drkareemkamal commited on
Commit
a01ced4
1 Parent(s): 127a9ae

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -0
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.prompts import PromptTemplate
2
+ import os
3
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
+ from langchain_community.vectorstores import FAISS
5
+ from langchain_community.llms.ctransformers import CTransformers
6
+ from langchain.chains.retrieval_qa.base import RetrievalQA
7
+ import streamlit as st
8
+
9
+ DB_FAISS_PATH = 'vectorstores/'
10
+
11
+ custom_prompt_template = '''use the following pieces of information to answer the user's questions.
12
+ If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
13
+ Context : {context}
14
+ Question : {question}
15
+ only return the helpful answer below and nothing else.
16
+ '''
17
+
18
+ # custom_prompt_template = '''
19
+ # <|im_start|>system
20
+ # use the following pieces of information to answer the user's questions.
21
+ # If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
22
+ # Context : {context}
23
+ # Question : {question}
24
+ # only return the helpful answer below and nothing else.
25
+ # '''
26
+
27
+
28
+
29
+ def set_custom_prompt():
30
+ """
31
+ Prompt template for QA retrieval for vector stores
32
+ """
33
+ prompt = PromptTemplate(template=custom_prompt_template,
34
+ input_variables=['context', 'question'])
35
+ return prompt
36
+
37
+ def load_llm():
38
+ llm = CTransformers(
39
+ model='epfl-llm/meditron-7b',
40
+ model_type='llma',
41
+ max_new_token=512,
42
+ temperature=0.5
43
+ )
44
+ return llm
45
+
46
+ def load_embeddings():
47
+ embeddings = HuggingFaceBgeEmbeddings(model_name='NeuML/pubmedbert-base-embeddings',
48
+ model_kwargs={'device': 'cpu'})
49
+ return embeddings
50
+
51
+ def load_faiss_index(embeddings):
52
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
53
+ return db
54
+
55
+ def retrieval_qa_chain(llm, prompt, db):
56
+ qa_chain = RetrievalQA.from_chain_type(
57
+ llm=llm,
58
+ chain_type='stuff',
59
+ retriever=db.as_retriever(search_kwargs={'k': 2}),
60
+ return_source_documents=True,
61
+ chain_type_kwargs={'prompt': prompt}
62
+ )
63
+ return qa_chain
64
+
65
+ def qa_bot():
66
+ embeddings = load_embeddings()
67
+ db = load_faiss_index(embeddings)
68
+ llm = load_llm()
69
+ qa_prompt = set_custom_prompt()
70
+ qa = retrieval_qa_chain(llm, qa_prompt, db)
71
+ return qa
72
+
73
+ def final_result(query):
74
+ qa_result = qa_bot()
75
+ response = qa_result({'query': query})
76
+ return response
77
+
78
+ import streamlit as st
79
+
80
+ # Initialize the bot
81
+ bot = qa_bot()
82
+
83
+ # Streamlit webpage title
84
+ st.title('Medical Chatbot')
85
+
86
+ # User input
87
+ user_query = st.text_input("Please enter your question:")
88
+
89
+ # Button to get answer
90
+ if st.button('Get Answer'):
91
+ if user_query:
92
+ # Call the function from your chatbot script
93
+ response = final_result(user_query)
94
+ if response:
95
+ # Displaying the response
96
+ st.write("### Answer")
97
+ st.write(response['result'])
98
+
99
+ # Displaying source document details if available
100
+ if 'source_documents' in response:
101
+ st.write("### Source Document Information")
102
+ for doc in response['source_documents']:
103
+ # Retrieve and format page content by replacing '\n' with new line
104
+ formatted_content = doc.page_content.replace("\\n", "\n")
105
+ st.write("#### Document Content")
106
+ st.text_area(label="Page Content", value=formatted_content, height=300)
107
+
108
+ # Retrieve source and page from metadata
109
+ source = doc.metadata.get('source', 'Unknown')
110
+ page = doc.metadata.get('page', 'Unknown')
111
+ st.write(f"Source: {source}")
112
+ st.write(f"Page Number: {page}")
113
+
114
+ else:
115
+ st.write("Sorry, I couldn't find an answer to your question.")
116
+ else:
117
+ st.write("Please enter a question to get an answer.")