Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils import spectral_norm as spectral_norm_fn | |
from torch.nn.utils import weight_norm as weight_norm_fn | |
from PIL import Image | |
from torchvision import transforms | |
from torchvision import utils as vutils | |
from utils.tools import extract_image_patches, flow_to_image, \ | |
reduce_mean, reduce_sum, default_loader, same_padding | |
class Generator(nn.Module): | |
def __init__(self, config, use_cuda, device_ids): | |
super(Generator, self).__init__() | |
self.input_dim = config['input_dim'] | |
self.cnum = config['ngf'] | |
self.use_cuda = use_cuda | |
self.device_ids = device_ids | |
self.coarse_generator = CoarseGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids) | |
self.fine_generator = FineGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids) | |
def forward(self, x, mask): | |
x_stage1 = self.coarse_generator(x, mask) | |
x_stage2, offset_flow = self.fine_generator(x, x_stage1, mask) | |
return x_stage1, x_stage2, offset_flow | |
class CoarseGenerator(nn.Module): | |
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None): | |
super(CoarseGenerator, self).__init__() | |
self.use_cuda = use_cuda | |
self.device_ids = device_ids | |
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2) | |
self.conv2_downsample = gen_conv(cnum, cnum*2, 3, 2, 1) | |
self.conv3 = gen_conv(cnum*2, cnum*2, 3, 1, 1) | |
self.conv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1) | |
self.conv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2) | |
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4) | |
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8) | |
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16) | |
self.conv11 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.conv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.conv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1) | |
self.conv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1) | |
self.conv15 = gen_conv(cnum*2, cnum, 3, 1, 1) | |
self.conv16 = gen_conv(cnum, cnum//2, 3, 1, 1) | |
self.conv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none') | |
def forward(self, x, mask): | |
# For indicating the boundaries of images | |
ones = torch.ones(x.size(0), 1, x.size(2), x.size(3)) | |
if self.use_cuda: | |
ones = ones.cuda() | |
mask = mask.cuda() | |
# 5 x 256 x 256 | |
x = self.conv1(torch.cat([x, ones, mask], dim=1)) | |
x = self.conv2_downsample(x) | |
# cnum*2 x 128 x 128 | |
x = self.conv3(x) | |
x = self.conv4_downsample(x) | |
# cnum*4 x 64 x 64 | |
x = self.conv5(x) | |
x = self.conv6(x) | |
x = self.conv7_atrous(x) | |
x = self.conv8_atrous(x) | |
x = self.conv9_atrous(x) | |
x = self.conv10_atrous(x) | |
x = self.conv11(x) | |
x = self.conv12(x) | |
x = F.interpolate(x, scale_factor=2, mode='nearest') | |
# cnum*2 x 128 x 128 | |
x = self.conv13(x) | |
x = self.conv14(x) | |
x = F.interpolate(x, scale_factor=2, mode='nearest') | |
# cnum x 256 x 256 | |
x = self.conv15(x) | |
x = self.conv16(x) | |
x = self.conv17(x) | |
# 3 x 256 x 256 | |
x_stage1 = torch.clamp(x, -1., 1.) | |
return x_stage1 | |
class FineGenerator(nn.Module): | |
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None): | |
super(FineGenerator, self).__init__() | |
self.use_cuda = use_cuda | |
self.device_ids = device_ids | |
# 3 x 256 x 256 | |
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2) | |
self.conv2_downsample = gen_conv(cnum, cnum, 3, 2, 1) | |
# cnum*2 x 128 x 128 | |
self.conv3 = gen_conv(cnum, cnum*2, 3, 1, 1) | |
self.conv4_downsample = gen_conv(cnum*2, cnum*2, 3, 2, 1) | |
# cnum*4 x 64 x 64 | |
self.conv5 = gen_conv(cnum*2, cnum*4, 3, 1, 1) | |
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2) | |
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4) | |
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8) | |
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16) | |
# attention branch | |
# 3 x 256 x 256 | |
self.pmconv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2) | |
self.pmconv2_downsample = gen_conv(cnum, cnum, 3, 2, 1) | |
# cnum*2 x 128 x 128 | |
self.pmconv3 = gen_conv(cnum, cnum*2, 3, 1, 1) | |
self.pmconv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1) | |
# cnum*4 x 64 x 64 | |
self.pmconv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.pmconv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1, activation='relu') | |
self.contextul_attention = ContextualAttention(ksize=3, stride=1, rate=2, fuse_k=3, softmax_scale=10, | |
fuse=True, use_cuda=self.use_cuda, device_ids=self.device_ids) | |
self.pmconv9 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.pmconv10 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.allconv11 = gen_conv(cnum*8, cnum*4, 3, 1, 1) | |
self.allconv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1) | |
self.allconv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1) | |
self.allconv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1) | |
self.allconv15 = gen_conv(cnum*2, cnum, 3, 1, 1) | |
self.allconv16 = gen_conv(cnum, cnum//2, 3, 1, 1) | |
self.allconv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none') | |
def forward(self, xin, x_stage1, mask): | |
x1_inpaint = x_stage1 * mask + xin * (1. - mask) | |
# For indicating the boundaries of images | |
ones = torch.ones(xin.size(0), 1, xin.size(2), xin.size(3)) | |
if self.use_cuda: | |
ones = ones.cuda() | |
mask = mask.cuda() | |
# conv branch | |
xnow = torch.cat([x1_inpaint, ones, mask], dim=1) | |
x = self.conv1(xnow) | |
x = self.conv2_downsample(x) | |
x = self.conv3(x) | |
x = self.conv4_downsample(x) | |
x = self.conv5(x) | |
x = self.conv6(x) | |
x = self.conv7_atrous(x) | |
x = self.conv8_atrous(x) | |
x = self.conv9_atrous(x) | |
x = self.conv10_atrous(x) | |
x_hallu = x | |
# attention branch | |
x = self.pmconv1(xnow) | |
x = self.pmconv2_downsample(x) | |
x = self.pmconv3(x) | |
x = self.pmconv4_downsample(x) | |
x = self.pmconv5(x) | |
x = self.pmconv6(x) | |
x, offset_flow = self.contextul_attention(x, x, mask) | |
x = self.pmconv9(x) | |
x = self.pmconv10(x) | |
pm = x | |
x = torch.cat([x_hallu, pm], dim=1) | |
# merge two branches | |
x = self.allconv11(x) | |
x = self.allconv12(x) | |
x = F.interpolate(x, scale_factor=2, mode='nearest') | |
x = self.allconv13(x) | |
x = self.allconv14(x) | |
x = F.interpolate(x, scale_factor=2, mode='nearest') | |
x = self.allconv15(x) | |
x = self.allconv16(x) | |
x = self.allconv17(x) | |
x_stage2 = torch.clamp(x, -1., 1.) | |
return x_stage2, offset_flow | |
class ContextualAttention(nn.Module): | |
def __init__(self, ksize=3, stride=1, rate=1, fuse_k=3, softmax_scale=10, | |
fuse=False, use_cuda=False, device_ids=None): | |
super(ContextualAttention, self).__init__() | |
self.ksize = ksize | |
self.stride = stride | |
self.rate = rate | |
self.fuse_k = fuse_k | |
self.softmax_scale = softmax_scale | |
self.fuse = fuse | |
self.use_cuda = use_cuda | |
self.device_ids = device_ids | |
def forward(self, f, b, mask=None): | |
""" Contextual attention layer implementation. | |
Contextual attention is first introduced in publication: | |
Generative Image Inpainting with Contextual Attention, Yu et al. | |
Args: | |
f: Input feature to match (foreground). | |
b: Input feature for match (background). | |
mask: Input mask for b, indicating patches not available. | |
ksize: Kernel size for contextual attention. | |
stride: Stride for extracting patches from b. | |
rate: Dilation for matching. | |
softmax_scale: Scaled softmax for attention. | |
Returns: | |
torch.tensor: output | |
""" | |
# get shapes | |
raw_int_fs = list(f.size()) # b*c*h*w | |
raw_int_bs = list(b.size()) # b*c*h*w | |
# extract patches from background with stride and rate | |
kernel = 2 * self.rate | |
# raw_w is extracted for reconstruction | |
raw_w = extract_image_patches(b, ksizes=[kernel, kernel], | |
strides=[self.rate*self.stride, | |
self.rate*self.stride], | |
rates=[1, 1], | |
padding='same') # [N, C*k*k, L] | |
# raw_shape: [N, C, k, k, L] | |
raw_w = raw_w.view(raw_int_bs[0], raw_int_bs[1], kernel, kernel, -1) | |
raw_w = raw_w.permute(0, 4, 1, 2, 3) # raw_shape: [N, L, C, k, k] | |
raw_w_groups = torch.split(raw_w, 1, dim=0) | |
# downscaling foreground option: downscaling both foreground and | |
# background for matching and use original background for reconstruction. | |
f = F.interpolate(f, scale_factor=1./self.rate, mode='nearest') | |
b = F.interpolate(b, scale_factor=1./self.rate, mode='nearest') | |
int_fs = list(f.size()) # b*c*h*w | |
int_bs = list(b.size()) | |
f_groups = torch.split(f, 1, dim=0) # split tensors along the batch dimension | |
# w shape: [N, C*k*k, L] | |
w = extract_image_patches(b, ksizes=[self.ksize, self.ksize], | |
strides=[self.stride, self.stride], | |
rates=[1, 1], | |
padding='same') | |
# w shape: [N, C, k, k, L] | |
w = w.view(int_bs[0], int_bs[1], self.ksize, self.ksize, -1) | |
w = w.permute(0, 4, 1, 2, 3) # w shape: [N, L, C, k, k] | |
w_groups = torch.split(w, 1, dim=0) | |
# process mask | |
if mask is None: | |
mask = torch.zeros([int_bs[0], 1, int_bs[2], int_bs[3]]) | |
if self.use_cuda: | |
mask = mask.cuda() | |
else: | |
mask = F.interpolate(mask, scale_factor=1./(4*self.rate), mode='nearest') | |
int_ms = list(mask.size()) | |
# m shape: [N, C*k*k, L] | |
m = extract_image_patches(mask, ksizes=[self.ksize, self.ksize], | |
strides=[self.stride, self.stride], | |
rates=[1, 1], | |
padding='same') | |
# m shape: [N, C, k, k, L] | |
m = m.view(int_ms[0], int_ms[1], self.ksize, self.ksize, -1) | |
m = m.permute(0, 4, 1, 2, 3) # m shape: [N, L, C, k, k] | |
m = m[0] # m shape: [L, C, k, k] | |
# mm shape: [L, 1, 1, 1] | |
mm = (reduce_mean(m, axis=[1, 2, 3], keepdim=True)==0.).to(torch.float32) | |
mm = mm.permute(1, 0, 2, 3) # mm shape: [1, L, 1, 1] | |
y = [] | |
offsets = [] | |
k = self.fuse_k | |
scale = self.softmax_scale # to fit the PyTorch tensor image value range | |
fuse_weight = torch.eye(k).view(1, 1, k, k) # 1*1*k*k | |
if self.use_cuda: | |
fuse_weight = fuse_weight.cuda() | |
for xi, wi, raw_wi in zip(f_groups, w_groups, raw_w_groups): | |
''' | |
O => output channel as a conv filter | |
I => input channel as a conv filter | |
xi : separated tensor along batch dimension of front; (B=1, C=128, H=32, W=32) | |
wi : separated patch tensor along batch dimension of back; (B=1, O=32*32, I=128, KH=3, KW=3) | |
raw_wi : separated tensor along batch dimension of back; (B=1, I=32*32, O=128, KH=4, KW=4) | |
''' | |
# conv for compare | |
escape_NaN = torch.FloatTensor([1e-4]) | |
if self.use_cuda: | |
escape_NaN = escape_NaN.cuda() | |
wi = wi[0] # [L, C, k, k] | |
max_wi = torch.sqrt(reduce_sum(torch.pow(wi, 2) + escape_NaN, axis=[1, 2, 3], keepdim=True)) | |
wi_normed = wi / max_wi | |
# xi shape: [1, C, H, W], yi shape: [1, L, H, W] | |
xi = same_padding(xi, [self.ksize, self.ksize], [1, 1], [1, 1]) # xi: 1*c*H*W | |
yi = F.conv2d(xi, wi_normed, stride=1) # [1, L, H, W] | |
# conv implementation for fuse scores to encourage large patches | |
if self.fuse: | |
# make all of depth to spatial resolution | |
yi = yi.view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) # (B=1, I=1, H=32*32, W=32*32) | |
yi = same_padding(yi, [k, k], [1, 1], [1, 1]) | |
yi = F.conv2d(yi, fuse_weight, stride=1) # (B=1, C=1, H=32*32, W=32*32) | |
yi = yi.contiguous().view(1, int_bs[2], int_bs[3], int_fs[2], int_fs[3]) # (B=1, 32, 32, 32, 32) | |
yi = yi.permute(0, 2, 1, 4, 3) | |
yi = yi.contiguous().view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) | |
yi = same_padding(yi, [k, k], [1, 1], [1, 1]) | |
yi = F.conv2d(yi, fuse_weight, stride=1) | |
yi = yi.contiguous().view(1, int_bs[3], int_bs[2], int_fs[3], int_fs[2]) | |
yi = yi.permute(0, 2, 1, 4, 3).contiguous() | |
yi = yi.view(1, int_bs[2] * int_bs[3], int_fs[2], int_fs[3]) # (B=1, C=32*32, H=32, W=32) | |
# softmax to match | |
yi = yi * mm | |
yi = F.softmax(yi*scale, dim=1) | |
yi = yi * mm # [1, L, H, W] | |
offset = torch.argmax(yi, dim=1, keepdim=True) # 1*1*H*W | |
if int_bs != int_fs: | |
# Normalize the offset value to match foreground dimension | |
times = float(int_fs[2] * int_fs[3]) / float(int_bs[2] * int_bs[3]) | |
offset = ((offset + 1).float() * times - 1).to(torch.int64) | |
offset = torch.cat([offset//int_fs[3], offset%int_fs[3]], dim=1) # 1*2*H*W | |
# deconv for patch pasting | |
wi_center = raw_wi[0] | |
# yi = F.pad(yi, [0, 1, 0, 1]) # here may need conv_transpose same padding | |
yi = F.conv_transpose2d(yi, wi_center, stride=self.rate, padding=1) / 4. # (B=1, C=128, H=64, W=64) | |
y.append(yi) | |
offsets.append(offset) | |
y = torch.cat(y, dim=0) # back to the mini-batch | |
y.contiguous().view(raw_int_fs) | |
offsets = torch.cat(offsets, dim=0) | |
offsets = offsets.view(int_fs[0], 2, *int_fs[2:]) | |
# case1: visualize optical flow: minus current position | |
h_add = torch.arange(int_fs[2]).view([1, 1, int_fs[2], 1]).expand(int_fs[0], -1, -1, int_fs[3]) | |
w_add = torch.arange(int_fs[3]).view([1, 1, 1, int_fs[3]]).expand(int_fs[0], -1, int_fs[2], -1) | |
ref_coordinate = torch.cat([h_add, w_add], dim=1) | |
if self.use_cuda: | |
ref_coordinate = ref_coordinate.cuda() | |
offsets = offsets - ref_coordinate | |
# flow = pt_flow_to_image(offsets) | |
flow = torch.from_numpy(flow_to_image(offsets.permute(0, 2, 3, 1).cpu().data.numpy())) / 255. | |
flow = flow.permute(0, 3, 1, 2) | |
if self.use_cuda: | |
flow = flow.cuda() | |
# case2: visualize which pixels are attended | |
# flow = torch.from_numpy(highlight_flow((offsets * mask.long()).cpu().data.numpy())) | |
if self.rate != 1: | |
flow = F.interpolate(flow, scale_factor=self.rate*4, mode='nearest') | |
return y, flow | |
def test_contextual_attention(args): | |
import cv2 | |
import os | |
# run on cpu | |
os.environ['CUDA_VISIBLE_DEVICES'] = '2' | |
def float_to_uint8(img): | |
img = img * 255 | |
return img.astype('uint8') | |
rate = 2 | |
stride = 1 | |
grid = rate*stride | |
b = default_loader(args.imageA) | |
w, h = b.size | |
b = b.resize((w//grid*grid//2, h//grid*grid//2), Image.ANTIALIAS) | |
# b = b.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS) | |
print('Size of imageA: {}'.format(b.size)) | |
f = default_loader(args.imageB) | |
w, h = f.size | |
f = f.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS) | |
print('Size of imageB: {}'.format(f.size)) | |
f, b = transforms.ToTensor()(f), transforms.ToTensor()(b) | |
f, b = f.unsqueeze(0), b.unsqueeze(0) | |
if torch.cuda.is_available(): | |
f, b = f.cuda(), b.cuda() | |
contextual_attention = ContextualAttention(ksize=3, stride=stride, rate=rate, fuse=True) | |
if torch.cuda.is_available(): | |
contextual_attention = contextual_attention.cuda() | |
yt, flow_t = contextual_attention(f, b) | |
vutils.save_image(yt, 'vutils' + args.imageOut, normalize=True) | |
vutils.save_image(flow_t, 'flow' + args.imageOut, normalize=True) | |
# y = tensor_img_to_npimg(yt.cpu()[0]) | |
# flow = tensor_img_to_npimg(flow_t.cpu()[0]) | |
# cv2.imwrite('flow' + args.imageOut, flow_t) | |
class LocalDis(nn.Module): | |
def __init__(self, config, use_cuda=True, device_ids=None): | |
super(LocalDis, self).__init__() | |
self.input_dim = config['input_dim'] | |
self.cnum = config['ndf'] | |
self.use_cuda = use_cuda | |
self.device_ids = device_ids | |
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum) | |
self.linear = nn.Linear(self.cnum*4*8*8, 1) | |
def forward(self, x): | |
x = self.dis_conv_module(x) | |
x = x.view(x.size()[0], -1) | |
x = self.linear(x) | |
return x | |
class GlobalDis(nn.Module): | |
def __init__(self, config, use_cuda=True, device_ids=None): | |
super(GlobalDis, self).__init__() | |
self.input_dim = config['input_dim'] | |
self.cnum = config['ndf'] | |
self.use_cuda = use_cuda | |
self.device_ids = device_ids | |
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum) | |
self.linear = nn.Linear(self.cnum*4*16*16, 1) | |
def forward(self, x): | |
x = self.dis_conv_module(x) | |
x = x.view(x.size()[0], -1) | |
x = self.linear(x) | |
return x | |
class DisConvModule(nn.Module): | |
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None): | |
super(DisConvModule, self).__init__() | |
self.use_cuda = use_cuda | |
self.device_ids = device_ids | |
self.conv1 = dis_conv(input_dim, cnum, 5, 2, 2) | |
self.conv2 = dis_conv(cnum, cnum*2, 5, 2, 2) | |
self.conv3 = dis_conv(cnum*2, cnum*4, 5, 2, 2) | |
self.conv4 = dis_conv(cnum*4, cnum*4, 5, 2, 2) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.conv3(x) | |
x = self.conv4(x) | |
return x | |
def gen_conv(input_dim, output_dim, kernel_size=3, stride=1, padding=0, rate=1, | |
activation='elu'): | |
return Conv2dBlock(input_dim, output_dim, kernel_size, stride, | |
conv_padding=padding, dilation=rate, | |
activation=activation) | |
def dis_conv(input_dim, output_dim, kernel_size=5, stride=2, padding=0, rate=1, | |
activation='lrelu'): | |
return Conv2dBlock(input_dim, output_dim, kernel_size, stride, | |
conv_padding=padding, dilation=rate, | |
activation=activation) | |
class Conv2dBlock(nn.Module): | |
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0, | |
conv_padding=0, dilation=1, weight_norm='none', norm='none', | |
activation='relu', pad_type='zero', transpose=False): | |
super(Conv2dBlock, self).__init__() | |
self.use_bias = True | |
# initialize padding | |
if pad_type == 'reflect': | |
self.pad = nn.ReflectionPad2d(padding) | |
elif pad_type == 'replicate': | |
self.pad = nn.ReplicationPad2d(padding) | |
elif pad_type == 'zero': | |
self.pad = nn.ZeroPad2d(padding) | |
elif pad_type == 'none': | |
self.pad = None | |
else: | |
assert 0, "Unsupported padding type: {}".format(pad_type) | |
# initialize normalization | |
norm_dim = output_dim | |
if norm == 'bn': | |
self.norm = nn.BatchNorm2d(norm_dim) | |
elif norm == 'in': | |
self.norm = nn.InstanceNorm2d(norm_dim) | |
elif norm == 'none': | |
self.norm = None | |
else: | |
assert 0, "Unsupported normalization: {}".format(norm) | |
if weight_norm == 'sn': | |
self.weight_norm = spectral_norm_fn | |
elif weight_norm == 'wn': | |
self.weight_norm = weight_norm_fn | |
elif weight_norm == 'none': | |
self.weight_norm = None | |
else: | |
assert 0, "Unsupported normalization: {}".format(weight_norm) | |
# initialize activation | |
if activation == 'relu': | |
self.activation = nn.ReLU(inplace=True) | |
elif activation == 'elu': | |
self.activation = nn.ELU(inplace=True) | |
elif activation == 'lrelu': | |
self.activation = nn.LeakyReLU(0.2, inplace=True) | |
elif activation == 'prelu': | |
self.activation = nn.PReLU() | |
elif activation == 'selu': | |
self.activation = nn.SELU(inplace=True) | |
elif activation == 'tanh': | |
self.activation = nn.Tanh() | |
elif activation == 'none': | |
self.activation = None | |
else: | |
assert 0, "Unsupported activation: {}".format(activation) | |
# initialize convolution | |
if transpose: | |
self.conv = nn.ConvTranspose2d(input_dim, output_dim, | |
kernel_size, stride, | |
padding=conv_padding, | |
output_padding=conv_padding, | |
dilation=dilation, | |
bias=self.use_bias) | |
else: | |
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, | |
padding=conv_padding, dilation=dilation, | |
bias=self.use_bias) | |
if self.weight_norm: | |
self.conv = self.weight_norm(self.conv) | |
def forward(self, x): | |
if self.pad: | |
x = self.conv(self.pad(x)) | |
else: | |
x = self.conv(x) | |
if self.norm: | |
x = self.norm(x) | |
if self.activation: | |
x = self.activation(x) | |
return x | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--imageA', default='', type=str, help='Image A as background patches to reconstruct image B.') | |
parser.add_argument('--imageB', default='', type=str, help='Image B is reconstructed with image A.') | |
parser.add_argument('--imageOut', default='result.png', type=str, help='Image B is reconstructed with image A.') | |
args = parser.parse_args() | |
test_contextual_attention(args) | |