
def forward(self, x, x_size, mask=None):
|
1014 |
+
x = token2feature(x, x_size)
|
1015 |
+
if mask is not None:
|
1016 |
+
mask = token2feature(mask, x_size)
|
1017 |
+
x, mask = self.conv(x, mask)
|
1018 |
+
if self.up != 1:
|
1019 |
+
x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up))
|
1020 |
+
x = feature2token(x)
|
1021 |
+
if mask is not None:
|
1022 |
+
mask = feature2token(mask)
|
1023 |
+
return x, x_size, mask
|
1024 |
+
|
1025 |
+
|
1026 |
+
class BasicLayer(nn.Module):
|
1027 |
+
"""A basic Swin Transformer layer for one stage.
|
1028 |
+
Args:
|
1029 |
+
dim (int): Number of input channels.
|
1030 |
+
input_resolution (tuple[int]): Input resolution.
|
1031 |
+
depth (int): Number of blocks.
|
1032 |
+
num_heads (int): Number of attention heads.
|
1033 |
+
window_size (int): Local window size.
|
1034 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
1035 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
1036 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
1037 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
1038 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
1039 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
1040 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
1041 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
1042 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
1043 |
+
"""
|
1044 |
+
|
1045 |
+
def __init__(
|
1046 |
+
self,
|
1047 |
+
dim,
|
1048 |
+
input_resolution,
|
1049 |
+
depth,
|
1050 |
+
num_heads,
|
1051 |
+
window_size,
|
1052 |
+
down_ratio=1,
|
1053 |
+
mlp_ratio=2.0,
|
1054 |
+
qkv_bias=True,
|
1055 |
+
qk_scale=None,
|
1056 |
+
drop=0.0,
|
1057 |
+
attn_drop=0.0,
|
1058 |
+
drop_path=0.0,
|
1059 |
+
norm_layer=nn.LayerNorm,
|
1060 |
+
downsample=None,
|
1061 |
+
use_checkpoint=False,
|
1062 |
+
):
|
1063 |
+
super().__init__()
|
1064 |
+
self.dim = dim
|
1065 |
+
self.input_resolution = input_resolution
|
1066 |
+
self.depth = depth
|
1067 |
+
self.use_checkpoint = use_checkpoint
|
1068 |
+
|
1069 |
+
# patch merging layer
|
1070 |
+
if downsample is not None:
|
1071 |
+
# self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
1072 |
+
self.downsample = downsample
|
1073 |
+
else:
|
1074 |
+
self.downsample = None
|
1075 |
+
|
1076 |
+
# build blocks
|
1077 |
+
self.blocks = nn.ModuleList(
|
1078 |
+
[
|
1079 |
+
SwinTransformerBlock(
|
1080 |
+
dim=dim,
|
1081 |
+
input_resolution=input_resolution,
|
1082 |
+
num_heads=num_heads,
|
1083 |
+
down_ratio=down_ratio,
|
1084 |
+
window_size=window_size,
|
1085 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
1086 |
+
mlp_ratio=mlp_ratio,
|
1087 |
+
qkv_bias=qkv_bias,
|
1088 |
+
qk_scale=qk_scale,
|
1089 |
+
drop=drop,
|
1090 |
+
attn_drop=attn_drop,
|
1091 |
+
drop_path=drop_path[i]
|
1092 |
+
if isinstance(drop_path, list)
|
1093 |
+
else drop_path,
|
1094 |
+
norm_layer=norm_layer,
|
1095 |
+
)
|
1096 |
+
for i in range(depth)
|
1097 |
+
]
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
self.conv = Conv2dLayerPartial(
|
1101 |
+
in_channels=dim, out_channels=dim, kernel_size=3, activation="lrelu"
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
def forward(self, x, x_size, mask=None):
|
1105 |
+
if self.downsample is not None:
|
1106 |
+
x, x_size, mask = self.downsample(x, x_size, mask)
|
1107 |
+
identity = x
|
1108 |
+
for blk in self.blocks:
|
1109 |
+
if self.use_checkpoint:
|
1110 |
+
x, mask = checkpoint.checkpoint(blk, x, x_size, mask)
|
1111 |
+
else:
|
1112 |
+
x, mask = blk(x, x_size, mask)
|
1113 |
+
if mask is not None:
|
1114 |
+
mask = token2feature(mask, x_size)
|
1115 |
+
x, mask = self.conv(token2feature(x, x_size), mask)
|
1116 |
+
x = feature2token(x) + identity
|
1117 |
+
if mask is not None:
|
1118 |
+
mask = feature2token(mask)
|
1119 |
+
return x, x_size, mask
|
1120 |
+
|
1121 |
+
|
1122 |
+
class ToToken(nn.Module):
|
1123 |
+
def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1):
|
1124 |
+
super().__init__()
|
1125 |
+
|
1126 |
+
self.proj = Conv2dLayerPartial(
|
1127 |
+
in_channels=in_channels,
|
1128 |
+
out_channels=dim,
|
1129 |
+
kernel_size=kernel_size,
|
1130 |
+
activation="lrelu",
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
def forward(self, x, mask):
|
1134 |
+
x, mask = self.proj(x, mask)
|
1135 |
+
|
1136 |
+
return x, mask
|
1137 |
+
|
1138 |
+
|
1139 |
+
class EncFromRGB(nn.Module):
|
1140 |
+
def __init__(
|
1141 |
+
self, in_channels, out_channels, activation
|
1142 |
+
): # res = 2, ..., resolution_log2
|
1143 |
+
super().__init__()
|
1144 |
+
self.conv0 = Conv2dLayer(
|
1145 |
+
in_channels=in_channels,
|
1146 |
+
out_channels=out_channels,
|
1147 |
+
kernel_size=1,
|
1148 |
+
activation=activation,
|
1149 |
+
)
|
1150 |
+
self.conv1 = Conv2dLayer(
|
1151 |
+
in_channels=out_channels,
|
1152 |
+
out_channels=out_channels,
|
1153 |
+
kernel_size=3,
|
1154 |
+
activation=activation,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
def forward(self, x):
|
1158 |
+
x = self.conv0(x)
|
1159 |
+
x = self.conv1(x)
|
1160 |
+
|
1161 |
+
return x
|
1162 |
+
|
1163 |
+
|
1164 |
+
class ConvBlockDown(nn.Module):
|
1165 |
+
def __init__(
|
1166 |
+
self, in_channels, out_channels, activation
|
1167 |
+
): # res = 2, ..., resolution_log
|
1168 |
+
super().__init__()
|
1169 |
+
|
1170 |
+
self.conv0 = Conv2dLayer(
|
1171 |
+
in_channels=in_channels,
|
1172 |
+
out_channels=out_channels,
|
1173 |
+
kernel_size=3,
|
1174 |
+
activation=activation,
|
1175 |
+
down=2,
|
1176 |
+
)
|
1177 |
+
self.conv1 = Conv2dLayer(
|
1178 |
+
in_channels=out_channels,
|
1179 |
+
out_channels=out_channels,
|
1180 |
+
kernel_size=3,
|
1181 |
+
activation=activation,
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
def forward(self, x):
|
1185 |
+
x = self.conv0(x)
|
1186 |
+
x = self.conv1(x)
|
1187 |
+
|
1188 |
+
return x
|
1189 |
+
|
1190 |
+
|
1191 |
+
def token2feature(x, x_size):
|
1192 |
+
B, N, C = x.shape
|
1193 |
+
h, w = x_size
|
1194 |
+
x = x.permute(0, 2, 1).reshape(B, C, h, w)
|
1195 |
+
return x
|
1196 |
+
|
1197 |
+
|
1198 |
+
def feature2token(x):
|
1199 |
+
B, C, H, W = x.shape
|
1200 |
+
x = x.view(B, C, -1).transpose(1, 2)
|
1201 |
+
return x
|
1202 |
+
|
1203 |
+
|
1204 |
+
class Encoder(nn.Module):
|
1205 |
+
def __init__(
|
1206 |
+
self,
|
1207 |
+
res_log2,
|
1208 |
+
img_channels,
|
1209 |
+
activation,
|
1210 |
+
patch_size=5,
|
1211 |
+
channels=16,
|
1212 |
+
drop_path_rate=0.1,
|
1213 |
+
):
|
1214 |
+
super().__init__()
|
1215 |
+
|
1216 |
+
self.resolution = []
|
1217 |
+
|
1218 |
+
for idx, i in enumerate(range(res_log2, 3, -1)): # from input size to 16x16
|
1219 |
+
res = 2**i
|
1220 |
+
self.resolution.append(res)
|
1221 |
+
if i == res_log2:
|
1222 |
+
block = EncFromRGB(img_channels * 2 + 1, nf(i), activation)
|
1223 |
+
else:
|
1224 |
+
block = ConvBlockDown(nf(i + 1), nf(i), activation)
|
1225 |
+
setattr(self, "EncConv_Block_%dx%d" % (res, res), block)
|
1226 |
+
|
1227 |
+
def forward(self, x):
|
1228 |
+
out = {}
|
1229 |
+
for res in self.resolution:
|
1230 |
+
res_log2 = int(np.log2(res))
|
1231 |
+
x = getattr(self, "EncConv_Block_%dx%d" % (res, res))(x)
|
1232 |
+
out[res_log2] = x
|
1233 |
+
|
1234 |
+
return out
|
1235 |
+
|
1236 |
+
|
1237 |
+
class ToStyle(nn.Module):
|
1238 |
+
def __init__(self, in_channels, out_channels, activation, drop_rate):
|
1239 |
+
super().__init__()
|
1240 |
+
self.conv = nn.Sequential(
|
1241 |
+
Conv2dLayer(
|
1242 |
+
in_channels=in_channels,
|
1243 |
+
out_channels=in_channels,
|
1244 |
+
kernel_size=3,
|
1245 |
+
activation=activation,
|
1246 |
+
down=2,
|
1247 |
+
),
|
1248 |
+
Conv2dLayer(
|
1249 |
+
in_channels=in_channels,
|
1250 |
+
out_channels=in_channels,
|
1251 |
+
kernel_size=3,
|
1252 |
+
activation=activation,
|
1253 |
+
down=2,
|
1254 |
+
),
|
1255 |
+
Conv2dLayer(
|
1256 |
+
in_channels=in_channels,
|
1257 |
+
out_channels=in_channels,
|
1258 |
+
kernel_size=3,
|
1259 |
+
activation=activation,
|
1260 |
+
down=2,
|
1261 |
+
),
|
1262 |
+
)
|
1263 |
+
|
1264 |
+
self.pool = nn.AdaptiveAvgPool2d(1)
|
1265 |
+
self.fc = FullyConnectedLayer(
|
1266 |
+
in_features=in_channels, out_features=out_channels, activation=activation
|
1267 |
+
)
|
1268 |
+
# self.dropout = nn.Dropout(drop_rate)
|
1269 |
+
|
1270 |
+
def forward(self, x):
|
1271 |
+
x = self.conv(x)
|
1272 |
+
x = self.pool(x)
|
1273 |
+
x = self.fc(x.flatten(start_dim=1))
|
1274 |
+
# x = self.dropout(x)
|
1275 |
+
|
1276 |
+
return x
|
1277 |
+
|
1278 |
+
|
1279 |
+
class DecBlockFirstV2(nn.Module):
|
1280 |
+
def __init__(
|
1281 |
+
self,
|
1282 |
+
res,
|
1283 |
+
in_channels,
|
1284 |
+
out_channels,
|
1285 |
+
activation,
|
1286 |
+
style_dim,
|
1287 |
+
use_noise,
|
1288 |
+
demodulate,
|
1289 |
+
img_channels,
|
1290 |
+
):
|
1291 |
+
super().__init__()
|
1292 |
+
self.res = res
|
1293 |
+
|
1294 |
+
self.conv0 = Conv2dLayer(
|
1295 |
+
in_channels=in_channels,
|
1296 |
+
out_channels=in_channels,
|
1297 |
+
kernel_size=3,
|
1298 |
+
activation=activation,
|
1299 |
+
)
|
1300 |
+
self.conv1 = StyleConv(
|
1301 |
+
in_channels=in_channels,
|
1302 |
+
out_channels=out_channels,
|
1303 |
+
style_dim=style_dim,
|
1304 |
+
resolution=2**res,
|
1305 |
+
kernel_size=3,
|
1306 |
+
use_noise=use_noise,
|
1307 |
+
activation=activation,
|
1308 |
+
demodulate=demodulate,
|
1309 |
+
)
|
1310 |
+
self.toRGB = ToRGB(
|
1311 |
+
in_channels=out_channels,
|
1312 |
+
out_channels=img_channels,
|
1313 |
+
style_dim=style_dim,
|
1314 |
+
kernel_size=1,
|
1315 |
+
demodulate=False,
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
def forward(self, x, ws, gs, E_features, noise_mode="random"):
|
1319 |
+
# x = self.fc(x).view(x.shape[0], -1, 4, 4)
|
1320 |
+
x = self.conv0(x)
|
1321 |
+
x = x + E_features[self.res]
|
1322 |
+
style = get_style_code(ws[:, 0], gs)
|
1323 |
+
x = self.conv1(x, style, noise_mode=noise_mode)
|
1324 |
+
style = get_style_code(ws[:, 1], gs)
|
1325 |
+
img = self.toRGB(x, style, skip=None)
|
1326 |
+
|
1327 |
+
return x, img
|
1328 |
+
|
1329 |
+
|
1330 |
+
class DecBlock(nn.Module):
|
1331 |
+
def __init__(
|
1332 |
+
self,
|
1333 |
+
res,
|
1334 |
+
in_channels,
|
1335 |
+
out_channels,
|
1336 |
+
activation,
|
1337 |
+
style_dim,
|
1338 |
+
use_noise,
|
1339 |
+
demodulate,
|
1340 |
+
img_channels,
|
1341 |
+
): # res = 4, ..., resolution_log2
|
1342 |
+
super().__init__()
|
1343 |
+
self.res = res
|
1344 |
+
|
1345 |
+
self.conv0 = StyleConv(
|
1346 |
+
in_channels=in_channels,
|
1347 |
+
out_channels=out_channels,
|
1348 |
+
style_dim=style_dim,
|
1349 |
+
resolution=2**res,
|
1350 |
+
kernel_size=3,
|
1351 |
+
up=2,
|
1352 |
+
use_noise=use_noise,
|
1353 |
+
activation=activation,
|
1354 |
+
demodulate=demodulate,
|
1355 |
+
)
|
1356 |
+
self.conv1 = StyleConv(
|
1357 |
+
in_channels=out_channels,
|
1358 |
+
out_channels=out_channels,
|
1359 |
+
style_dim=style_dim,
|
1360 |
+
resolution=2**res,
|
1361 |
+
kernel_size=3,
|
1362 |
+
use_noise=use_noise,
|
1363 |
+
activation=activation,
|
1364 |
+
demodulate=demodulate,
|
1365 |
+
)
|
1366 |
+
self.toRGB = ToRGB(
|
1367 |
+
in_channels=out_channels,
|
1368 |
+
out_channels=img_channels,
|
1369 |
+
style_dim=style_dim,
|
1370 |
+
kernel_size=1,
|
1371 |
+
demodulate=False,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
def forward(self, x, img, ws, gs, E_features, noise_mode="random"):
|
1375 |
+
style = get_style_code(ws[:, self.res * 2 - 9], gs)
|
1376 |
+
x = self.conv0(x, style, noise_mode=noise_mode)
|
1377 |
+
x = x + E_features[self.res]
|
1378 |
+
style = get_style_code(ws[:, self.res * 2 - 8], gs)
|
1379 |
+
x = self.conv1(x, style, noise_mode=noise_mode)
|
1380 |
+
style = get_style_code(ws[:, self.res * 2 - 7], gs)
|
1381 |
+
img = self.toRGB(x, style, skip=img)
|
1382 |
+
|
1383 |
+
return x, img
|
1384 |
+
|
1385 |
+
|
1386 |
+
class Decoder(nn.Module):
|
1387 |
+
def __init__(
|
1388 |
+
self, res_log2, activation, style_dim, use_noise, demodulate, img_channels
|
1389 |
+
):
|
1390 |
+
super().__init__()
|
1391 |
+
self.Dec_16x16 = DecBlockFirstV2(
|
1392 |
+
4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels
|
1393 |
+
)
|
1394 |
+
for res in range(5, res_log2 + 1):
|
1395 |
+
setattr(
|
1396 |
+
self,
|
1397 |
+
"Dec_%dx%d" % (2**res, 2**res),
|
1398 |
+
DecBlock(
|
1399 |
+
res,
|
1400 |
+
nf(res - 1),
|
1401 |
+
nf(res),
|
1402 |
+
activation,
|
1403 |
+
style_dim,
|
1404 |
+
use_noise,
|
1405 |
+
demodulate,
|
1406 |
+
img_channels,
|
1407 |
+
),
|
1408 |
+
)
|
1409 |
+
self.res_log2 = res_log2
|
1410 |
+
|
1411 |
+
def forward(self, x, ws, gs, E_features, noise_mode="random"):
|
1412 |
+
x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode)
|
1413 |
+
for res in range(5, self.res_log2 + 1):
|
1414 |
+
block = getattr(self, "Dec_%dx%d" % (2**res, 2**res))
|
1415 |
+
x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode)
|
1416 |
+
|
1417 |
+
return img
|
1418 |
+
|
1419 |
+
|
1420 |
+
class DecStyleBlock(nn.Module):
|
1421 |
+
def __init__(
|
1422 |
+
self,
|
1423 |
+
res,
|
1424 |
+
in_channels,
|
1425 |
+
out_channels,
|
1426 |
+
activation,
|
1427 |
+
style_dim,
|
1428 |
+
use_noise,
|
1429 |
+
demodulate,
|
1430 |
+
img_channels,
|
1431 |
+
):
|
1432 |
+
super().__init__()
|
1433 |
+
self.res = res
|
1434 |
+
|
1435 |
+
self.conv0 = StyleConv(
|
1436 |
+
in_channels=in_channels,
|
1437 |
+
out_channels=out_channels,
|
1438 |
+
style_dim=style_dim,
|
1439 |
+
resolution=2**res,
|
1440 |
+
kernel_size=3,
|
1441 |
+
up=2,
|
1442 |
+
use_noise=use_noise,
|
1443 |
+
activation=activation,
|
1444 |
+
demodulate=demodulate,
|
1445 |
+
)
|
1446 |
+
self.conv1 = StyleConv(
|
1447 |
+
in_channels=out_channels,
|
1448 |
+
out_channels=out_channels,
|
1449 |
+
style_dim=style_dim,
|
1450 |
+
resolution=2**res,
|
1451 |
+
kernel_size=3,
|
1452 |
+
use_noise=use_noise,
|
1453 |
+
activation=activation,
|
1454 |
+
demodulate=demodulate,
|
1455 |
+
)
|
1456 |
+
self.toRGB = ToRGB(
|
1457 |
+
in_channels=out_channels,
|
1458 |
+
out_channels=img_channels,
|
1459 |
+
style_dim=style_dim,
|
1460 |
+
kernel_size=1,
|
1461 |
+
demodulate=False,
|
1462 |
+
)
|
1463 |
+
|
1464 |
+
def forward(self, x, img, style, skip, noise_mode="random"):
|
1465 |
+
x = self.conv0(x, style, noise_mode=noise_mode)
|
1466 |
+
x = x + skip
|
1467 |
+
x = self.conv1(x, style, noise_mode=noise_mode)
|
1468 |
+
img = self.toRGB(x, style, skip=img)
|
1469 |
+
|
1470 |
+
return x, img
|
1471 |
+
|
1472 |
+
|
1473 |
+
class FirstStage(nn.Module):
|
1474 |
+
def __init__(
|
1475 |
+
self,
|
1476 |
+
img_channels,
|
1477 |
+
img_resolution=256,
|
1478 |
+
dim=180,
|
1479 |
+
w_dim=512,
|
1480 |
+
use_noise=False,
|
1481 |
+
demodulate=True,
|
1482 |
+
activation="lrelu",
|
1483 |
+
):
|
1484 |
+
super().__init__()
|
1485 |
+
res = 64
|
1486 |
+
|
1487 |
+
self.conv_first = Conv2dLayerPartial(
|
1488 |
+
in_channels=img_channels + 1,
|
1489 |
+
out_channels=dim,
|
1490 |
+
kernel_size=3,
|
1491 |
+
activation=activation,
|
1492 |
+
)
|
1493 |
+
self.enc_conv = nn.ModuleList()
|
1494 |
+
down_time = int(np.log2(img_resolution // res))
|
1495 |
+
# 根据图片尺寸构建 swim transformer 的层数
|
1496 |
+
for i in range(down_time): # from input size to 64
|
1497 |
+
self.enc_conv.append(
|
1498 |
+
Conv2dLayerPartial(
|
1499 |
+
in_channels=dim,
|
1500 |
+
out_channels=dim,
|
1501 |
+
kernel_size=3,
|
1502 |
+
down=2,
|
1503 |
+
activation=activation,
|
1504 |
+
)
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
# from 64 -> 16 -> 64
|
1508 |
+
depths = [2, 3, 4, 3, 2]
|
1509 |
+
ratios = [1, 1 / 2, 1 / 2, 2, 2]
|
1510 |
+
num_heads = 6
|
1511 |
+
window_sizes = [8, 16, 16, 16, 8]
|
1512 |
+
drop_path_rate = 0.1
|
1513 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
1514 |
+
|
1515 |
+
self.tran = nn.ModuleList()
|
1516 |
+
for i, depth in enumerate(depths):
|
1517 |
+
res = int(res * ratios[i])
|
1518 |
+
if ratios[i] < 1:
|
1519 |
+
merge = PatchMerging(dim, dim, down=int(1 / ratios[i]))
|
1520 |
+
elif ratios[i] > 1:
|
1521 |
+
merge = PatchUpsampling(dim, dim, up=ratios[i])
|
1522 |
+
else:
|
1523 |
+
merge = None
|
1524 |
+
self.tran.append(
|
1525 |
+
BasicLayer(
|
1526 |
+
dim=dim,
|
1527 |
+
input_resolution=[res, res],
|
1528 |
+
depth=depth,
|
1529 |
+
num_heads=num_heads,
|
1530 |
+
window_size=window_sizes[i],
|
1531 |
+
drop_path=dpr[sum(depths[:i]) : sum(depths[: i + 1])],
|
1532 |
+
downsample=merge,
|
1533 |
+
)
|
1534 |
+
)
|
1535 |
+
|
1536 |
+
# global style
|
1537 |
+
down_conv = []
|
1538 |
+
for i in range(int(np.log2(16))):
|
1539 |
+
down_conv.append(
|
1540 |
+
Conv2dLayer(
|
1541 |
+
in_channels=dim,
|
1542 |
+
out_channels=dim,
|
1543 |
+
kernel_size=3,
|
1544 |
+
down=2,
|
1545 |
+
activation=activation,
|
1546 |
+
)
|
1547 |
+
)
|
1548 |
+
down_conv.append(nn.AdaptiveAvgPool2d((1, 1)))
|
1549 |
+
self.down_conv = nn.Sequential(*down_conv)
|
1550 |
+
self.to_style = FullyConnectedLayer(
|
1551 |
+
in_features=dim, out_features=dim * 2, activation=activation
|
1552 |
+
)
|
1553 |
+
self.ws_style = FullyConnectedLayer(
|
1554 |
+
in_features=w_dim, out_features=dim, activation=activation
|
1555 |
+
)
|
1556 |
+
self.to_square = FullyConnectedLayer(
|
1557 |
+
in_features=dim, out_features=16 * 16, activation=activation
|
1558 |
+
)
|
1559 |
+
|
1560 |
+
style_dim = dim * 3
|
1561 |
+
self.dec_conv = nn.ModuleList()
|
1562 |
+
for i in range(down_time): # from 64 to input size
|
1563 |
+
res = res * 2
|
1564 |
+
self.dec_conv.append(
|
1565 |
+
DecStyleBlock(
|
1566 |
+
res,
|
1567 |
+
dim,
|
1568 |
+
dim,
|
1569 |
+
activation,
|
1570 |
+
style_dim,
|
1571 |
+
use_noise,
|
1572 |
+
demodulate,
|
1573 |
+
img_channels,
|
1574 |
+
)
|
1575 |
+
)
|
1576 |
+
|
1577 |
+
def forward(self, images_in, masks_in, ws, noise_mode="random"):
|
1578 |
+
x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1)
|
1579 |
+
|
1580 |
+
skips = []
|
1581 |
+
x, mask = self.conv_first(x, masks_in) # input size
|
1582 |
+
skips.append(x)
|
1583 |
+
for i, block in enumerate(self.enc_conv): # input size to 64
|
1584 |
+
x, mask = block(x, mask)
|
1585 |
+
if i != len(self.enc_conv) - 1:
|
1586 |
+
skips.append(x)
|
1587 |
+
|
1588 |
+
x_size = x.size()[-2:]
|
1589 |
+
x = feature2token(x)
|
1590 |
+
mask = feature2token(mask)
|
1591 |
+
mid = len(self.tran) // 2
|
1592 |
+
for i, block in enumerate(self.tran): # 64 to 16
|
1593 |
+
if i < mid:
|
1594 |
+
x, x_size, mask = block(x, x_size, mask)
|
1595 |
+
skips.append(x)
|
1596 |
+
elif i > mid:
|
1597 |
+
x, x_size, mask = block(x, x_size, None)
|
1598 |
+
x = x + skips[mid - i]
|
1599 |
+
else:
|
1600 |
+
x, x_size, mask = block(x, x_size, None)
|
1601 |
+
|
1602 |
+
mul_map = torch.ones_like(x) * 0.5
|
1603 |
+
mul_map = F.dropout(mul_map, training=True)
|
1604 |
+
ws = self.ws_style(ws[:, -1])
|
1605 |
+
add_n = self.to_square(ws).unsqueeze(1)
|
1606 |
+
add_n = (
|
1607 |
+
F.interpolate(
|
1608 |
+
add_n, size=x.size(1), mode="linear", align_corners=False
|
1609 |
+
)
|
1610 |
+
.squeeze(1)
|
1611 |
+
.unsqueeze(-1)
|
1612 |
+
)
|
1613 |
+
x = x * mul_map + add_n * (1 - mul_map)
|
1614 |
+
gs = self.to_style(
|
1615 |
+
self.down_conv(token2feature(x, x_size)).flatten(start_dim=1)
|
1616 |
+
)
|
1617 |
+
style = torch.cat([gs, ws], dim=1)
|
1618 |
+
|
1619 |
+
x = token2feature(x, x_size).contiguous()
|
1620 |
+
img = None
|
1621 |
+
for i, block in enumerate(self.dec_conv):
|
1622 |
+
x, img = block(
|
1623 |
+
x, img, style, skips[len(self.dec_conv) - i - 1], noise_mode=noise_mode
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
# ensemble
|
1627 |
+
img = img * (1 - masks_in) + images_in * masks_in
|
1628 |
+
|
1629 |
+
return img
|
1630 |
+
|
1631 |
+
|
1632 |
+
class SynthesisNet(nn.Module):
|
1633 |
+
def __init__(
|
1634 |
+
self,
|
1635 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
1636 |
+
img_resolution, # Output image resolution.
|
1637 |
+
img_channels=3, # Number of color channels.
|
1638 |
+
channel_base=32768, # Overall multiplier for the number of channels.
|
1639 |
+
channel_decay=1.0,
|
1640 |
+
channel_max=512, # Maximum number of channels in any layer.
|
1641 |
+
activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
|
1642 |
+
drop_rate=0.5,
|
1643 |
+
use_noise=False,
|
1644 |
+
demodulate=True,
|
1645 |
+
):
|
1646 |
+
super().__init__()
|
1647 |
+
resolution_log2 = int(np.log2(img_resolution))
|
1648 |
+
assert img_resolution == 2**resolution_log2 and img_resolution >= 4
|
1649 |
+
|
1650 |
+
self.num_layers = resolution_log2 * 2 - 3 * 2
|
1651 |
+
self.img_resolution = img_resolution
|
1652 |
+
self.resolution_log2 = resolution_log2
|
1653 |
+
|
1654 |
+
# first stage
|
1655 |
+
self.first_stage = FirstStage(
|
1656 |
+
img_channels,
|
1657 |
+
img_resolution=img_resolution,
|
1658 |
+
w_dim=w_dim,
|
1659 |
+
use_noise=False,
|
1660 |
+
demodulate=demodulate,
|
1661 |
+
)
|
1662 |
+
|
1663 |
+
# second stage
|
1664 |
+
self.enc = Encoder(
|
1665 |
+
resolution_log2, img_channels, activation, patch_size=5, channels=16
|
1666 |
+
)
|
1667 |
+
self.to_square = FullyConnectedLayer(
|
1668 |
+
in_features=w_dim, out_features=16 * 16, activation=activation
|
1669 |
+
)
|
1670 |
+
self.to_style = ToStyle(
|
1671 |
+
in_channels=nf(4),
|
1672 |
+
out_channels=nf(2) * 2,
|
1673 |
+
activation=activation,
|
1674 |
+
drop_rate=drop_rate,
|
1675 |
+
)
|
1676 |
+
style_dim = w_dim + nf(2) * 2
|
1677 |
+
self.dec = Decoder(
|
1678 |
+
resolution_log2, activation, style_dim, use_noise, demodulate, img_channels
|
1679 |
+
)
|
1680 |
+
|
1681 |
+
def forward(self, images_in, masks_in, ws, noise_mode="random", return_stg1=False):
|
1682 |
+
out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode)
|
1683 |
+
|
1684 |
+
# encoder
|
1685 |
+
x = images_in * masks_in + out_stg1 * (1 - masks_in)
|
1686 |
+
x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1)
|
1687 |
+
E_features = self.enc(x)
|
1688 |
+
|
1689 |
+
fea_16 = E_features[4]
|
1690 |
+
mul_map = torch.ones_like(fea_16) * 0.5
|
1691 |
+
mul_map = F.dropout(mul_map, training=True)
|
1692 |
+
add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1)
|
1693 |
+
add_n = F.interpolate(
|
1694 |
+
add_n, size=fea_16.size()[-2:], mode="bilinear", align_corners=False
|
1695 |
+
)
|
1696 |
+
fea_16 = fea_16 * mul_map + add_n * (1 - mul_map)
|
1697 |
+
E_features[4] = fea_16
|
1698 |
+
|
1699 |
+
# style
|
1700 |
+
gs = self.to_style(fea_16)
|
1701 |
+
|
1702 |
+
# decoder
|
1703 |
+
img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode)
|
1704 |
+
|
1705 |
+
# ensemble
|
1706 |
+
img = img * (1 - masks_in) + images_in * masks_in
|
1707 |
+
|
1708 |
+
if not return_stg1:
|
1709 |
+
return img
|
1710 |
+
else:
|
1711 |
+
return img, out_stg1
|
1712 |
+
|
1713 |
+
|
1714 |
+
class Generator(nn.Module):
|
1715 |
+
def __init__(
|
1716 |
+
self,
|
1717 |
+
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
|
1718 |
+
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
|
1719 |
+
w_dim, # Intermediate latent (W) dimensionality.
|
1720 |
+
img_resolution, # resolution of generated image
|
1721 |
+
img_channels, # Number of input color channels.
|
1722 |
+
synthesis_kwargs={}, # Arguments for SynthesisNetwork.
|
1723 |
+
mapping_kwargs={}, # Arguments for MappingNetwork.
|
1724 |
+
):
|
1725 |
+
super().__init__()
|
1726 |
+
self.z_dim = z_dim
|
1727 |
+
self.c_dim = c_dim
|
1728 |
+
self.w_dim = w_dim
|
1729 |
+
self.img_resolution = img_resolution
|
1730 |
+
self.img_channels = img_channels
|
1731 |
+
|
1732 |
+
self.synthesis = SynthesisNet(
|
1733 |
+
w_dim=w_dim,
|
1734 |
+
img_resolution=img_resolution,
|
1735 |
+
img_channels=img_channels,
|
1736 |
+
**synthesis_kwargs,
|
1737 |
+
)
|
1738 |
+
self.mapping = MappingNet(
|
1739 |
+
z_dim=z_dim,
|
1740 |
+
c_dim=c_dim,
|
1741 |
+
w_dim=w_dim,
|
1742 |
+
num_ws=self.synthesis.num_layers,
|
1743 |
+
**mapping_kwargs,
|
1744 |
+
)
|
1745 |
+
|
1746 |
+
def forward(
|
1747 |
+
self,
|
1748 |
+
images_in,
|
1749 |
+
masks_in,
|
1750 |
+
z,
|
1751 |
+
c,
|
1752 |
+
truncation_psi=1,
|
1753 |
+
truncation_cutoff=None,
|
1754 |
+
skip_w_avg_update=False,
|
1755 |
+
noise_mode="none",
|
1756 |
+
return_stg1=False,
|
1757 |
+
):
|
1758 |
+
ws = self.mapping(
|
1759 |
+
z,
|
1760 |
+
c,
|
1761 |
+
truncation_psi=truncation_psi,
|
1762 |
+
truncation_cutoff=truncation_cutoff,
|
1763 |
+
skip_w_avg_update=skip_w_avg_update,
|
1764 |
+
)
|
1765 |
+
img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode)
|
1766 |
+
return img
|
1767 |
+
|
1768 |
+
|
1769 |
+
class Discriminator(torch.nn.Module):
|
1770 |
+
def __init__(
|
1771 |
+
self,
|
1772 |
+
c_dim, # Conditioning label (C) dimensionality.
|
1773 |
+
img_resolution, # Input resolution.
|
1774 |
+
img_channels, # Number of input color channels.
|
1775 |
+
channel_base=32768, # Overall multiplier for the number of channels.
|
1776 |
+
channel_max=512, # Maximum number of channels in any layer.
|
1777 |
+
channel_decay=1,
|
1778 |
+
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
|
1779 |
+
activation="lrelu",
|
1780 |
+
mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
|
1781 |
+
mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable.
|
1782 |
+
):
|
1783 |
+
super().__init__()
|
1784 |
+
self.c_dim = c_dim
|
1785 |
+
self.img_resolution = img_resolution
|
1786 |
+
self.img_channels = img_channels
|
1787 |
+
|
1788 |
+
resolution_log2 = int(np.log2(img_resolution))
|
1789 |
+
assert img_resolution == 2**resolution_log2 and img_resolution >= 4
|
1790 |
+
self.resolution_log2 = resolution_log2
|
1791 |
+
|
1792 |
+
if cmap_dim == None:
|
1793 |
+
cmap_dim = nf(2)
|
1794 |
+
if c_dim == 0:
|
1795 |
+
cmap_dim = 0
|
1796 |
+
self.cmap_dim = cmap_dim
|
1797 |
+
|
1798 |
+
if c_dim > 0:
|
1799 |
+
self.mapping = MappingNet(
|
1800 |
+
z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None
|
1801 |
+
)
|
1802 |
+
|
1803 |
+
Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)]
|
1804 |
+
for res in range(resolution_log2, 2, -1):
|
1805 |
+
Dis.append(DisBlock(nf(res), nf(res - 1), activation))
|
1806 |
+
|
1807 |
+
if mbstd_num_channels > 0:
|
1808 |
+
Dis.append(
|
1809 |
+
MinibatchStdLayer(
|
1810 |
+
group_size=mbstd_group_size, num_channels=mbstd_num_channels
|
1811 |
+
)
|
1812 |
+
)
|
1813 |
+
Dis.append(
|
1814 |
+
Conv2dLayer(
|
1815 |
+
nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation
|
1816 |
+
)
|
1817 |
+
)
|
1818 |
+
self.Dis = nn.Sequential(*Dis)
|
1819 |
+
|
1820 |
+
self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
|
1821 |
+
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
|
1822 |
+
|
1823 |
+
# for 64x64
|
1824 |
+
Dis_stg1 = [DisFromRGB(img_channels + 1, nf(resolution_log2) // 2, activation)]
|
1825 |
+
for res in range(resolution_log2, 2, -1):
|
1826 |
+
Dis_stg1.append(DisBlock(nf(res) // 2, nf(res - 1) // 2, activation))
|
1827 |
+
|
1828 |
+
if mbstd_num_channels > 0:
|
1829 |
+
Dis_stg1.append(
|
1830 |
+
MinibatchStdLayer(
|
1831 |
+
group_size=mbstd_group_size, num_channels=mbstd_num_channels
|
1832 |
+
)
|
1833 |
+
)
|
1834 |
+
Dis_stg1.append(
|
1835 |
+
Conv2dLayer(
|
1836 |
+
nf(2) // 2 + mbstd_num_channels,
|
1837 |
+
nf(2) // 2,
|
1838 |
+
kernel_size=3,
|
1839 |
+
activation=activation,
|
1840 |
+
)
|
1841 |
+
)
|
1842 |
+
self.Dis_stg1 = nn.Sequential(*Dis_stg1)
|
1843 |
+
|
1844 |
+
self.fc0_stg1 = FullyConnectedLayer(
|
1845 |
+
nf(2) // 2 * 4**2, nf(2) // 2, activation=activation
|
1846 |
+
)
|
1847 |
+
self.fc1_stg1 = FullyConnectedLayer(
|
1848 |
+
nf(2) // 2, 1 if cmap_dim == 0 else cmap_dim
|
1849 |
+
)
|
1850 |
+
|
1851 |
+
def forward(self, images_in, masks_in, images_stg1, c):
|
1852 |
+
x = self.Dis(torch.cat([masks_in - 0.5, images_in], dim=1))
|
1853 |
+
x = self.fc1(self.fc0(x.flatten(start_dim=1)))
|
1854 |
+
|
1855 |
+
x_stg1 = self.Dis_stg1(torch.cat([masks_in - 0.5, images_stg1], dim=1))
|
1856 |
+
x_stg1 = self.fc1_stg1(self.fc0_stg1(x_stg1.flatten(start_dim=1)))
|
1857 |
+
|
1858 |
+
if self.c_dim > 0:
|
1859 |
+
cmap = self.mapping(None, c)
|
1860 |
+
|
1861 |
+
if self.cmap_dim > 0:
|
1862 |
+
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
|
1863 |
+
x_stg1 = (x_stg1 * cmap).sum(dim=1, keepdim=True) * (
|
1864 |
+
1 / np.sqrt(self.cmap_dim)
|
1865 |
+
)
|
1866 |
+
|
1867 |
+
return x, x_stg1
|
1868 |
+
|
1869 |
+
|
1870 |
+
MAT_MODEL_URL = os.environ.get(
|
1871 |
+
"MAT_MODEL_URL",
|
1872 |
+
"https://github.com/Sanster/models/releases/download/add_mat/Places_512_FullData_G.pth",
|
1873 |
+
)
|
1874 |
+
|
1875 |
+
MAT_MODEL_MD5 = os.environ.get("MAT_MODEL_MD5", "8ca927835fa3f5e21d65ffcb165377ed")
|
1876 |
+
|
1877 |
+
|
1878 |
+
class MAT(InpaintModel):
|
1879 |
+
name = "mat"
|
1880 |
+
min_size = 512
|
1881 |
+
pad_mod = 512
|
1882 |
+
pad_to_square = True
|
1883 |
+
is_erase_model = True
|
1884 |
+
|
1885 |
+
def init_model(self, device, **kwargs):
|
1886 |
+
seed = 240 # pick up a random number
|
1887 |
+
set_seed(seed)
|
1888 |
+
|
1889 |
+
fp16 = not kwargs.get("no_half", False)
|
1890 |
+
use_gpu = "cuda" in str(device) and torch.cuda.is_available()
|
1891 |
+
self.torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
1892 |
+
|
1893 |
+
G = Generator(
|
1894 |
+
z_dim=512,
|
1895 |
+
c_dim=0,
|
1896 |
+
w_dim=512,
|
1897 |
+
img_resolution=512,
|
1898 |
+
img_channels=3,
|
1899 |
+
mapping_kwargs={"torch_dtype": self.torch_dtype},
|
1900 |
+
).to(self.torch_dtype)
|
1901 |
+
# fmt: off
|
1902 |
+
self.model = load_model(G, MAT_MODEL_URL, device, MAT_MODEL_MD5)
|
1903 |
+
self.z = torch.from_numpy(np.random.randn(1, G.z_dim)).to(self.torch_dtype).to(device)
|
1904 |
+
self.label = torch.zeros([1, self.model.c_dim], device=device).to(self.torch_dtype)
|
1905 |
+
# fmt: on
|
1906 |
+
|
1907 |
+
@staticmethod
|
1908 |
+
def download():
|
1909 |
+
download_model(MAT_MODEL_URL, MAT_MODEL_MD5)
|
1910 |
+
|
1911 |
+
@staticmethod
|
1912 |
+
def is_downloaded() -> bool:
|
1913 |
+
return os.path.exists(get_cache_path_by_url(MAT_MODEL_URL))
|
1914 |
+
|
1915 |
+
def forward(self, image, mask, config: InpaintRequest):
|
1916 |
+
"""Input images and output images have same size
|
1917 |
+
images: [H, W, C] RGB
|
1918 |
+
masks: [H, W] mask area == 255
|
1919 |
+
return: BGR IMAGE
|
1920 |
+
"""
|
1921 |
+
|
1922 |
+
image = norm_img(image) # [0, 1]
|
1923 |
+
image = image * 2 - 1 # [0, 1] -> [-1, 1]
|
1924 |
+
|
1925 |
+
mask = (mask > 127) * 255
|
1926 |
+
mask = 255 - mask
|
1927 |
+
mask = norm_img(mask)
|
1928 |
+
|
1929 |
+
image = (
|
1930 |
+
torch.from_numpy(image).unsqueeze(0).to(self.torch_dtype).to(self.device)
|
1931 |
+
)
|
1932 |
+
mask = torch.from_numpy(mask).unsqueeze(0).to(self.torch_dtype).to(self.device)
|
1933 |
+
|
1934 |
+
output = self.model(
|
1935 |
+
image, mask, self.z, self.label, truncation_psi=1, noise_mode="none"
|
1936 |
+
)
|
1937 |
+
output = (
|
1938 |
+
(output.permute(0, 2, 3, 1) * 127.5 + 127.5)
|
1939 |
+
.round()
|
1940 |
+
.clamp(0, 255)
|
1941 |
+
.to(torch.uint8)
|
1942 |
+
)
|
1943 |
+
output = output[0].cpu().numpy()
|
1944 |
+
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
1945 |
+
return cur_res
|
iopaint/model/mi_gan.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from iopaint.helper import (
|
7 |
+
load_jit_model,
|
8 |
+
download_model,
|
9 |
+
get_cache_path_by_url,
|
10 |
+
boxes_from_mask,
|
11 |
+
resize_max_size,
|
12 |
+
norm_img,
|
13 |
+
)
|
14 |
+
from .base import InpaintModel
|
15 |
+
from iopaint.schema import InpaintRequest
|
16 |
+
|
17 |
+
MIGAN_MODEL_URL = os.environ.get(
|
18 |
+
"MIGAN_MODEL_URL",
|
19 |
+
"https://github.com/Sanster/models/releases/download/migan/migan_traced.pt",
|
20 |
+
)
|
21 |
+
MIGAN_MODEL_MD5 = os.environ.get("MIGAN_MODEL_MD5", "76eb3b1a71c400ee3290524f7a11b89c")
|
22 |
+
|
23 |
+
|
24 |
+
class MIGAN(InpaintModel):
|
25 |
+
name = "migan"
|
26 |
+
min_size = 512
|
27 |
+
pad_mod = 512
|
28 |
+
pad_to_square = True
|
29 |
+
is_erase_model = True
|
30 |
+
|
31 |
+
def init_model(self, device, **kwargs):
|
32 |
+
self.model = load_jit_model(MIGAN_MODEL_URL, device, MIGAN_MODEL_MD5).eval()
|
33 |
+
|
34 |
+
@staticmethod
|
35 |
+
def download():
|
36 |
+
download_model(MIGAN_MODEL_URL, MIGAN_MODEL_MD5)
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def is_downloaded() -> bool:
|
40 |
+
return os.path.exists(get_cache_path_by_url(MIGAN_MODEL_URL))
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
def __call__(self, image, mask, config: InpaintRequest):
|
44 |
+
"""
|
45 |
+
images: [H, W, C] RGB, not normalized
|
46 |
+
masks: [H, W]
|
47 |
+
return: BGR IMAGE
|
48 |
+
"""
|
49 |
+
if image.shape[0] == 512 and image.shape[1] == 512:
|
50 |
+
return self._pad_forward(image, mask, config)
|
51 |
+
|
52 |
+
boxes = boxes_from_mask(mask)
|
53 |
+
crop_result = []
|
54 |
+
config.hd_strategy_crop_margin = 128
|
55 |
+
for box in boxes:
|
56 |
+
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
|
57 |
+
origin_size = crop_image.shape[:2]
|
58 |
+
resize_image = resize_max_size(crop_image, size_limit=512)
|
59 |
+
resize_mask = resize_max_size(crop_mask, size_limit=512)
|
60 |
+
inpaint_result = self._pad_forward(resize_image, resize_mask, config)
|
61 |
+
|
62 |
+
# only paste masked area result
|
63 |
+
inpaint_result = cv2.resize(
|
64 |
+
inpaint_result,
|
65 |
+
(origin_size[1], origin_size[0]),
|
66 |
+
interpolation=cv2.INTER_CUBIC,
|
67 |
+
)
|
68 |
+
|
69 |
+
original_pixel_indices = crop_mask < 127
|
70 |
+
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][
|
71 |
+
original_pixel_indices
|
72 |
+
]
|
73 |
+
|
74 |
+
crop_result.append((inpaint_result, crop_box))
|
75 |
+
|
76 |
+
inpaint_result = image[:, :, ::-1].copy()
|
77 |
+
for crop_image, crop_box in crop_result:
|
78 |
+
x1, y1, x2, y2 = crop_box
|
79 |
+
inpaint_result[y1:y2, x1:x2, :] = crop_image
|
80 |
+
|
81 |
+
return inpaint_result
|
82 |
+
|
83 |
+
def forward(self, image, mask, config: InpaintRequest):
|
84 |
+
"""Input images and output images have same size
|
85 |
+
images: [H, W, C] RGB
|
86 |
+
masks: [H, W] mask area == 255
|
87 |
+
return: BGR IMAGE
|
88 |
+
"""
|
89 |
+
|
90 |
+
image = norm_img(image) # [0, 1]
|
91 |
+
image = image * 2 - 1 # [0, 1] -> [-1, 1]
|
92 |
+
mask = (mask > 120) * 255
|
93 |
+
mask = norm_img(mask)
|
94 |
+
|
95 |
+
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
96 |
+
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
|
97 |
+
|
98 |
+
erased_img = image * (1 - mask)
|
99 |
+
input_image = torch.cat([0.5 - mask, erased_img], dim=1)
|
100 |
+
|
101 |
+
output = self.model(input_image)
|
102 |
+
output = (
|
103 |
+
(output.permute(0, 2, 3, 1) * 127.5 + 127.5)
|
104 |
+
.round()
|
105 |
+
.clamp(0, 255)
|
106 |
+
.to(torch.uint8)
|
107 |
+
)
|
108 |
+
output = output[0].cpu().numpy()
|
109 |
+
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
110 |
+
return cur_res
|
iopaint/model/opencv2.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from .base import InpaintModel
|
3 |
+
from iopaint.schema import InpaintRequest
|
4 |
+
|
5 |
+
flag_map = {"INPAINT_NS": cv2.INPAINT_NS, "INPAINT_TELEA": cv2.INPAINT_TELEA}
|
6 |
+
|
7 |
+
|
8 |
+
class OpenCV2(InpaintModel):
|
9 |
+
name = "cv2"
|
10 |
+
pad_mod = 1
|
11 |
+
is_erase_model = True
|
12 |
+
|
13 |
+
@staticmethod
|
14 |
+
def is_downloaded() -> bool:
|
15 |
+
return True
|
16 |
+
|
17 |
+
def forward(self, image, mask, config: InpaintRequest):
|
18 |
+
"""Input image and output image have same size
|
19 |
+
image: [H, W, C] RGB
|
20 |
+
mask: [H, W, 1]
|
21 |
+
return: BGR IMAGE
|
22 |
+
"""
|
23 |
+
cur_res = cv2.inpaint(
|
24 |
+
image[:, :, ::-1],
|
25 |
+
mask,
|
26 |
+
inpaintRadius=config.cv2_radius,
|
27 |
+
flags=flag_map[config.cv2_flag],
|
28 |
+
)
|
29 |
+
return cur_res
|
iopaint/model_manager.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from loguru import logger
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from iopaint.download import scan_models
|
8 |
+
from iopaint.helper import switch_mps_device
|
9 |
+
from iopaint.model import models, ControlNet, SD, SDXL
|
10 |
+
from iopaint.model.utils import torch_gc, is_local_files_only
|
11 |
+
from iopaint.schema import InpaintRequest, ModelInfo, ModelType
|
12 |
+
|
13 |
+
|
14 |
+
class ModelManager:
|
15 |
+
def __init__(self, name: str, device: torch.device, **kwargs):
|
16 |
+
self.name = name
|
17 |
+
self.device = device
|
18 |
+
self.kwargs = kwargs
|
19 |
+
self.available_models: Dict[str, ModelInfo] = {}
|
20 |
+
self.scan_models()
|
21 |
+
|
22 |
+
self.enable_controlnet = kwargs.get("enable_controlnet", False)
|
23 |
+
controlnet_method = kwargs.get("controlnet_method", None)
|
24 |
+
if (
|
25 |
+
controlnet_method is None
|
26 |
+
and name in self.available_models
|
27 |
+
and self.available_models[name].support_controlnet
|
28 |
+
):
|
29 |
+
controlnet_method = self.available_models[name].controlnets[0]
|
30 |
+
self.controlnet_method = controlnet_method
|
31 |
+
self.model = self.init_model(name, device, **kwargs)
|
32 |
+
|
33 |
+
@property
|
34 |
+
def current_model(self) -> ModelInfo:
|
35 |
+
return self.available_models[self.name]
|
36 |
+
|
37 |
+
def init_model(self, name: str, device, **kwargs):
|
38 |
+
logger.info(f"Loading model: {name}")
|
39 |
+
if name not in self.available_models:
|
40 |
+
raise NotImplementedError(
|
41 |
+
f"Unsupported model: {name}. Available models: {list(self.available_models.keys())}"
|
42 |
+
)
|
43 |
+
|
44 |
+
model_info = self.available_models[name]
|
45 |
+
kwargs = {
|
46 |
+
**kwargs,
|
47 |
+
"model_info": model_info,
|
48 |
+
"enable_controlnet": self.enable_controlnet,
|
49 |
+
"controlnet_method": self.controlnet_method,
|
50 |
+
}
|
51 |
+
|
52 |
+
if model_info.support_controlnet and self.enable_controlnet:
|
53 |
+
return ControlNet(device, **kwargs)
|
54 |
+
elif model_info.name in models:
|
55 |
+
return models[name](device, **kwargs)
|
56 |
+
else:
|
57 |
+
if model_info.model_type in [
|
58 |
+
ModelType.DIFFUSERS_SD_INPAINT,
|
59 |
+
ModelType.DIFFUSERS_SD,
|
60 |
+
]:
|
61 |
+
return SD(device, **kwargs)
|
62 |
+
|
63 |
+
if model_info.model_type in [
|
64 |
+
ModelType.DIFFUSERS_SDXL_INPAINT,
|
65 |
+
ModelType.DIFFUSERS_SDXL,
|
66 |
+
]:
|
67 |
+
return SDXL(device, **kwargs)
|
68 |
+
|
69 |
+
raise NotImplementedError(f"Unsupported model: {name}")
|
70 |
+
|
71 |
+
@torch.inference_mode()
|
72 |
+
def __call__(self, image, mask, config: InpaintRequest):
|
73 |
+
"""
|
74 |
+
|
75 |
+
Args:
|
76 |
+
image: [H, W, C] RGB
|
77 |
+
mask: [H, W, 1] 255 means area to repaint
|
78 |
+
config:
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
BGR image
|
82 |
+
"""
|
83 |
+
self.switch_controlnet_method(config)
|
84 |
+
self.enable_disable_freeu(config)
|
85 |
+
self.enable_disable_lcm_lora(config)
|
86 |
+
return self.model(image, mask, config).astype(np.uint8)
|
87 |
+
|
88 |
+
def scan_models(self) -> List[ModelInfo]:
|
89 |
+
available_models = scan_models()
|
90 |
+
self.available_models = {it.name: it for it in available_models}
|
91 |
+
return available_models
|
92 |
+
|
93 |
+
def switch(self, new_name: str):
|
94 |
+
if new_name == self.name:
|
95 |
+
return
|
96 |
+
|
97 |
+
old_name = self.name
|
98 |
+
old_controlnet_method = self.controlnet_method
|
99 |
+
self.name = new_name
|
100 |
+
|
101 |
+
if (
|
102 |
+
self.available_models[new_name].support_controlnet
|
103 |
+
and self.controlnet_method
|
104 |
+
not in self.available_models[new_name].controlnets
|
105 |
+
):
|
106 |
+
self.controlnet_method = self.available_models[new_name].controlnets[0]
|
107 |
+
try:
|
108 |
+
# TODO: enable/disable controlnet without reload model
|
109 |
+
del self.model
|
110 |
+
torch_gc()
|
111 |
+
|
112 |
+
self.model = self.init_model(
|
113 |
+
new_name, switch_mps_device(new_name, self.device), **self.kwargs
|
114 |
+
)
|
115 |
+
except Exception as e:
|
116 |
+
self.name = old_name
|
117 |
+
self.controlnet_method = old_controlnet_method
|
118 |
+
logger.info(f"Switch model from {old_name} to {new_name} failed, rollback")
|
119 |
+
self.model = self.init_model(
|
120 |
+
old_name, switch_mps_device(old_name, self.device), **self.kwargs
|
121 |
+
)
|
122 |
+
raise e
|
123 |
+
|
124 |
+
def switch_controlnet_method(self, config):
|
125 |
+
if not self.available_models[self.name].support_controlnet:
|
126 |
+
return
|
127 |
+
|
128 |
+
if (
|
129 |
+
self.enable_controlnet
|
130 |
+
and config.controlnet_method
|
131 |
+
and self.controlnet_method != config.controlnet_method
|
132 |
+
):
|
133 |
+
old_controlnet_method = self.controlnet_method
|
134 |
+
self.controlnet_method = config.controlnet_method
|
135 |
+
self.model.switch_controlnet_method(config.controlnet_method)
|
136 |
+
logger.info(
|
137 |
+
f"Switch Controlnet method from {old_controlnet_method} to {config.controlnet_method}"
|
138 |
+
)
|
139 |
+
elif self.enable_controlnet != config.enable_controlnet:
|
140 |
+
self.enable_controlnet = config.enable_controlnet
|
141 |
+
self.controlnet_method = config.controlnet_method
|
142 |
+
|
143 |
+
pipe_components = {
|
144 |
+
"vae": self.model.model.vae,
|
145 |
+
"text_encoder": self.model.model.text_encoder,
|
146 |
+
"unet": self.model.model.unet,
|
147 |
+
}
|
148 |
+
if hasattr(self.model.model, "text_encoder_2"):
|
149 |
+
pipe_components["text_encoder_2"] = self.model.model.text_encoder_2
|
150 |
+
|
151 |
+
self.model = self.init_model(
|
152 |
+
self.name,
|
153 |
+
switch_mps_device(self.name, self.device),
|
154 |
+
pipe_components=pipe_components,
|
155 |
+
**self.kwargs,
|
156 |
+
)
|
157 |
+
if not config.enable_controlnet:
|
158 |
+
logger.info(f"Disable controlnet")
|
159 |
+
else:
|
160 |
+
logger.info(f"Enable controlnet: {config.controlnet_method}")
|
161 |
+
|
162 |
+
def enable_disable_freeu(self, config: InpaintRequest):
|
163 |
+
if str(self.model.device) == "mps":
|
164 |
+
return
|
165 |
+
|
166 |
+
if self.available_models[self.name].support_freeu:
|
167 |
+
if config.sd_freeu:
|
168 |
+
freeu_config = config.sd_freeu_config
|
169 |
+
self.model.model.enable_freeu(
|
170 |
+
s1=freeu_config.s1,
|
171 |
+
s2=freeu_config.s2,
|
172 |
+
b1=freeu_config.b1,
|
173 |
+
b2=freeu_config.b2,
|
174 |
+
)
|
175 |
+
else:
|
176 |
+
self.model.model.disable_freeu()
|
177 |
+
|
178 |
+
def enable_disable_lcm_lora(self, config: InpaintRequest):
|
179 |
+
if self.available_models[self.name].support_lcm_lora:
|
180 |
+
# TODO: change this if load other lora is supported
|
181 |
+
lcm_lora_loaded = bool(self.model.model.get_list_adapters())
|
182 |
+
if config.sd_lcm_lora:
|
183 |
+
if not lcm_lora_loaded:
|
184 |
+
self.model.model.load_lora_weights(
|
185 |
+
self.model.lcm_lora_id,
|
186 |
+
weight_name="pytorch_lora_weights.safetensors",
|
187 |
+
local_files_only=is_local_files_only(),
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
if lcm_lora_loaded:
|
191 |
+
self.model.model.disable_lora()
|
iopaint/plugins/briarmbg.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copy from: https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4/blob/main/briarmbg.py
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
from torchvision.transforms.functional import normalize
|
9 |
+
|
10 |
+
|
11 |
+
class REBNCONV(nn.Module):
|
12 |
+
def __init__(self, in_ch=3, out_ch=3, dirate=1, stride=1):
|
13 |
+
super(REBNCONV, self).__init__()
|
14 |
+
|
15 |
+
self.conv_s1 = nn.Conv2d(
|
16 |
+
in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate, stride=stride
|
17 |
+
)
|
18 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
19 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
hx = x
|
23 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
24 |
+
|
25 |
+
return xout
|
26 |
+
|
27 |
+
|
28 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
29 |
+
def _upsample_like(src, tar):
|
30 |
+
src = F.interpolate(src, size=tar.shape[2:], mode="bilinear")
|
31 |
+
|
32 |
+
return src
|
33 |
+
|
34 |
+
|
35 |
+
### RSU-7 ###
|
36 |
+
class RSU7(nn.Module):
|
37 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
38 |
+
super(RSU7, self).__init__()
|
39 |
+
|
40 |
+
self.in_ch = in_ch
|
41 |
+
self.mid_ch = mid_ch
|
42 |
+
self.out_ch = out_ch
|
43 |
+
|
44 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) ## 1 -> 1/2
|
45 |
+
|
46 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
47 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
48 |
+
|
49 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
50 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
51 |
+
|
52 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
53 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
54 |
+
|
55 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
56 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
57 |
+
|
58 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
59 |
+
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
60 |
+
|
61 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
62 |
+
|
63 |
+
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
64 |
+
|
65 |
+
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
66 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
67 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
68 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
69 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
70 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
b, c, h, w = x.shape
|
74 |
+
|
75 |
+
hx = x
|
76 |
+
hxin = self.rebnconvin(hx)
|
77 |
+
|
78 |
+
hx1 = self.rebnconv1(hxin)
|
79 |
+
hx = self.pool1(hx1)
|
80 |
+
|
81 |
+
hx2 = self.rebnconv2(hx)
|
82 |
+
hx = self.pool2(hx2)
|
83 |
+
|
84 |
+
hx3 = self.rebnconv3(hx)
|
85 |
+
hx = self.pool3(hx3)
|
86 |
+
|
87 |
+
hx4 = self.rebnconv4(hx)
|
88 |
+
hx = self.pool4(hx4)
|
89 |
+
|
90 |
+
hx5 = self.rebnconv5(hx)
|
91 |
+
hx = self.pool5(hx5)
|
92 |
+
|
93 |
+
hx6 = self.rebnconv6(hx)
|
94 |
+
|
95 |
+
hx7 = self.rebnconv7(hx6)
|
96 |
+
|
97 |
+
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
98 |
+
hx6dup = _upsample_like(hx6d, hx5)
|
99 |
+
|
100 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
101 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
102 |
+
|
103 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
104 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
105 |
+
|
106 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
107 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
108 |
+
|
109 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
110 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
111 |
+
|
112 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
113 |
+
|
114 |
+
return hx1d + hxin
|
115 |
+
|
116 |
+
|
117 |
+
### RSU-6 ###
|
118 |
+
class RSU6(nn.Module):
|
119 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
120 |
+
super(RSU6, self).__init__()
|
121 |
+
|
122 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
123 |
+
|
124 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
125 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
126 |
+
|
127 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
128 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
129 |
+
|
130 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
131 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
132 |
+
|
133 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
134 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
135 |
+
|
136 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
137 |
+
|
138 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
139 |
+
|
140 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
141 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
142 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
143 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
144 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
hx = x
|
148 |
+
|
149 |
+
hxin = self.rebnconvin(hx)
|
150 |
+
|
151 |
+
hx1 = self.rebnconv1(hxin)
|
152 |
+
hx = self.pool1(hx1)
|
153 |
+
|
154 |
+
hx2 = self.rebnconv2(hx)
|
155 |
+
hx = self.pool2(hx2)
|
156 |
+
|
157 |
+
hx3 = self.rebnconv3(hx)
|
158 |
+
hx = self.pool3(hx3)
|
159 |
+
|
160 |
+
hx4 = self.rebnconv4(hx)
|
161 |
+
hx = self.pool4(hx4)
|
162 |
+
|
163 |
+
hx5 = self.rebnconv5(hx)
|
164 |
+
|
165 |
+
hx6 = self.rebnconv6(hx5)
|
166 |
+
|
167 |
+
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
168 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
169 |
+
|
170 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
171 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
172 |
+
|
173 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
174 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
175 |
+
|
176 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
177 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
178 |
+
|
179 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
180 |
+
|
181 |
+
return hx1d + hxin
|
182 |
+
|
183 |
+
|
184 |
+
### RSU-5 ###
|
185 |
+
class RSU5(nn.Module):
|
186 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
187 |
+
super(RSU5, self).__init__()
|
188 |
+
|
189 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
190 |
+
|
191 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
192 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
193 |
+
|
194 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
195 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
196 |
+
|
197 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
198 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
199 |
+
|
200 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
201 |
+
|
202 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
203 |
+
|
204 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
205 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
206 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
207 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
hx = x
|
211 |
+
|
212 |
+
hxin = self.rebnconvin(hx)
|
213 |
+
|
214 |
+
hx1 = self.rebnconv1(hxin)
|
215 |
+
hx = self.pool1(hx1)
|
216 |
+
|
217 |
+
hx2 = self.rebnconv2(hx)
|
218 |
+
hx = self.pool2(hx2)
|
219 |
+
|
220 |
+
hx3 = self.rebnconv3(hx)
|
221 |
+
hx = self.pool3(hx3)
|
222 |
+
|
223 |
+
hx4 = self.rebnconv4(hx)
|
224 |
+
|
225 |
+
hx5 = self.rebnconv5(hx4)
|
226 |
+
|
227 |
+
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
228 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
229 |
+
|
230 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
231 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
232 |
+
|
233 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
234 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
235 |
+
|
236 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
237 |
+
|
238 |
+
return hx1d + hxin
|
239 |
+
|
240 |
+
|
241 |
+
### RSU-4 ###
|
242 |
+
class RSU4(nn.Module):
|
243 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
244 |
+
super(RSU4, self).__init__()
|
245 |
+
|
246 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
247 |
+
|
248 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
249 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
250 |
+
|
251 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
252 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
253 |
+
|
254 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
255 |
+
|
256 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
257 |
+
|
258 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
259 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
260 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
hx = x
|
264 |
+
|
265 |
+
hxin = self.rebnconvin(hx)
|
266 |
+
|
267 |
+
hx1 = self.rebnconv1(hxin)
|
268 |
+
hx = self.pool1(hx1)
|
269 |
+
|
270 |
+
hx2 = self.rebnconv2(hx)
|
271 |
+
hx = self.pool2(hx2)
|
272 |
+
|
273 |
+
hx3 = self.rebnconv3(hx)
|
274 |
+
|
275 |
+
hx4 = self.rebnconv4(hx3)
|
276 |
+
|
277 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
278 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
279 |
+
|
280 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
281 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
282 |
+
|
283 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
284 |
+
|
285 |
+
return hx1d + hxin
|
286 |
+
|
287 |
+
|
288 |
+
### RSU-4F ###
|
289 |
+
class RSU4F(nn.Module):
|
290 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
291 |
+
super(RSU4F, self).__init__()
|
292 |
+
|
293 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
294 |
+
|
295 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
296 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
297 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
298 |
+
|
299 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
300 |
+
|
301 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
302 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
303 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
hx = x
|
307 |
+
|
308 |
+
hxin = self.rebnconvin(hx)
|
309 |
+
|
310 |
+
hx1 = self.rebnconv1(hxin)
|
311 |
+
hx2 = self.rebnconv2(hx1)
|
312 |
+
hx3 = self.rebnconv3(hx2)
|
313 |
+
|
314 |
+
hx4 = self.rebnconv4(hx3)
|
315 |
+
|
316 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
317 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
318 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
319 |
+
|
320 |
+
return hx1d + hxin
|
321 |
+
|
322 |
+
|
323 |
+
class myrebnconv(nn.Module):
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
in_ch=3,
|
327 |
+
out_ch=1,
|
328 |
+
kernel_size=3,
|
329 |
+
stride=1,
|
330 |
+
padding=1,
|
331 |
+
dilation=1,
|
332 |
+
groups=1,
|
333 |
+
):
|
334 |
+
super(myrebnconv, self).__init__()
|
335 |
+
|
336 |
+
self.conv = nn.Conv2d(
|
337 |
+
in_ch,
|
338 |
+
out_ch,
|
339 |
+
kernel_size=kernel_size,
|
340 |
+
stride=stride,
|
341 |
+
padding=padding,
|
342 |
+
dilation=dilation,
|
343 |
+
groups=groups,
|
344 |
+
)
|
345 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
346 |
+
self.rl = nn.ReLU(inplace=True)
|
347 |
+
|
348 |
+
def forward(self, x):
|
349 |
+
return self.rl(self.bn(self.conv(x)))
|
350 |
+
|
351 |
+
|
352 |
+
class BriaRMBG(nn.Module):
|
353 |
+
def __init__(self, in_ch=3, out_ch=1):
|
354 |
+
super(BriaRMBG, self).__init__()
|
355 |
+
|
356 |
+
self.conv_in = nn.Conv2d(in_ch, 64, 3, stride=2, padding=1)
|
357 |
+
self.pool_in = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
358 |
+
|
359 |
+
self.stage1 = RSU7(64, 32, 64)
|
360 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
361 |
+
|
362 |
+
self.stage2 = RSU6(64, 32, 128)
|
363 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
364 |
+
|
365 |
+
self.stage3 = RSU5(128, 64, 256)
|
366 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
367 |
+
|
368 |
+
self.stage4 = RSU4(256, 128, 512)
|
369 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
370 |
+
|
371 |
+
self.stage5 = RSU4F(512, 256, 512)
|
372 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
373 |
+
|
374 |
+
self.stage6 = RSU4F(512, 256, 512)
|
375 |
+
|
376 |
+
# decoder
|
377 |
+
self.stage5d = RSU4F(1024, 256, 512)
|
378 |
+
self.stage4d = RSU4(1024, 128, 256)
|
379 |
+
self.stage3d = RSU5(512, 64, 128)
|
380 |
+
self.stage2d = RSU6(256, 32, 64)
|
381 |
+
self.stage1d = RSU7(128, 16, 64)
|
382 |
+
|
383 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
384 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
385 |
+
self.side3 = nn.Conv2d(128, out_ch, 3, padding=1)
|
386 |
+
self.side4 = nn.Conv2d(256, out_ch, 3, padding=1)
|
387 |
+
self.side5 = nn.Conv2d(512, out_ch, 3, padding=1)
|
388 |
+
self.side6 = nn.Conv2d(512, out_ch, 3, padding=1)
|
389 |
+
|
390 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
391 |
+
|
392 |
+
def forward(self, x):
|
393 |
+
hx = x
|
394 |
+
|
395 |
+
hxin = self.conv_in(hx)
|
396 |
+
# hx = self.pool_in(hxin)
|
397 |
+
|
398 |
+
# stage 1
|
399 |
+
hx1 = self.stage1(hxin)
|
400 |
+
hx = self.pool12(hx1)
|
401 |
+
|
402 |
+
# stage 2
|
403 |
+
hx2 = self.stage2(hx)
|
404 |
+
hx = self.pool23(hx2)
|
405 |
+
|
406 |
+
# stage 3
|
407 |
+
hx3 = self.stage3(hx)
|
408 |
+
hx = self.pool34(hx3)
|
409 |
+
|
410 |
+
# stage 4
|
411 |
+
hx4 = self.stage4(hx)
|
412 |
+
hx = self.pool45(hx4)
|
413 |
+
|
414 |
+
# stage 5
|
415 |
+
hx5 = self.stage5(hx)
|
416 |
+
hx = self.pool56(hx5)
|
417 |
+
|
418 |
+
# stage 6
|
419 |
+
hx6 = self.stage6(hx)
|
420 |
+
hx6up = _upsample_like(hx6, hx5)
|
421 |
+
|
422 |
+
# -------------------- decoder --------------------
|
423 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
424 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
425 |
+
|
426 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
427 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
428 |
+
|
429 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
430 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
431 |
+
|
432 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
433 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
434 |
+
|
435 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
436 |
+
|
437 |
+
# side output
|
438 |
+
d1 = self.side1(hx1d)
|
439 |
+
d1 = _upsample_like(d1, x)
|
440 |
+
|
441 |
+
d2 = self.side2(hx2d)
|
442 |
+
d2 = _upsample_like(d2, x)
|
443 |
+
|
444 |
+
d3 = self.side3(hx3d)
|
445 |
+
d3 = _upsample_like(d3, x)
|
446 |
+
|
447 |
+
d4 = self.side4(hx4d)
|
448 |
+
d4 = _upsample_like(d4, x)
|
449 |
+
|
450 |
+
d5 = self.side5(hx5d)
|
451 |
+
d5 = _upsample_like(d5, x)
|
452 |
+
|
453 |
+
d6 = self.side6(hx6)
|
454 |
+
d6 = _upsample_like(d6, x)
|
455 |
+
|
456 |
+
return [
|
457 |
+
F.sigmoid(d1),
|
458 |
+
F.sigmoid(d2),
|
459 |
+
F.sigmoid(d3),
|
460 |
+
F.sigmoid(d4),
|
461 |
+
F.sigmoid(d5),
|
462 |
+
F.sigmoid(d6),
|
463 |
+
], [hx1d, hx2d, hx3d, hx4d, hx5d, hx6]
|
464 |
+
|
465 |
+
|
466 |
+
def resize_image(image):
|
467 |
+
image = image.convert("RGB")
|
468 |
+
model_input_size = (1024, 1024)
|
469 |
+
image = image.resize(model_input_size, Image.BILINEAR)
|
470 |
+
return image
|
471 |
+
|
472 |
+
|
473 |
+
def create_briarmbg_session():
|
474 |
+
from huggingface_hub import hf_hub_download
|
475 |
+
|
476 |
+
net = BriaRMBG()
|
477 |
+
model_path = hf_hub_download("briaai/RMBG-1.4", "model.pth")
|
478 |
+
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
479 |
+
net.eval()
|
480 |
+
return net
|
481 |
+
|
482 |
+
|
483 |
+
def briarmbg_process(bgr_np_image, session, only_mask=False):
|
484 |
+
# prepare input
|
485 |
+
orig_bgr_image = Image.fromarray(bgr_np_image)
|
486 |
+
w, h = orig_im_size = orig_bgr_image.size
|
487 |
+
image = resize_image(orig_bgr_image)
|
488 |
+
im_np = np.array(image)
|
489 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
490 |
+
im_tensor = torch.unsqueeze(im_tensor, 0)
|
491 |
+
im_tensor = torch.divide(im_tensor, 255.0)
|
492 |
+
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
|
493 |
+
# inference
|
494 |
+
result = session(im_tensor)
|
495 |
+
# post process
|
496 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
|
497 |
+
ma = torch.max(result)
|
498 |
+
mi = torch.min(result)
|
499 |
+
result = (result - mi) / (ma - mi)
|
500 |
+
# image to pil
|
501 |
+
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
502 |
+
|
503 |
+
mask = np.squeeze(im_array)
|
504 |
+
if only_mask:
|
505 |
+
return mask
|
506 |
+
|
507 |
+
pil_im = Image.fromarray(mask)
|
508 |
+
# paste the mask on the original image
|
509 |
+
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
510 |
+
new_im.paste(orig_bgr_image, mask=pil_im)
|
511 |
+
rgba_np_img = np.asarray(new_im)
|
512 |
+
return rgba_np_img
|
iopaint/plugins/gfpgan_plugin.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from loguru import logger
|
4 |
+
|
5 |
+
from iopaint.helper import download_model
|
6 |
+
from iopaint.plugins.base_plugin import BasePlugin
|
7 |
+
from iopaint.schema import RunPluginRequest
|
8 |
+
|
9 |
+
|
10 |
+
class GFPGANPlugin(BasePlugin):
|
11 |
+
name = "GFPGAN"
|
12 |
+
support_gen_image = True
|
13 |
+
|
14 |
+
def __init__(self, device, upscaler=None):
|
15 |
+
super().__init__()
|
16 |
+
from .gfpganer import MyGFPGANer
|
17 |
+
|
18 |
+
url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
|
19 |
+
model_md5 = "94d735072630ab734561130a47bc44f8"
|
20 |
+
model_path = download_model(url, model_md5)
|
21 |
+
logger.info(f"GFPGAN model path: {model_path}")
|
22 |
+
|
23 |
+
import facexlib
|
24 |
+
|
25 |
+
if hasattr(facexlib.detection.retinaface, "device"):
|
26 |
+
facexlib.detection.retinaface.device = device
|
27 |
+
|
28 |
+
# Use GFPGAN for face enhancement
|
29 |
+
self.face_enhancer = MyGFPGANer(
|
30 |
+
model_path=model_path,
|
31 |
+
upscale=1,
|
32 |
+
arch="clean",
|
33 |
+
channel_multiplier=2,
|
34 |
+
device=device,
|
35 |
+
bg_upsampler=upscaler.model if upscaler is not None else None,
|
36 |
+
)
|
37 |
+
self.face_enhancer.face_helper.face_det.mean_tensor.to(device)
|
38 |
+
self.face_enhancer.face_helper.face_det = (
|
39 |
+
self.face_enhancer.face_helper.face_det.to(device)
|
40 |
+
)
|
41 |
+
|
42 |
+
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
43 |
+
weight = 0.5
|
44 |
+
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
45 |
+
logger.info(f"GFPGAN input shape: {bgr_np_img.shape}")
|
46 |
+
_, _, bgr_output = self.face_enhancer.enhance(
|
47 |
+
bgr_np_img,
|
48 |
+
has_aligned=False,
|
49 |
+
only_center_face=False,
|
50 |
+
paste_back=True,
|
51 |
+
weight=weight,
|
52 |
+
)
|
53 |
+
logger.info(f"GFPGAN output shape: {bgr_output.shape}")
|
54 |
+
|
55 |
+
# try:
|
56 |
+
# if scale != 2:
|
57 |
+
# interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
58 |
+
# h, w = img.shape[0:2]
|
59 |
+
# output = cv2.resize(
|
60 |
+
# output,
|
61 |
+
# (int(w * scale / 2), int(h * scale / 2)),
|
62 |
+
# interpolation=interpolation,
|
63 |
+
# )
|
64 |
+
# except Exception as error:
|
65 |
+
# print("wrong scale input.", error)
|
66 |
+
return bgr_output
|
67 |
+
|
68 |
+
def check_dep(self):
|
69 |
+
try:
|
70 |
+
import gfpgan
|
71 |
+
except ImportError:
|
72 |
+
return (
|
73 |
+
"gfpgan is not installed, please install it first. pip install gfpgan"
|
74 |
+
)
|
iopaint/plugins/gfpganer.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
5 |
+
from gfpgan import GFPGANv1Clean, GFPGANer
|
6 |
+
from torch.hub import get_dir
|
7 |
+
|
8 |
+
|
9 |
+
class MyGFPGANer(GFPGANer):
|
10 |
+
"""Helper for restoration with GFPGAN.
|
11 |
+
|
12 |
+
It will detect and crop faces, and then resize the faces to 512x512.
|
13 |
+
GFPGAN is used to restored the resized faces.
|
14 |
+
The background is upsampled with the bg_upsampler.
|
15 |
+
Finally, the faces will be pasted back to the upsample background image.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
|
19 |
+
upscale (float): The upscale of the final output. Default: 2.
|
20 |
+
arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
|
21 |
+
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
22 |
+
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
model_path,
|
28 |
+
upscale=2,
|
29 |
+
arch="clean",
|
30 |
+
channel_multiplier=2,
|
31 |
+
bg_upsampler=None,
|
32 |
+
device=None,
|
33 |
+
):
|
34 |
+
self.upscale = upscale
|
35 |
+
self.bg_upsampler = bg_upsampler
|
36 |
+
|
37 |
+
# initialize model
|
38 |
+
self.device = (
|
39 |
+
torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
if device is None
|
41 |
+
else device
|
42 |
+
)
|
43 |
+
# initialize the GFP-GAN
|
44 |
+
if arch == "clean":
|
45 |
+
self.gfpgan = GFPGANv1Clean(
|
46 |
+
out_size=512,
|
47 |
+
num_style_feat=512,
|
48 |
+
channel_multiplier=channel_multiplier,
|
49 |
+
decoder_load_path=None,
|
50 |
+
fix_decoder=False,
|
51 |
+
num_mlp=8,
|
52 |
+
input_is_latent=True,
|
53 |
+
different_w=True,
|
54 |
+
narrow=1,
|
55 |
+
sft_half=True,
|
56 |
+
)
|
57 |
+
elif arch == "RestoreFormer":
|
58 |
+
from gfpgan.archs.restoreformer_arch import RestoreFormer
|
59 |
+
|
60 |
+
self.gfpgan = RestoreFormer()
|
61 |
+
|
62 |
+
hub_dir = get_dir()
|
63 |
+
model_dir = os.path.join(hub_dir, "checkpoints")
|
64 |
+
|
65 |
+
# initialize face helper
|
66 |
+
self.face_helper = FaceRestoreHelper(
|
67 |
+
upscale,
|
68 |
+
face_size=512,
|
69 |
+
crop_ratio=(1, 1),
|
70 |
+
det_model="retinaface_resnet50",
|
71 |
+
save_ext="png",
|
72 |
+
use_parse=True,
|
73 |
+
device=self.device,
|
74 |
+
model_rootpath=model_dir,
|
75 |
+
)
|
76 |
+
|
77 |
+
loadnet = torch.load(model_path)
|
78 |
+
if "params_ema" in loadnet:
|
79 |
+
keyname = "params_ema"
|
80 |
+
else:
|
81 |
+
keyname = "params"
|
82 |
+
self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
|
83 |
+
self.gfpgan.eval()
|
84 |
+
self.gfpgan = self.gfpgan.to(self.device)
|
iopaint/plugins/interactive_seg.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from loguru import logger
|
7 |
+
|
8 |
+
from iopaint.helper import download_model
|
9 |
+
from iopaint.plugins.base_plugin import BasePlugin
|
10 |
+
from iopaint.plugins.segment_anything import SamPredictor, sam_model_registry
|
11 |
+
from iopaint.schema import RunPluginRequest
|
12 |
+
|
13 |
+
# 从小到大
|
14 |
+
SEGMENT_ANYTHING_MODELS = {
|
15 |
+
"vit_b": {
|
16 |
+
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
|
17 |
+
"md5": "01ec64d29a2fca3f0661936605ae66f8",
|
18 |
+
},
|
19 |
+
"vit_l": {
|
20 |
+
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
|
21 |
+
"md5": "0b3195507c641ddb6910d2bb5adee89c",
|
22 |
+
},
|
23 |
+
"vit_h": {
|
24 |
+
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
|
25 |
+
"md5": "4b8939a88964f0f4ff5f5b2642c598a6",
|
26 |
+
},
|
27 |
+
"mobile_sam": {
|
28 |
+
"url": "https://github.com/Sanster/models/releases/download/MobileSAM/mobile_sam.pt",
|
29 |
+
"md5": "f3c0d8cda613564d499310dab6c812cd",
|
30 |
+
},
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class InteractiveSeg(BasePlugin):
|
35 |
+
name = "InteractiveSeg"
|
36 |
+
support_gen_mask = True
|
37 |
+
|
38 |
+
def __init__(self, model_name, device):
|
39 |
+
super().__init__()
|
40 |
+
self.model_name = model_name
|
41 |
+
self.device = device
|
42 |
+
self._init_session(model_name)
|
43 |
+
|
44 |
+
def _init_session(self, model_name: str):
|
45 |
+
model_path = download_model(
|
46 |
+
SEGMENT_ANYTHING_MODELS[model_name]["url"],
|
47 |
+
SEGMENT_ANYTHING_MODELS[model_name]["md5"],
|
48 |
+
)
|
49 |
+
logger.info(f"SegmentAnything model path: {model_path}")
|
50 |
+
self.predictor = SamPredictor(
|
51 |
+
sam_model_registry[model_name](checkpoint=model_path).to(self.device)
|
52 |
+
)
|
53 |
+
self.prev_img_md5 = None
|
54 |
+
|
55 |
+
def switch_model(self, new_model_name):
|
56 |
+
if self.model_name == new_model_name:
|
57 |
+
return
|
58 |
+
|
59 |
+
logger.info(
|
60 |
+
f"Switching InteractiveSeg model from {self.model_name} to {new_model_name}"
|
61 |
+
)
|
62 |
+
self._init_session(new_model_name)
|
63 |
+
self.model_name = new_model_name
|
64 |
+
|
65 |
+
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
66 |
+
img_md5 = hashlib.md5(req.image.encode("utf-8")).hexdigest()
|
67 |
+
return self.forward(rgb_np_img, req.clicks, img_md5)
|
68 |
+
|
69 |
+
@torch.inference_mode()
|
70 |
+
def forward(self, rgb_np_img, clicks: List[List], img_md5: str):
|
71 |
+
input_point = []
|
72 |
+
input_label = []
|
73 |
+
for click in clicks:
|
74 |
+
x = click[0]
|
75 |
+
y = click[1]
|
76 |
+
input_point.append([x, y])
|
77 |
+
input_label.append(click[2])
|
78 |
+
|
79 |
+
if img_md5 and img_md5 != self.prev_img_md5:
|
80 |
+
self.prev_img_md5 = img_md5
|
81 |
+
self.predictor.set_image(rgb_np_img)
|
82 |
+
|
83 |
+
masks, scores, _ = self.predictor.predict(
|
84 |
+
point_coords=np.array(input_point),
|
85 |
+
point_labels=np.array(input_label),
|
86 |
+
multimask_output=False,
|
87 |
+
)
|
88 |
+
mask = masks[0].astype(np.uint8) * 255
|
89 |
+
return mask
|
iopaint/plugins/segment_anything/build_sam.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
from iopaint.plugins.segment_anything.modeling.tiny_vit_sam import TinyViT
|
12 |
+
|
13 |
+
from .modeling import (
|
14 |
+
ImageEncoderViT,
|
15 |
+
MaskDecoder,
|
16 |
+
PromptEncoder,
|
17 |
+
Sam,
|
18 |
+
TwoWayTransformer,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def build_sam_vit_h(checkpoint=None):
|
23 |
+
return _build_sam(
|
24 |
+
encoder_embed_dim=1280,
|
25 |
+
encoder_depth=32,
|
26 |
+
encoder_num_heads=16,
|
27 |
+
encoder_global_attn_indexes=[7, 15, 23, 31],
|
28 |
+
checkpoint=checkpoint,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
build_sam = build_sam_vit_h
|
33 |
+
|
34 |
+
|
35 |
+
def build_sam_vit_l(checkpoint=None):
|
36 |
+
return _build_sam(
|
37 |
+
encoder_embed_dim=1024,
|
38 |
+
encoder_depth=24,
|
39 |
+
encoder_num_heads=16,
|
40 |
+
encoder_global_attn_indexes=[5, 11, 17, 23],
|
41 |
+
checkpoint=checkpoint,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def build_sam_vit_b(checkpoint=None):
|
46 |
+
return _build_sam(
|
47 |
+
encoder_embed_dim=768,
|
48 |
+
encoder_depth=12,
|
49 |
+
encoder_num_heads=12,
|
50 |
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
51 |
+
checkpoint=checkpoint,
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
def build_sam_vit_t(checkpoint=None):
|
56 |
+
prompt_embed_dim = 256
|
57 |
+
image_size = 1024
|
58 |
+
vit_patch_size = 16
|
59 |
+
image_embedding_size = image_size // vit_patch_size
|
60 |
+
mobile_sam = Sam(
|
61 |
+
image_encoder=TinyViT(
|
62 |
+
img_size=1024,
|
63 |
+
in_chans=3,
|
64 |
+
num_classes=1000,
|
65 |
+
embed_dims=[64, 128, 160, 320],
|
66 |
+
depths=[2, 2, 6, 2],
|
67 |
+
num_heads=[2, 4, 5, 10],
|
68 |
+
window_sizes=[7, 7, 14, 7],
|
69 |
+
mlp_ratio=4.0,
|
70 |
+
drop_rate=0.0,
|
71 |
+
drop_path_rate=0.0,
|
72 |
+
use_checkpoint=False,
|
73 |
+
mbconv_expand_ratio=4.0,
|
74 |
+
local_conv_size=3,
|
75 |
+
layer_lr_decay=0.8,
|
76 |
+
),
|
77 |
+
prompt_encoder=PromptEncoder(
|
78 |
+
embed_dim=prompt_embed_dim,
|
79 |
+
image_embedding_size=(image_embedding_size, image_embedding_size),
|
80 |
+
input_image_size=(image_size, image_size),
|
81 |
+
mask_in_chans=16,
|
82 |
+
),
|
83 |
+
mask_decoder=MaskDecoder(
|
84 |
+
num_multimask_outputs=3,
|
85 |
+
transformer=TwoWayTransformer(
|
86 |
+
depth=2,
|
87 |
+
embedding_dim=prompt_embed_dim,
|
88 |
+
mlp_dim=2048,
|
89 |
+
num_heads=8,
|
90 |
+
),
|
91 |
+
transformer_dim=prompt_embed_dim,
|
92 |
+
iou_head_depth=3,
|
93 |
+
iou_head_hidden_dim=256,
|
94 |
+
),
|
95 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
96 |
+
pixel_std=[58.395, 57.12, 57.375],
|
97 |
+
)
|
98 |
+
|
99 |
+
mobile_sam.eval()
|
100 |
+
if checkpoint is not None:
|
101 |
+
with open(checkpoint, "rb") as f:
|
102 |
+
state_dict = torch.load(f)
|
103 |
+
mobile_sam.load_state_dict(state_dict)
|
104 |
+
return mobile_sam
|
105 |
+
|
106 |
+
|
107 |
+
sam_model_registry = {
|
108 |
+
"default": build_sam,
|
109 |
+
"vit_h": build_sam,
|
110 |
+
"vit_l": build_sam_vit_l,
|
111 |
+
"vit_b": build_sam_vit_b,
|
112 |
+
"mobile_sam": build_sam_vit_t,
|
113 |
+
}
|
114 |
+
|
115 |
+
|
116 |
+
def _build_sam(
|
117 |
+
encoder_embed_dim,
|
118 |
+
encoder_depth,
|
119 |
+
encoder_num_heads,
|
120 |
+
encoder_global_attn_indexes,
|
121 |
+
checkpoint=None,
|
122 |
+
):
|
123 |
+
prompt_embed_dim = 256
|
124 |
+
image_size = 1024
|
125 |
+
vit_patch_size = 16
|
126 |
+
image_embedding_size = image_size // vit_patch_size
|
127 |
+
sam = Sam(
|
128 |
+
image_encoder=ImageEncoderViT(
|
129 |
+
depth=encoder_depth,
|
130 |
+
embed_dim=encoder_embed_dim,
|
131 |
+
img_size=image_size,
|
132 |
+
mlp_ratio=4,
|
133 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
134 |
+
num_heads=encoder_num_heads,
|
135 |
+
patch_size=vit_patch_size,
|
136 |
+
qkv_bias=True,
|
137 |
+
use_rel_pos=True,
|
138 |
+
global_attn_indexes=encoder_global_attn_indexes,
|
139 |
+
window_size=14,
|
140 |
+
out_chans=prompt_embed_dim,
|
141 |
+
),
|
142 |
+
prompt_encoder=PromptEncoder(
|
143 |
+
embed_dim=prompt_embed_dim,
|
144 |
+
image_embedding_size=(image_embedding_size, image_embedding_size),
|
145 |
+
input_image_size=(image_size, image_size),
|
146 |
+
mask_in_chans=16,
|
147 |
+
),
|
148 |
+
mask_decoder=MaskDecoder(
|
149 |
+
num_multimask_outputs=3,
|
150 |
+
transformer=TwoWayTransformer(
|
151 |
+
depth=2,
|
152 |
+
embedding_dim=prompt_embed_dim,
|
153 |
+
mlp_dim=2048,
|
154 |
+
num_heads=8,
|
155 |
+
),
|
156 |
+
transformer_dim=prompt_embed_dim,
|
157 |
+
iou_head_depth=3,
|
158 |
+
iou_head_hidden_dim=256,
|
159 |
+
),
|
160 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
161 |
+
pixel_std=[58.395, 57.12, 57.375],
|
162 |
+
)
|
163 |
+
sam.eval()
|
164 |
+
if checkpoint is not None:
|
165 |
+
with open(checkpoint, "rb") as f:
|
166 |
+
state_dict = torch.load(f)
|
167 |
+
sam.load_state_dict(state_dict)
|
168 |
+
return sam
|
iopaint/plugins/segment_anything/modeling/common.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from typing import Type
|
11 |
+
|
12 |
+
|
13 |
+
class MLPBlock(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
embedding_dim: int,
|
17 |
+
mlp_dim: int,
|
18 |
+
act: Type[nn.Module] = nn.GELU,
|
19 |
+
) -> None:
|
20 |
+
super().__init__()
|
21 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
22 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
23 |
+
self.act = act()
|
24 |
+
|
25 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
26 |
+
return self.lin2(self.act(self.lin1(x)))
|
27 |
+
|
28 |
+
|
29 |
+
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
30 |
+
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
31 |
+
class LayerNorm2d(nn.Module):
|
32 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
33 |
+
super().__init__()
|
34 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
35 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
36 |
+
self.eps = eps
|
37 |
+
|
38 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
39 |
+
u = x.mean(1, keepdim=True)
|
40 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
41 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
42 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
43 |
+
return x
|
iopaint/plugins/segment_anything/modeling/image_encoder.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from typing import Optional, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d, MLPBlock
|
14 |
+
|
15 |
+
|
16 |
+
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
17 |
+
class ImageEncoderViT(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
img_size: int = 1024,
|
21 |
+
patch_size: int = 16,
|
22 |
+
in_chans: int = 3,
|
23 |
+
embed_dim: int = 768,
|
24 |
+
depth: int = 12,
|
25 |
+
num_heads: int = 12,
|
26 |
+
mlp_ratio: float = 4.0,
|
27 |
+
out_chans: int = 256,
|
28 |
+
qkv_bias: bool = True,
|
29 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
30 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
31 |
+
use_abs_pos: bool = True,
|
32 |
+
use_rel_pos: bool = False,
|
33 |
+
rel_pos_zero_init: bool = True,
|
34 |
+
window_size: int = 0,
|
35 |
+
global_attn_indexes: Tuple[int, ...] = (),
|
36 |
+
) -> None:
|
37 |
+
"""
|
38 |
+
Args:
|
39 |
+
img_size (int): Input image size.
|
40 |
+
patch_size (int): Patch size.
|
41 |
+
in_chans (int): Number of input image channels.
|
42 |
+
embed_dim (int): Patch embedding dimension.
|
43 |
+
depth (int): Depth of ViT.
|
44 |
+
num_heads (int): Number of attention heads in each ViT block.
|
45 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
46 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
47 |
+
norm_layer (nn.Module): Normalization layer.
|
48 |
+
act_layer (nn.Module): Activation layer.
|
49 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
50 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
51 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
52 |
+
window_size (int): Window size for window attention blocks.
|
53 |
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
54 |
+
"""
|
55 |
+
super().__init__()
|
56 |
+
self.img_size = img_size
|
57 |
+
|
58 |
+
self.patch_embed = PatchEmbed(
|
59 |
+
kernel_size=(patch_size, patch_size),
|
60 |
+
stride=(patch_size, patch_size),
|
61 |
+
in_chans=in_chans,
|
62 |
+
embed_dim=embed_dim,
|
63 |
+
)
|
64 |
+
|
65 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
66 |
+
if use_abs_pos:
|
67 |
+
# Initialize absolute positional embedding with pretrain image size.
|
68 |
+
self.pos_embed = nn.Parameter(
|
69 |
+
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
70 |
+
)
|
71 |
+
|
72 |
+
self.blocks = nn.ModuleList()
|
73 |
+
for i in range(depth):
|
74 |
+
block = Block(
|
75 |
+
dim=embed_dim,
|
76 |
+
num_heads=num_heads,
|
77 |
+
mlp_ratio=mlp_ratio,
|
78 |
+
qkv_bias=qkv_bias,
|
79 |
+
norm_layer=norm_layer,
|
80 |
+
act_layer=act_layer,
|
81 |
+
use_rel_pos=use_rel_pos,
|
82 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
83 |
+
window_size=window_size if i not in global_attn_indexes else 0,
|
84 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
85 |
+
)
|
86 |
+
self.blocks.append(block)
|
87 |
+
|
88 |
+
self.neck = nn.Sequential(
|
89 |
+
nn.Conv2d(
|
90 |
+
embed_dim,
|
91 |
+
out_chans,
|
92 |
+
kernel_size=1,
|
93 |
+
bias=False,
|
94 |
+
),
|
95 |
+
LayerNorm2d(out_chans),
|
96 |
+
nn.Conv2d(
|
97 |
+
out_chans,
|
98 |
+
out_chans,
|
99 |
+
kernel_size=3,
|
100 |
+
padding=1,
|
101 |
+
bias=False,
|
102 |
+
),
|
103 |
+
LayerNorm2d(out_chans),
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
107 |
+
x = self.patch_embed(x)
|
108 |
+
if self.pos_embed is not None:
|
109 |
+
x = x + self.pos_embed
|
110 |
+
|
111 |
+
for blk in self.blocks:
|
112 |
+
x = blk(x)
|
113 |
+
|
114 |
+
x = self.neck(x.permute(0, 3, 1, 2))
|
115 |
+
|
116 |
+
return x
|
117 |
+
|
118 |
+
|
119 |
+
class Block(nn.Module):
|
120 |
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
dim: int,
|
125 |
+
num_heads: int,
|
126 |
+
mlp_ratio: float = 4.0,
|
127 |
+
qkv_bias: bool = True,
|
128 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
129 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
130 |
+
use_rel_pos: bool = False,
|
131 |
+
rel_pos_zero_init: bool = True,
|
132 |
+
window_size: int = 0,
|
133 |
+
input_size: Optional[Tuple[int, int]] = None,
|
134 |
+
) -> None:
|
135 |
+
"""
|
136 |
+
Args:
|
137 |
+
dim (int): Number of input channels.
|
138 |
+
num_heads (int): Number of attention heads in each ViT block.
|
139 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
140 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
141 |
+
norm_layer (nn.Module): Normalization layer.
|
142 |
+
act_layer (nn.Module): Activation layer.
|
143 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
144 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
145 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
146 |
+
use global attention.
|
147 |
+
input_size (int or None): Input resolution for calculating the relative positional
|
148 |
+
parameter size.
|
149 |
+
"""
|
150 |
+
super().__init__()
|
151 |
+
self.norm1 = norm_layer(dim)
|
152 |
+
self.attn = Attention(
|
153 |
+
dim,
|
154 |
+
num_heads=num_heads,
|
155 |
+
qkv_bias=qkv_bias,
|
156 |
+
use_rel_pos=use_rel_pos,
|
157 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
158 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
159 |
+
)
|
160 |
+
|
161 |
+
self.norm2 = norm_layer(dim)
|
162 |
+
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
163 |
+
|
164 |
+
self.window_size = window_size
|
165 |
+
|
166 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
167 |
+
shortcut = x
|
168 |
+
x = self.norm1(x)
|
169 |
+
# Window partition
|
170 |
+
if self.window_size > 0:
|
171 |
+
H, W = x.shape[1], x.shape[2]
|
172 |
+
x, pad_hw = window_partition(x, self.window_size)
|
173 |
+
|
174 |
+
x = self.attn(x)
|
175 |
+
# Reverse window partition
|
176 |
+
if self.window_size > 0:
|
177 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
178 |
+
|
179 |
+
x = shortcut + x
|
180 |
+
x = x + self.mlp(self.norm2(x))
|
181 |
+
|
182 |
+
return x
|
183 |
+
|
184 |
+
|
185 |
+
class Attention(nn.Module):
|
186 |
+
"""Multi-head Attention block with relative position embeddings."""
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
dim: int,
|
191 |
+
num_heads: int = 8,
|
192 |
+
qkv_bias: bool = True,
|
193 |
+
use_rel_pos: bool = False,
|
194 |
+
rel_pos_zero_init: bool = True,
|
195 |
+
input_size: Optional[Tuple[int, int]] = None,
|
196 |
+
) -> None:
|
197 |
+
"""
|
198 |
+
Args:
|
199 |
+
dim (int): Number of input channels.
|
200 |
+
num_heads (int): Number of attention heads.
|
201 |
+
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
202 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
203 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
204 |
+
input_size (int or None): Input resolution for calculating the relative positional
|
205 |
+
parameter size.
|
206 |
+
"""
|
207 |
+
super().__init__()
|
208 |
+
self.num_heads = num_heads
|
209 |
+
head_dim = dim // num_heads
|
210 |
+
self.scale = head_dim**-0.5
|
211 |
+
|
212 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
213 |
+
self.proj = nn.Linear(dim, dim)
|
214 |
+
|
215 |
+
self.use_rel_pos = use_rel_pos
|
216 |
+
if self.use_rel_pos:
|
217 |
+
assert (
|
218 |
+
input_size is not None
|
219 |
+
), "Input size must be provided if using relative positional encoding."
|
220 |
+
# initialize relative positional embeddings
|
221 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
222 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
223 |
+
|
224 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
225 |
+
B, H, W, _ = x.shape
|
226 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
227 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
228 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
229 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
230 |
+
|
231 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
232 |
+
|
233 |
+
if self.use_rel_pos:
|
234 |
+
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
235 |
+
|
236 |
+
attn = attn.softmax(dim=-1)
|
237 |
+
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
238 |
+
x = self.proj(x)
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
244 |
+
"""
|
245 |
+
Partition into non-overlapping windows with padding if needed.
|
246 |
+
Args:
|
247 |
+
x (tensor): input tokens with [B, H, W, C].
|
248 |
+
window_size (int): window size.
|
249 |
+
|
250 |
+
Returns:
|
251 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
252 |
+
(Hp, Wp): padded height and width before partition
|
253 |
+
"""
|
254 |
+
B, H, W, C = x.shape
|
255 |
+
|
256 |
+
pad_h = (window_size - H % window_size) % window_size
|
257 |
+
pad_w = (window_size - W % window_size) % window_size
|
258 |
+
if pad_h > 0 or pad_w > 0:
|
259 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
260 |
+
Hp, Wp = H + pad_h, W + pad_w
|
261 |
+
|
262 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
263 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
264 |
+
return windows, (Hp, Wp)
|
265 |
+
|
266 |
+
|
267 |
+
def window_unpartition(
|
268 |
+
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
269 |
+
) -> torch.Tensor:
|
270 |
+
"""
|
271 |
+
Window unpartition into original sequences and removing padding.
|
272 |
+
Args:
|
273 |
+
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
274 |
+
window_size (int): window size.
|
275 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
276 |
+
hw (Tuple): original height and width (H, W) before padding.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
x: unpartitioned sequences with [B, H, W, C].
|
280 |
+
"""
|
281 |
+
Hp, Wp = pad_hw
|
282 |
+
H, W = hw
|
283 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
284 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
285 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
286 |
+
|
287 |
+
if Hp > H or Wp > W:
|
288 |
+
x = x[:, :H, :W, :].contiguous()
|
289 |
+
return x
|
290 |
+
|
291 |
+
|
292 |
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
293 |
+
"""
|
294 |
+
Get relative positional embeddings according to the relative positions of
|
295 |
+
query and key sizes.
|
296 |
+
Args:
|
297 |
+
q_size (int): size of query q.
|
298 |
+
k_size (int): size of key k.
|
299 |
+
rel_pos (Tensor): relative position embeddings (L, C).
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
Extracted positional embeddings according to relative positions.
|
303 |
+
"""
|
304 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
305 |
+
# Interpolate rel pos if needed.
|
306 |
+
if rel_pos.shape[0] != max_rel_dist:
|
307 |
+
# Interpolate rel pos.
|
308 |
+
rel_pos_resized = F.interpolate(
|
309 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
310 |
+
size=max_rel_dist,
|
311 |
+
mode="linear",
|
312 |
+
)
|
313 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
314 |
+
else:
|
315 |
+
rel_pos_resized = rel_pos
|
316 |
+
|
317 |
+
# Scale the coords with short length if shapes for q and k are different.
|
318 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
319 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
320 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
321 |
+
|
322 |
+
return rel_pos_resized[relative_coords.long()]
|
323 |
+
|
324 |
+
|
325 |
+
def add_decomposed_rel_pos(
|
326 |
+
attn: torch.Tensor,
|
327 |
+
q: torch.Tensor,
|
328 |
+
rel_pos_h: torch.Tensor,
|
329 |
+
rel_pos_w: torch.Tensor,
|
330 |
+
q_size: Tuple[int, int],
|
331 |
+
k_size: Tuple[int, int],
|
332 |
+
) -> torch.Tensor:
|
333 |
+
"""
|
334 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
335 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
336 |
+
Args:
|
337 |
+
attn (Tensor): attention map.
|
338 |
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
339 |
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
340 |
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
341 |
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
342 |
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
attn (Tensor): attention map with added relative positional embeddings.
|
346 |
+
"""
|
347 |
+
q_h, q_w = q_size
|
348 |
+
k_h, k_w = k_size
|
349 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
350 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
351 |
+
|
352 |
+
B, _, dim = q.shape
|
353 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
354 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
355 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
356 |
+
|
357 |
+
attn = (
|
358 |
+
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
359 |
+
).view(B, q_h * q_w, k_h * k_w)
|
360 |
+
|
361 |
+
return attn
|
362 |
+
|
363 |
+
|
364 |
+
class PatchEmbed(nn.Module):
|
365 |
+
"""
|
366 |
+
Image to Patch Embedding.
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init__(
|
370 |
+
self,
|
371 |
+
kernel_size: Tuple[int, int] = (16, 16),
|
372 |
+
stride: Tuple[int, int] = (16, 16),
|
373 |
+
padding: Tuple[int, int] = (0, 0),
|
374 |
+
in_chans: int = 3,
|
375 |
+
embed_dim: int = 768,
|
376 |
+
) -> None:
|
377 |
+
"""
|
378 |
+
Args:
|
379 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
380 |
+
stride (Tuple): stride of the projection layer.
|
381 |
+
padding (Tuple): padding size of the projection layer.
|
382 |
+
in_chans (int): Number of input image channels.
|
383 |
+
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
384 |
+
"""
|
385 |
+
super().__init__()
|
386 |
+
|
387 |
+
self.proj = nn.Conv2d(
|
388 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
389 |
+
)
|
390 |
+
|
391 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
392 |
+
x = self.proj(x)
|
393 |
+
# B C H W -> B H W C
|
394 |
+
x = x.permute(0, 2, 3, 1)
|
395 |
+
return x
|
iopaint/plugins/segment_anything/modeling/mask_decoder.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from typing import List, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d
|
14 |
+
|
15 |
+
|
16 |
+
class MaskDecoder(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
*,
|
20 |
+
transformer_dim: int,
|
21 |
+
transformer: nn.Module,
|
22 |
+
num_multimask_outputs: int = 3,
|
23 |
+
activation: Type[nn.Module] = nn.GELU,
|
24 |
+
iou_head_depth: int = 3,
|
25 |
+
iou_head_hidden_dim: int = 256,
|
26 |
+
) -> None:
|
27 |
+
"""
|
28 |
+
Predicts masks given an image and prompt embeddings, using a
|
29 |
+
tranformer architecture.
|
30 |
+
|
31 |
+
Arguments:
|
32 |
+
transformer_dim (int): the channel dimension of the transformer
|
33 |
+
transformer (nn.Module): the transformer used to predict masks
|
34 |
+
num_multimask_outputs (int): the number of masks to predict
|
35 |
+
when disambiguating masks
|
36 |
+
activation (nn.Module): the type of activation to use when
|
37 |
+
upscaling masks
|
38 |
+
iou_head_depth (int): the depth of the MLP used to predict
|
39 |
+
mask quality
|
40 |
+
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
41 |
+
used to predict mask quality
|
42 |
+
"""
|
43 |
+
super().__init__()
|
44 |
+
self.transformer_dim = transformer_dim
|
45 |
+
self.transformer = transformer
|
46 |
+
|
47 |
+
self.num_multimask_outputs = num_multimask_outputs
|
48 |
+
|
49 |
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
50 |
+
self.num_mask_tokens = num_multimask_outputs + 1
|
51 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
52 |
+
|
53 |
+
self.output_upscaling = nn.Sequential(
|
54 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
55 |
+
LayerNorm2d(transformer_dim // 4),
|
56 |
+
activation(),
|
57 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
58 |
+
activation(),
|
59 |
+
)
|
60 |
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
61 |
+
[
|
62 |
+
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
63 |
+
for i in range(self.num_mask_tokens)
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
self.iou_prediction_head = MLP(
|
68 |
+
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self,
|
73 |
+
image_embeddings: torch.Tensor,
|
74 |
+
image_pe: torch.Tensor,
|
75 |
+
sparse_prompt_embeddings: torch.Tensor,
|
76 |
+
dense_prompt_embeddings: torch.Tensor,
|
77 |
+
multimask_output: bool,
|
78 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
79 |
+
"""
|
80 |
+
Predict masks given image and prompt embeddings.
|
81 |
+
|
82 |
+
Arguments:
|
83 |
+
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
84 |
+
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
85 |
+
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
86 |
+
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
87 |
+
multimask_output (bool): Whether to return multiple masks or a single
|
88 |
+
mask.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
torch.Tensor: batched predicted masks
|
92 |
+
torch.Tensor: batched predictions of mask quality
|
93 |
+
"""
|
94 |
+
masks, iou_pred = self.predict_masks(
|
95 |
+
image_embeddings=image_embeddings,
|
96 |
+
image_pe=image_pe,
|
97 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
98 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
99 |
+
)
|
100 |
+
|
101 |
+
# Select the correct mask or masks for outptu
|
102 |
+
if multimask_output:
|
103 |
+
mask_slice = slice(1, None)
|
104 |
+
else:
|
105 |
+
mask_slice = slice(0, 1)
|
106 |
+
masks = masks[:, mask_slice, :, :]
|
107 |
+
iou_pred = iou_pred[:, mask_slice]
|
108 |
+
|
109 |
+
# Prepare output
|
110 |
+
return masks, iou_pred
|
111 |
+
|
112 |
+
def predict_masks(
|
113 |
+
self,
|
114 |
+
image_embeddings: torch.Tensor,
|
115 |
+
image_pe: torch.Tensor,
|
116 |
+
sparse_prompt_embeddings: torch.Tensor,
|
117 |
+
dense_prompt_embeddings: torch.Tensor,
|
118 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
119 |
+
"""Predicts masks. See 'forward' for more details."""
|
120 |
+
# Concatenate output tokens
|
121 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
122 |
+
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
123 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
124 |
+
|
125 |
+
# Expand per-image data in batch direction to be per-mask
|
126 |
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
127 |
+
src = src + dense_prompt_embeddings
|
128 |
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
129 |
+
b, c, h, w = src.shape
|
130 |
+
|
131 |
+
# Run the transformer
|
132 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
133 |
+
iou_token_out = hs[:, 0, :]
|
134 |
+
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
135 |
+
|
136 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
137 |
+
src = src.transpose(1, 2).view(b, c, h, w)
|
138 |
+
upscaled_embedding = self.output_upscaling(src)
|
139 |
+
hyper_in_list: List[torch.Tensor] = []
|
140 |
+
for i in range(self.num_mask_tokens):
|
141 |
+
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
142 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
143 |
+
b, c, h, w = upscaled_embedding.shape
|
144 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
145 |
+
|
146 |
+
# Generate mask quality predictions
|
147 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
148 |
+
|
149 |
+
return masks, iou_pred
|
150 |
+
|
151 |
+
|
152 |
+
# Lightly adapted from
|
153 |
+
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
154 |
+
class MLP(nn.Module):
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
input_dim: int,
|
158 |
+
hidden_dim: int,
|
159 |
+
output_dim: int,
|
160 |
+
num_layers: int,
|
161 |
+
sigmoid_output: bool = False,
|
162 |
+
) -> None:
|
163 |
+
super().__init__()
|
164 |
+
self.num_layers = num_layers
|
165 |
+
h = [hidden_dim] * (num_layers - 1)
|
166 |
+
self.layers = nn.ModuleList(
|
167 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
168 |
+
)
|
169 |
+
self.sigmoid_output = sigmoid_output
|
170 |
+
|
171 |
+
def forward(self, x):
|
172 |
+
for i, layer in enumerate(self.layers):
|
173 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
174 |
+
if self.sigmoid_output:
|
175 |
+
x = F.sigmoid(x)
|
176 |
+
return x
|
model/networks.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn.utils import spectral_norm as spectral_norm_fn
|
5 |
+
from torch.nn.utils import weight_norm as weight_norm_fn
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
+
from torchvision import utils as vutils
|
9 |
+
|
10 |
+
from utils.tools import extract_image_patches, flow_to_image, \
|
11 |
+
reduce_mean, reduce_sum, default_loader, same_padding
|
12 |
+
|
13 |
+
|
14 |
+
class Generator(nn.Module):
|
15 |
+
def __init__(self, config, use_cuda, device_ids):
|
16 |
+
super(Generator, self).__init__()
|
17 |
+
self.input_dim = config['input_dim']
|
18 |
+
self.cnum = config['ngf']
|
19 |
+
self.use_cuda = use_cuda
|
20 |
+
self.device_ids = device_ids
|
21 |
+
|
22 |
+
self.coarse_generator = CoarseGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids)
|
23 |
+
self.fine_generator = FineGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids)
|
24 |
+
|
25 |
+
def forward(self, x, mask):
|
26 |
+
x_stage1 = self.coarse_generator(x, mask)
|
27 |
+
x_stage2, offset_flow = self.fine_generator(x, x_stage1, mask)
|
28 |
+
return x_stage1, x_stage2, offset_flow
|
29 |
+
|
30 |
+
|
31 |
+
class CoarseGenerator(nn.Module):
|
32 |
+
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
|
33 |
+
super(CoarseGenerator, self).__init__()
|
34 |
+
self.use_cuda = use_cuda
|
35 |
+
self.device_ids = device_ids
|
36 |
+
|
37 |
+
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
|
38 |
+
self.conv2_downsample = gen_conv(cnum, cnum*2, 3, 2, 1)
|
39 |
+
self.conv3 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
|
40 |
+
self.conv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1)
|
41 |
+
self.conv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
42 |
+
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
43 |
+
|
44 |
+
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2)
|
45 |
+
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4)
|
46 |
+
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8)
|
47 |
+
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16)
|
48 |
+
|
49 |
+
self.conv11 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
50 |
+
self.conv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
51 |
+
|
52 |
+
self.conv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1)
|
53 |
+
self.conv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
|
54 |
+
self.conv15 = gen_conv(cnum*2, cnum, 3, 1, 1)
|
55 |
+
self.conv16 = gen_conv(cnum, cnum//2, 3, 1, 1)
|
56 |
+
self.conv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none')
|
57 |
+
|
58 |
+
def forward(self, x, mask):
|
59 |
+
# For indicating the boundaries of images
|
60 |
+
ones = torch.ones(x.size(0), 1, x.size(2), x.size(3))
|
61 |
+
if self.use_cuda:
|
62 |
+
ones = ones.cuda()
|
63 |
+
mask = mask.cuda()
|
64 |
+
# 5 x 256 x 256
|
65 |
+
x = self.conv1(torch.cat([x, ones, mask], dim=1))
|
66 |
+
x = self.conv2_downsample(x)
|
67 |
+
# cnum*2 x 128 x 128
|
68 |
+
x = self.conv3(x)
|
69 |
+
x = self.conv4_downsample(x)
|
70 |
+
# cnum*4 x 64 x 64
|
71 |
+
x = self.conv5(x)
|
72 |
+
x = self.conv6(x)
|
73 |
+
x = self.conv7_atrous(x)
|
74 |
+
x = self.conv8_atrous(x)
|
75 |
+
x = self.conv9_atrous(x)
|
76 |
+
x = self.conv10_atrous(x)
|
77 |
+
x = self.conv11(x)
|
78 |
+
x = self.conv12(x)
|
79 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
80 |
+
# cnum*2 x 128 x 128
|
81 |
+
x = self.conv13(x)
|
82 |
+
x = self.conv14(x)
|
83 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
84 |
+
# cnum x 256 x 256
|
85 |
+
x = self.conv15(x)
|
86 |
+
x = self.conv16(x)
|
87 |
+
x = self.conv17(x)
|
88 |
+
# 3 x 256 x 256
|
89 |
+
x_stage1 = torch.clamp(x, -1., 1.)
|
90 |
+
|
91 |
+
return x_stage1
|
92 |
+
|
93 |
+
|
94 |
+
class FineGenerator(nn.Module):
|
95 |
+
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
|
96 |
+
super(FineGenerator, self).__init__()
|
97 |
+
self.use_cuda = use_cuda
|
98 |
+
self.device_ids = device_ids
|
99 |
+
|
100 |
+
# 3 x 256 x 256
|
101 |
+
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
|
102 |
+
self.conv2_downsample = gen_conv(cnum, cnum, 3, 2, 1)
|
103 |
+
# cnum*2 x 128 x 128
|
104 |
+
self.conv3 = gen_conv(cnum, cnum*2, 3, 1, 1)
|
105 |
+
self.conv4_downsample = gen_conv(cnum*2, cnum*2, 3, 2, 1)
|
106 |
+
# cnum*4 x 64 x 64
|
107 |
+
self.conv5 = gen_conv(cnum*2, cnum*4, 3, 1, 1)
|
108 |
+
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
109 |
+
|
110 |
+
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2)
|
111 |
+
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4)
|
112 |
+
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8)
|
113 |
+
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16)
|
114 |
+
|
115 |
+
# attention branch
|
116 |
+
# 3 x 256 x 256
|
117 |
+
self.pmconv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2)
|
118 |
+
self.pmconv2_downsample = gen_conv(cnum, cnum, 3, 2, 1)
|
119 |
+
# cnum*2 x 128 x 128
|
120 |
+
self.pmconv3 = gen_conv(cnum, cnum*2, 3, 1, 1)
|
121 |
+
self.pmconv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1)
|
122 |
+
# cnum*4 x 64 x 64
|
123 |
+
self.pmconv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
124 |
+
self.pmconv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1, activation='relu')
|
125 |
+
self.contextul_attention = ContextualAttention(ksize=3, stride=1, rate=2, fuse_k=3, softmax_scale=10,
|
126 |
+
fuse=True, use_cuda=self.use_cuda, device_ids=self.device_ids)
|
127 |
+
self.pmconv9 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
128 |
+
self.pmconv10 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
129 |
+
self.allconv11 = gen_conv(cnum*8, cnum*4, 3, 1, 1)
|
130 |
+
self.allconv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1)
|
131 |
+
self.allconv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1)
|
132 |
+
self.allconv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1)
|
133 |
+
self.allconv15 = gen_conv(cnum*2, cnum, 3, 1, 1)
|
134 |
+
self.allconv16 = gen_conv(cnum, cnum//2, 3, 1, 1)
|
135 |
+
self.allconv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none')
|
136 |
+
|
137 |
+
def forward(self, xin, x_stage1, mask):
|
138 |
+
x1_inpaint = x_stage1 * mask + xin * (1. - mask)
|
139 |
+
# For indicating the boundaries of images
|
140 |
+
ones = torch.ones(xin.size(0), 1, xin.size(2), xin.size(3))
|
141 |
+
if self.use_cuda:
|
142 |
+
ones = ones.cuda()
|
143 |
+
mask = mask.cuda()
|
144 |
+
# conv branch
|
145 |
+
xnow = torch.cat([x1_inpaint, ones, mask], dim=1)
|
146 |
+
x = self.conv1(xnow)
|
147 |
+
x = self.conv2_downsample(x)
|
148 |
+
x = self.conv3(x)
|
149 |
+
x = self.conv4_downsample(x)
|
150 |
+
x = self.conv5(x)
|
151 |
+
x = self.conv6(x)
|
152 |
+
x = self.conv7_atrous(x)
|
153 |
+
x = self.conv8_atrous(x)
|
154 |
+
x = self.conv9_atrous(x)
|
155 |
+
x = self.conv10_atrous(x)
|
156 |
+
x_hallu = x
|
157 |
+
# attention branch
|
158 |
+
x = self.pmconv1(xnow)
|
159 |
+
x = self.pmconv2_downsample(x)
|
160 |
+
x = self.pmconv3(x)
|
161 |
+
x = self.pmconv4_downsample(x)
|
162 |
+
x = self.pmconv5(x)
|
163 |
+
x = self.pmconv6(x)
|
164 |
+
x, offset_flow = self.contextul_attention(x, x, mask)
|
165 |
+
x = self.pmconv9(x)
|
166 |
+
x = self.pmconv10(x)
|
167 |
+
pm = x
|
168 |
+
x = torch.cat([x_hallu, pm], dim=1)
|
169 |
+
# merge two branches
|
170 |
+
x = self.allconv11(x)
|
171 |
+
x = self.allconv12(x)
|
172 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
173 |
+
x = self.allconv13(x)
|
174 |
+
x = self.allconv14(x)
|
175 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
176 |
+
x = self.allconv15(x)
|
177 |
+
x = self.allconv16(x)
|
178 |
+
x = self.allconv17(x)
|
179 |
+
x_stage2 = torch.clamp(x, -1., 1.)
|
180 |
+
|
181 |
+
return x_stage2, offset_flow
|
182 |
+
|
183 |
+
|
184 |
+
class ContextualAttention(nn.Module):
|
185 |
+
def __init__(self, ksize=3, stride=1, rate=1, fuse_k=3, softmax_scale=10,
|
186 |
+
fuse=False, use_cuda=False, device_ids=None):
|
187 |
+
super(ContextualAttention, self).__init__()
|
188 |
+
self.ksize = ksize
|
189 |
+
self.stride = stride
|
190 |
+
self.rate = rate
|
191 |
+
self.fuse_k = fuse_k
|
192 |
+
self.softmax_scale = softmax_scale
|
193 |
+
self.fuse = fuse
|
194 |
+
self.use_cuda = use_cuda
|
195 |
+
self.device_ids = device_ids
|
196 |
+
|
197 |
+
def forward(self, f, b, mask=None):
|
198 |
+
""" Contextual attention layer implementation.
|
199 |
+
Contextual attention is first introduced in publication:
|
200 |
+
Generative Image Inpainting with Contextual Attention, Yu et al.
|
201 |
+
Args:
|
202 |
+
f: Input feature to match (foreground).
|
203 |
+
b: Input feature for match (background).
|
204 |
+
mask: Input mask for b, indicating patches not available.
|
205 |
+
ksize: Kernel size for contextual attention.
|
206 |
+
stride: Stride for extracting patches from b.
|
207 |
+
rate: Dilation for matching.
|
208 |
+
softmax_scale: Scaled softmax for attention.
|
209 |
+
Returns:
|
210 |
+
torch.tensor: output
|
211 |
+
"""
|
212 |
+
# get shapes
|
213 |
+
raw_int_fs = list(f.size()) # b*c*h*w
|
214 |
+
raw_int_bs = list(b.size()) # b*c*h*w
|
215 |
+
|
216 |
+
# extract patches from background with stride and rate
|
217 |
+
kernel = 2 * self.rate
|
218 |
+
# raw_w is extracted for reconstruction
|
219 |
+
raw_w = extract_image_patches(b, ksizes=[kernel, kernel],
|
220 |
+
strides=[self.rate*self.stride,
|
221 |
+
self.rate*self.stride],
|
222 |
+
rates=[1, 1],
|
223 |
+
padding='same') # [N, C*k*k, L]
|
224 |
+
# raw_shape: [N, C, k, k, L]
|
225 |
+
raw_w = raw_w.view(raw_int_bs[0], raw_int_bs[1], kernel, kernel, -1)
|
226 |
+
raw_w = raw_w.permute(0, 4, 1, 2, 3) # raw_shape: [N, L, C, k, k]
|
227 |
+
raw_w_groups = torch.split(raw_w, 1, dim=0)
|
228 |
+
|
229 |
+
# downscaling foreground option: downscaling both foreground and
|
230 |
+
# background for matching and use original background for reconstruction.
|
231 |
+
f = F.interpolate(f, scale_factor=1./self.rate, mode='nearest')
|
232 |
+
b = F.interpolate(b, scale_factor=1./self.rate, mode='nearest')
|
233 |
+
int_fs = list(f.size()) # b*c*h*w
|
234 |
+
int_bs = list(b.size())
|
235 |
+
f_groups = torch.split(f, 1, dim=0) # split tensors along the batch dimension
|
236 |
+
# w shape: [N, C*k*k, L]
|
237 |
+
w = extract_image_patches(b, ksizes=[self.ksize, self.ksize],
|
238 |
+
strides=[self.stride, self.stride],
|
239 |
+
rates=[1, 1],
|
240 |
+
padding='same')
|
241 |
+
# w shape: [N, C, k, k, L]
|
242 |
+
w = w.view(int_bs[0], int_bs[1], self.ksize, self.ksize, -1)
|
243 |
+
w = w.permute(0, 4, 1, 2, 3) # w shape: [N, L, C, k, k]
|
244 |
+
w_groups = torch.split(w, 1, dim=0)
|
245 |
+
|
246 |
+
# process mask
|
247 |
+
if mask is None:
|
248 |
+
mask = torch.zeros([int_bs[0], 1, int_bs[2], int_bs[3]])
|
249 |
+
if self.use_cuda:
|
250 |
+
mask = mask.cuda()
|
251 |
+
else:
|
252 |
+
mask = F.interpolate(mask, scale_factor=1./(4*self.rate), mode='nearest')
|
253 |
+
int_ms = list(mask.size())
|
254 |
+
# m shape: [N, C*k*k, L]
|
255 |
+
m = extract_image_patches(mask, ksizes=[self.ksize, self.ksize],
|
256 |
+
strides=[self.stride, self.stride],
|
257 |
+
rates=[1, 1],
|
258 |
+
padding='same')
|
259 |
+
# m shape: [N, C, k, k, L]
|
260 |
+
m = m.view(int_ms[0], int_ms[1], self.ksize, self.ksize, -1)
|
261 |
+
m = m.permute(0, 4, 1, 2, 3) # m shape: [N, L, C, k, k]
|
262 |
+
m = m[0] # m shape: [L, C, k, k]
|
263 |
+
# mm shape: [L, 1, 1, 1]
|
264 |
+
mm = (reduce_mean(m, axis=[1, 2, 3], keepdim=True)==0.).to(torch.float32)
|
265 |
+
mm = mm.permute(1, 0, 2, 3) # mm shape: [1, L, 1, 1]
|
266 |
+
|
267 |
+
y = []
|
268 |
+
offsets = []
|
269 |
+
k = self.fuse_k
|
270 |
+
scale = self.softmax_scale # to fit the PyTorch tensor image value range
|
271 |
+
fuse_weight = torch.eye(k).view(1, 1, k, k) # 1*1*k*k
|
272 |
+
if self.use_cuda:
|
273 |
+
fuse_weight = fuse_weight.cuda()
|
274 |
+
|
275 |
+
for xi, wi, raw_wi in zip(f_groups, w_groups, raw_w_groups):
|
276 |
+
'''
|
277 |
+
O => output channel as a conv filter
|
278 |
+
I => input channel as a conv filter
|
279 |
+
xi : separated tensor along batch dimension of front; (B=1, C=128, H=32, W=32)
|
280 |
+
wi : separated patch tensor along batch dimension of back; (B=1, O=32*32, I=128, KH=3, KW=3)
|
281 |
+
raw_wi : separated tensor along batch dimension of back; (B=1, I=32*32, O=128, KH=4, KW=4)
|
282 |
+
'''
|
283 |
+
# conv for compare
|
284 |
+
escape_NaN = torch.FloatTensor([1e-4])
|
285 |
+
if self.use_cuda:
|
286 |
+
escape_NaN = escape_NaN.cuda()
|
287 |
+
wi = wi[0] # [L, C, k, k]
|
288 |
+
max_wi = torch.sqrt(reduce_sum(torch.pow(wi, 2) + escape_NaN, axis=[1, 2, 3], keepdim=True))
|
289 |
+
wi_normed = wi / max_wi
|
290 |
+
# xi shape: [1, C, H, W], yi shape: [1, L, H, W]
|
291 |
+
xi = same_padding(xi, [self.ksize, self.ksize], [1, 1], [1, 1]) # xi: 1*c*H*W
|
292 |
+
yi = F.conv2d(xi, wi_normed, stride=1) # [1, L, H, W]
|
293 |
+
# conv implementation for fuse scores to encourage large patches
|
294 |
+
if self.fuse:
|
295 |
+
# make all of depth to spatial resolution
|
296 |
+
yi = yi.view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) # (B=1, I=1, H=32*32, W=32*32)
|
297 |
+
yi = same_padding(yi, [k, k], [1, 1], [1, 1])
|
298 |
+
yi = F.conv2d(yi, fuse_weight, stride=1) # (B=1, C=1, H=32*32, W=32*32)
|
299 |
+
yi = yi.contiguous().view(1, int_bs[2], int_bs[3], int_fs[2], int_fs[3]) # (B=1, 32, 32, 32, 32)
|
300 |
+
yi = yi.permute(0, 2, 1, 4, 3)
|
301 |
+
yi = yi.contiguous().view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3])
|
302 |
+
yi = same_padding(yi, [k, k], [1, 1], [1, 1])
|
303 |
+
yi = F.conv2d(yi, fuse_weight, stride=1)
|
304 |
+
yi = yi.contiguous().view(1, int_bs[3], int_bs[2], int_fs[3], int_fs[2])
|
305 |
+
yi = yi.permute(0, 2, 1, 4, 3).contiguous()
|
306 |
+
yi = yi.view(1, int_bs[2] * int_bs[3], int_fs[2], int_fs[3]) # (B=1, C=32*32, H=32, W=32)
|
307 |
+
# softmax to match
|
308 |
+
yi = yi * mm
|
309 |
+
yi = F.softmax(yi*scale, dim=1)
|
310 |
+
yi = yi * mm # [1, L, H, W]
|
311 |
+
|
312 |
+
offset = torch.argmax(yi, dim=1, keepdim=True) # 1*1*H*W
|
313 |
+
|
314 |
+
if int_bs != int_fs:
|
315 |
+
# Normalize the offset value to match foreground dimension
|
316 |
+
times = float(int_fs[2] * int_fs[3]) / float(int_bs[2] * int_bs[3])
|
317 |
+
offset = ((offset + 1).float() * times - 1).to(torch.int64)
|
318 |
+
offset = torch.cat([offset//int_fs[3], offset%int_fs[3]], dim=1) # 1*2*H*W
|
319 |
+
|
320 |
+
# deconv for patch pasting
|
321 |
+
wi_center = raw_wi[0]
|
322 |
+
# yi = F.pad(yi, [0, 1, 0, 1]) # here may need conv_transpose same padding
|
323 |
+
yi = F.conv_transpose2d(yi, wi_center, stride=self.rate, padding=1) / 4. # (B=1, C=128, H=64, W=64)
|
324 |
+
y.append(yi)
|
325 |
+
offsets.append(offset)
|
326 |
+
|
327 |
+
y = torch.cat(y, dim=0) # back to the mini-batch
|
328 |
+
y.contiguous().view(raw_int_fs)
|
329 |
+
|
330 |
+
offsets = torch.cat(offsets, dim=0)
|
331 |
+
offsets = offsets.view(int_fs[0], 2, *int_fs[2:])
|
332 |
+
|
333 |
+
# case1: visualize optical flow: minus current position
|
334 |
+
h_add = torch.arange(int_fs[2]).view([1, 1, int_fs[2], 1]).expand(int_fs[0], -1, -1, int_fs[3])
|
335 |
+
w_add = torch.arange(int_fs[3]).view([1, 1, 1, int_fs[3]]).expand(int_fs[0], -1, int_fs[2], -1)
|
336 |
+
ref_coordinate = torch.cat([h_add, w_add], dim=1)
|
337 |
+
if self.use_cuda:
|
338 |
+
ref_coordinate = ref_coordinate.cuda()
|
339 |
+
|
340 |
+
offsets = offsets - ref_coordinate
|
341 |
+
# flow = pt_flow_to_image(offsets)
|
342 |
+
|
343 |
+
flow = torch.from_numpy(flow_to_image(offsets.permute(0, 2, 3, 1).cpu().data.numpy())) / 255.
|
344 |
+
flow = flow.permute(0, 3, 1, 2)
|
345 |
+
if self.use_cuda:
|
346 |
+
flow = flow.cuda()
|
347 |
+
# case2: visualize which pixels are attended
|
348 |
+
# flow = torch.from_numpy(highlight_flow((offsets * mask.long()).cpu().data.numpy()))
|
349 |
+
|
350 |
+
if self.rate != 1:
|
351 |
+
flow = F.interpolate(flow, scale_factor=self.rate*4, mode='nearest')
|
352 |
+
|
353 |
+
return y, flow
|
354 |
+
|
355 |
+
|
356 |
+
def test_contextual_attention(args):
|
357 |
+
import cv2
|
358 |
+
import os
|
359 |
+
# run on cpu
|
360 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
|
361 |
+
|
362 |
+
def float_to_uint8(img):
|
363 |
+
img = img * 255
|
364 |
+
return img.astype('uint8')
|
365 |
+
|
366 |
+
rate = 2
|
367 |
+
stride = 1
|
368 |
+
grid = rate*stride
|
369 |
+
|
370 |
+
b = default_loader(args.imageA)
|
371 |
+
w, h = b.size
|
372 |
+
b = b.resize((w//grid*grid//2, h//grid*grid//2), Image.ANTIALIAS)
|
373 |
+
# b = b.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS)
|
374 |
+
print('Size of imageA: {}'.format(b.size))
|
375 |
+
|
376 |
+
f = default_loader(args.imageB)
|
377 |
+
w, h = f.size
|
378 |
+
f = f.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS)
|
379 |
+
print('Size of imageB: {}'.format(f.size))
|
380 |
+
|
381 |
+
f, b = transforms.ToTensor()(f), transforms.ToTensor()(b)
|
382 |
+
f, b = f.unsqueeze(0), b.unsqueeze(0)
|
383 |
+
if torch.cuda.is_available():
|
384 |
+
f, b = f.cuda(), b.cuda()
|
385 |
+
|
386 |
+
contextual_attention = ContextualAttention(ksize=3, stride=stride, rate=rate, fuse=True)
|
387 |
+
|
388 |
+
if torch.cuda.is_available():
|
389 |
+
contextual_attention = contextual_attention.cuda()
|
390 |
+
|
391 |
+
yt, flow_t = contextual_attention(f, b)
|
392 |
+
vutils.save_image(yt, 'vutils' + args.imageOut, normalize=True)
|
393 |
+
vutils.save_image(flow_t, 'flow' + args.imageOut, normalize=True)
|
394 |
+
# y = tensor_img_to_npimg(yt.cpu()[0])
|
395 |
+
# flow = tensor_img_to_npimg(flow_t.cpu()[0])
|
396 |
+
# cv2.imwrite('flow' + args.imageOut, flow_t)
|
397 |
+
|
398 |
+
|
399 |
+
class LocalDis(nn.Module):
|
400 |
+
def __init__(self, config, use_cuda=True, device_ids=None):
|
401 |
+
super(LocalDis, self).__init__()
|
402 |
+
self.input_dim = config['input_dim']
|
403 |
+
self.cnum = config['ndf']
|
404 |
+
self.use_cuda = use_cuda
|
405 |
+
self.device_ids = device_ids
|
406 |
+
|
407 |
+
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum)
|
408 |
+
self.linear = nn.Linear(self.cnum*4*8*8, 1)
|
409 |
+
|
410 |
+
def forward(self, x):
|
411 |
+
x = self.dis_conv_module(x)
|
412 |
+
x = x.view(x.size()[0], -1)
|
413 |
+
x = self.linear(x)
|
414 |
+
|
415 |
+
return x
|
416 |
+
|
417 |
+
|
418 |
+
class GlobalDis(nn.Module):
|
419 |
+
def __init__(self, config, use_cuda=True, device_ids=None):
|
420 |
+
super(GlobalDis, self).__init__()
|
421 |
+
self.input_dim = config['input_dim']
|
422 |
+
self.cnum = config['ndf']
|
423 |
+
self.use_cuda = use_cuda
|
424 |
+
self.device_ids = device_ids
|
425 |
+
|
426 |
+
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum)
|
427 |
+
self.linear = nn.Linear(self.cnum*4*16*16, 1)
|
428 |
+
|
429 |
+
def forward(self, x):
|
430 |
+
x = self.dis_conv_module(x)
|
431 |
+
x = x.view(x.size()[0], -1)
|
432 |
+
x = self.linear(x)
|
433 |
+
|
434 |
+
return x
|
435 |
+
|
436 |
+
|
437 |
+
class DisConvModule(nn.Module):
|
438 |
+
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None):
|
439 |
+
super(DisConvModule, self).__init__()
|
440 |
+
self.use_cuda = use_cuda
|
441 |
+
self.device_ids = device_ids
|
442 |
+
|
443 |
+
self.conv1 = dis_conv(input_dim, cnum, 5, 2, 2)
|
444 |
+
self.conv2 = dis_conv(cnum, cnum*2, 5, 2, 2)
|
445 |
+
self.conv3 = dis_conv(cnum*2, cnum*4, 5, 2, 2)
|
446 |
+
self.conv4 = dis_conv(cnum*4, cnum*4, 5, 2, 2)
|
447 |
+
|
448 |
+
def forward(self, x):
|
449 |
+
x = self.conv1(x)
|
450 |
+
x = self.conv2(x)
|
451 |
+
x = self.conv3(x)
|
452 |
+
x = self.conv4(x)
|
453 |
+
|
454 |
+
return x
|
455 |
+
|
456 |
+
|
457 |
+
def gen_conv(input_dim, output_dim, kernel_size=3, stride=1, padding=0, rate=1,
|
458 |
+
activation='elu'):
|
459 |
+
return Conv2dBlock(input_dim, output_dim, kernel_size, stride,
|
460 |
+
conv_padding=padding, dilation=rate,
|
461 |
+
activation=activation)
|
462 |
+
|
463 |
+
|
464 |
+
def dis_conv(input_dim, output_dim, kernel_size=5, stride=2, padding=0, rate=1,
|
465 |
+
activation='lrelu'):
|
466 |
+
return Conv2dBlock(input_dim, output_dim, kernel_size, stride,
|
467 |
+
conv_padding=padding, dilation=rate,
|
468 |
+
activation=activation)
|
469 |
+
|
470 |
+
|
471 |
+
class Conv2dBlock(nn.Module):
|
472 |
+
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0,
|
473 |
+
conv_padding=0, dilation=1, weight_norm='none', norm='none',
|
474 |
+
activation='relu', pad_type='zero', transpose=False):
|
475 |
+
super(Conv2dBlock, self).__init__()
|
476 |
+
self.use_bias = True
|
477 |
+
# initialize padding
|
478 |
+
if pad_type == 'reflect':
|
479 |
+
self.pad = nn.ReflectionPad2d(padding)
|
480 |
+
elif pad_type == 'replicate':
|
481 |
+
self.pad = nn.ReplicationPad2d(padding)
|
482 |
+
elif pad_type == 'zero':
|
483 |
+
self.pad = nn.ZeroPad2d(padding)
|
484 |
+
elif pad_type == 'none':
|
485 |
+
self.pad = None
|
486 |
+
else:
|
487 |
+
assert 0, "Unsupported padding type: {}".format(pad_type)
|
488 |
+
|
489 |
+
# initialize normalization
|
490 |
+
norm_dim = output_dim
|
491 |
+
if norm == 'bn':
|
492 |
+
self.norm = nn.BatchNorm2d(norm_dim)
|
493 |
+
elif norm == 'in':
|
494 |
+
self.norm = nn.InstanceNorm2d(norm_dim)
|
495 |
+
elif norm == 'none':
|
496 |
+
self.norm = None
|
497 |
+
else:
|
498 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
499 |
+
|
500 |
+
if weight_norm == 'sn':
|
501 |
+
self.weight_norm = spectral_norm_fn
|
502 |
+
elif weight_norm == 'wn':
|
503 |
+
self.weight_norm = weight_norm_fn
|
504 |
+
elif weight_norm == 'none':
|
505 |
+
self.weight_norm = None
|
506 |
+
else:
|
507 |
+
assert 0, "Unsupported normalization: {}".format(weight_norm)
|
508 |
+
|
509 |
+
# initialize activation
|
510 |
+
if activation == 'relu':
|
511 |
+
self.activation = nn.ReLU(inplace=True)
|
512 |
+
elif activation == 'elu':
|
513 |
+
self.activation = nn.ELU(inplace=True)
|
514 |
+
elif activation == 'lrelu':
|
515 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
516 |
+
elif activation == 'prelu':
|
517 |
+
self.activation = nn.PReLU()
|
518 |
+
elif activation == 'selu':
|
519 |
+
self.activation = nn.SELU(inplace=True)
|
520 |
+
elif activation == 'tanh':
|
521 |
+
self.activation = nn.Tanh()
|
522 |
+
elif activation == 'none':
|
523 |
+
self.activation = None
|
524 |
+
else:
|
525 |
+
assert 0, "Unsupported activation: {}".format(activation)
|
526 |
+
|
527 |
+
# initialize convolution
|
528 |
+
if transpose:
|
529 |
+
self.conv = nn.ConvTranspose2d(input_dim, output_dim,
|
530 |
+
kernel_size, stride,
|
531 |
+
padding=conv_padding,
|
532 |
+
output_padding=conv_padding,
|
533 |
+
dilation=dilation,
|
534 |
+
bias=self.use_bias)
|
535 |
+
else:
|
536 |
+
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride,
|
537 |
+
padding=conv_padding, dilation=dilation,
|
538 |
+
bias=self.use_bias)
|
539 |
+
|
540 |
+
if self.weight_norm:
|
541 |
+
self.conv = self.weight_norm(self.conv)
|
542 |
+
|
543 |
+
def forward(self, x):
|
544 |
+
if self.pad:
|
545 |
+
x = self.conv(self.pad(x))
|
546 |
+
else:
|
547 |
+
x = self.conv(x)
|
548 |
+
if self.norm:
|
549 |
+
x = self.norm(x)
|
550 |
+
if self.activation:
|
551 |
+
x = self.activation(x)
|
552 |
+
return x
|
553 |
+
|
554 |
+
|
555 |
+
|
556 |
+
if __name__ == "__main__":
|
557 |
+
import argparse
|
558 |
+
parser = argparse.ArgumentParser()
|
559 |
+
parser.add_argument('--imageA', default='', type=str, help='Image A as background patches to reconstruct image B.')
|
560 |
+
parser.add_argument('--imageB', default='', type=str, help='Image B is reconstructed with image A.')
|
561 |
+
parser.add_argument('--imageOut', default='result.png', type=str, help='Image B is reconstructed with image A.')
|
562 |
+
args = parser.parse_args()
|
563 |
+
test_contextual_attention(args)
|
only_gradio_server.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import io
|
4 |
+
import uuid
|
5 |
+
from ultralytics import YOLO
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision import transforms
|
11 |
+
import imageio.v2 as imageio
|
12 |
+
from trainer import Trainer
|
13 |
+
from utils.tools import get_config
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from iopaint.single_processing import batch_inpaint_cv2
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
# set current working directory cache instead of default
|
19 |
+
os.environ["TORCH_HOME"] = "./pretrained-model"
|
20 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = "./pretrained-model"
|
21 |
+
|
22 |
+
def resize_image(input_image_path, width=640, height=640):
|
23 |
+
"""Resizes an image from image data and returns the resized image."""
|
24 |
+
try:
|
25 |
+
# Read the image using cv2.imread
|
26 |
+
img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
|
27 |
+
|
28 |
+
# Resize while maintaining the aspect ratio
|
29 |
+
shape = img.shape[:2] # current shape [height, width]
|
30 |
+
new_shape = (width, height) # the shape to resize to
|
31 |
+
|
32 |
+
# Scale ratio (new / old)
|
33 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
34 |
+
ratio = r, r # width, height ratios
|
35 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
36 |
+
|
37 |
+
# Resize the image
|
38 |
+
im = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
39 |
+
|
40 |
+
# Pad the image
|
41 |
+
color = (114, 114, 114) # color used for padding
|
42 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
43 |
+
# divide padding into 2 sides
|
44 |
+
dw /= 2
|
45 |
+
dh /= 2
|
46 |
+
# compute padding on all corners
|
47 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
48 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
49 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
50 |
+
return im
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error resizing image: {e}")
|
54 |
+
return None # Or handle differently as needed
|
55 |
+
|
56 |
+
|
57 |
+
def load_weights(path, device):
|
58 |
+
model_weights = torch.load(path)
|
59 |
+
return {
|
60 |
+
k: v.to(device)
|
61 |
+
for k, v in model_weights.items()
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
# Function to convert image to base64
|
66 |
+
def convert_image_to_base64(image):
|
67 |
+
# Convert image to bytes
|
68 |
+
_, buffer = cv2.imencode('.png', image)
|
69 |
+
# Convert bytes to base64
|
70 |
+
image_base64 = base64.b64encode(buffer).decode('utf-8')
|
71 |
+
return image_base64
|
72 |
+
|
73 |
+
|
74 |
+
def convert_to_base64(image):
|
75 |
+
# Read the image file as binary data
|
76 |
+
image_data = image.read()
|
77 |
+
# Encode the binary data as base64
|
78 |
+
base64_encoded = base64.b64encode(image_data).decode('utf-8')
|
79 |
+
return base64_encoded
|
80 |
+
|
81 |
+
def convert_to_base64_file(image):
|
82 |
+
# Convert the image to binary data
|
83 |
+
image_data = cv2.imencode('.png', image)[1].tobytes()
|
84 |
+
# Encode the binary data as base64
|
85 |
+
base64_encoded = base64.b64encode(image_data).decode('utf-8')
|
86 |
+
return base64_encoded
|
87 |
+
|
88 |
+
|
89 |
+
def process_images(input_image, append_image, default_class="chair"):
|
90 |
+
# Static paths
|
91 |
+
config_path = Path('configs/config.yaml')
|
92 |
+
model_path = Path('pretrained-model/torch_model.p')
|
93 |
+
|
94 |
+
# Resize input image and get base64 data of resized image
|
95 |
+
img = resize_image(input_image)
|
96 |
+
|
97 |
+
if img is None:
|
98 |
+
return {'error': 'Failed to decode resized image'}, 419
|
99 |
+
|
100 |
+
H, W, _ = img.shape
|
101 |
+
x_point = 0
|
102 |
+
y_point = 0
|
103 |
+
width = 1
|
104 |
+
height = 1
|
105 |
+
|
106 |
+
# Load a model
|
107 |
+
model = YOLO('pretrained-model/yolov8m-seg.pt') # pretrained YOLOv8m-seg model
|
108 |
+
|
109 |
+
# Run batched inference on a list of images
|
110 |
+
results = model(img, imgsz=(W,H), conf=0.5) # chair class 56 with confidence >= 0.5
|
111 |
+
names = model.names
|
112 |
+
|
113 |
+
class_found = False
|
114 |
+
for result in results:
|
115 |
+
for i, label in enumerate(result.boxes.cls):
|
116 |
+
# Check if the label matches the chair label
|
117 |
+
if names[int(label)] == default_class:
|
118 |
+
class_found = True
|
119 |
+
# Convert the tensor to a numpy array
|
120 |
+
chair_mask_np = result.masks.data[i].numpy()
|
121 |
+
|
122 |
+
kernel = np.ones((5, 5), np.uint8) # Create a 5x5 kernel for dilation
|
123 |
+
chair_mask_np = cv2.dilate(chair_mask_np, kernel, iterations=2) # Apply dilation
|
124 |
+
|
125 |
+
# Find contours to get bounding box
|
126 |
+
contours, _ = cv2.findContours((chair_mask_np == 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
127 |
+
|
128 |
+
# Iterate over contours to find the bounding box of each object
|
129 |
+
for contour in contours:
|
130 |
+
x, y, w, h = cv2.boundingRect(contour)
|
131 |
+
x_point = x
|
132 |
+
y_point = y
|
133 |
+
width = w
|
134 |
+
height = h
|
135 |
+
|
136 |
+
# Get the corresponding mask
|
137 |
+
mask = result.masks.data[i].numpy() * 255
|
138 |
+
dilated_mask = cv2.dilate(mask, kernel, iterations=2) # Apply dilation
|
139 |
+
# Resize the mask to match the dimensions of the original image
|
140 |
+
resized_mask = cv2.resize(dilated_mask, (img.shape[1], img.shape[0]))
|
141 |
+
|
142 |
+
# call repainting and merge function
|
143 |
+
output_base64 = repaitingAndMerge(append_image,str(model_path), str(config_path),width, height, x_point, y_point, img, resized_mask)
|
144 |
+
# Return the output base64 image in the API response
|
145 |
+
return output_base64
|
146 |
+
|
147 |
+
# return class not found in prediction
|
148 |
+
if not class_found:
|
149 |
+
return {'message': f'{default_class} object not found in the image'}, 200
|
150 |
+
|
151 |
+
def repaitingAndMerge(append_image_path, model_path, config_path, width, height, xposition, yposition, input_base, mask_base):
|
152 |
+
config = get_config(config_path)
|
153 |
+
device = torch.device("cpu")
|
154 |
+
trainer = Trainer(config)
|
155 |
+
trainer.load_state_dict(load_weights(model_path, device), strict=False)
|
156 |
+
trainer.eval()
|
157 |
+
|
158 |
+
# lama inpainting start
|
159 |
+
print("lama inpainting start")
|
160 |
+
inpaint_result_np = batch_inpaint_cv2('lama', 'cpu', input_base, mask_base)
|
161 |
+
print("lama inpainting end")
|
162 |
+
|
163 |
+
# Create PIL Image from NumPy array
|
164 |
+
final_image = Image.fromarray(inpaint_result_np)
|
165 |
+
|
166 |
+
print("merge start")
|
167 |
+
|
168 |
+
# Load the append image using cv2.imread
|
169 |
+
append_image = cv2.imread(append_image_path, cv2.IMREAD_UNCHANGED)
|
170 |
+
cv2.imwrite('appneded-image.png',append_image)
|
171 |
+
# Resize the append image while preserving transparency
|
172 |
+
resized_image = cv2.resize(append_image, (width, height), interpolation=cv2.INTER_AREA)
|
173 |
+
# Convert the resized image to RGBA format (assuming it's in BGRA format)
|
174 |
+
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGRA2RGBA)
|
175 |
+
# Create a PIL Image from the resized image with transparent background
|
176 |
+
append_image_pil = Image.fromarray(resized_image)
|
177 |
+
|
178 |
+
# Paste the append image onto the final image
|
179 |
+
final_image.paste(append_image_pil, (xposition, yposition), append_image_pil)
|
180 |
+
# Save the resulting image
|
181 |
+
print("merge end")
|
182 |
+
|
183 |
+
# Convert the final image to base64
|
184 |
+
with io.BytesIO() as output_buffer:
|
185 |
+
final_image.save(output_buffer, format='PNG')
|
186 |
+
output_numpy = np.array(final_image)
|
187 |
+
|
188 |
+
return output_numpy
|