drkareemkamal commited on
Commit
127a9ae
1 Parent(s): b0e9204

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -106
app.py DELETED
@@ -1,106 +0,0 @@
1
- from langchain_core.prompts import PromptTemplate
2
- import os
3
- from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
- from langchain_community.vectorstores import FAISS
5
- from langchain_community.llms.ctransformers import CTransformers
6
- from langchain.chains.retrieval_qa.base import RetrievalQA
7
- import streamlit as st
8
-
9
- DB_FAISS_PATH = 'vectorstores/'
10
-
11
- custom_prompt_template = '''use the following pieces of information to answer the user's questions.
12
- If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
13
- Context : {context}
14
- Question : {question}
15
- only return the helpful answer below and nothing else.
16
- '''
17
-
18
- def set_custom_prompt():
19
- """
20
- Prompt template for QA retrieval for vector stores
21
- """
22
- prompt = PromptTemplate(template=custom_prompt_template,
23
- input_variables=['context', 'question'])
24
- return prompt
25
-
26
- def load_llm():
27
- llm = CTransformers(
28
- model='epfl-meditron-7b',
29
- model_type='llma',
30
- max_new_token=512,
31
- temperature=0.5
32
- )
33
- return llm
34
-
35
- def load_embeddings():
36
- embeddings = HuggingFaceBgeEmbeddings(model_name='NeuML/pubmedbert-base-embeddings',
37
- model_kwargs={'device': 'cpu'})
38
- return embeddings
39
-
40
- def load_faiss_index(embeddings):
41
- db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
42
- return db
43
-
44
- def retrieval_qa_chain(llm, prompt, db):
45
- qa_chain = RetrievalQA.from_chain_type(
46
- llm=llm,
47
- chain_type='stuff',
48
- retriever=db.as_retriever(search_kwargs={'k': 2}),
49
- return_source_documents=True,
50
- chain_type_kwargs={'prompt': prompt}
51
- )
52
- return qa_chain
53
-
54
- def qa_bot():
55
- embeddings = load_embeddings()
56
- db = load_faiss_index(embeddings)
57
- llm = load_llm()
58
- qa_prompt = set_custom_prompt()
59
- qa = retrieval_qa_chain(llm, qa_prompt, db)
60
- return qa
61
-
62
- def final_result(query):
63
- qa_result = qa_bot()
64
- response = qa_result({'query': query})
65
- return response
66
-
67
- import streamlit as st
68
-
69
- # Initialize the bot
70
- bot = qa_bot()
71
-
72
- # Streamlit webpage title
73
- st.title('Medical Chatbot')
74
-
75
- # User input
76
- user_query = st.text_input("Please enter your question:")
77
-
78
- # Button to get answer
79
- if st.button('Get Answer'):
80
- if user_query:
81
- # Call the function from your chatbot script
82
- response = final_result(user_query)
83
- if response:
84
- # Displaying the response
85
- st.write("### Answer")
86
- st.write(response['result'])
87
-
88
- # Displaying source document details if available
89
- if 'source_documents' in response:
90
- st.write("### Source Document Information")
91
- for doc in response['source_documents']:
92
- # Retrieve and format page content by replacing '\n' with new line
93
- formatted_content = doc.page_content.replace("\\n", "\n")
94
- st.write("#### Document Content")
95
- st.text_area(label="Page Content", value=formatted_content, height=300)
96
-
97
- # Retrieve source and page from metadata
98
- source = doc.metadata.get('source', 'Unknown')
99
- page = doc.metadata.get('page', 'Unknown')
100
- st.write(f"Source: {source}")
101
- st.write(f"Page Number: {page}")
102
-
103
- else:
104
- st.write("Sorry, I couldn't find an answer to your question.")
105
- else:
106
- st.write("Please enter a question to get an answer.")