drkareemkamal commited on
Commit
c86b99b
1 Parent(s): a01ced4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -117
app.py CHANGED
@@ -1,117 +0,0 @@
1
- from langchain_core.prompts import PromptTemplate
2
- import os
3
- from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
- from langchain_community.vectorstores import FAISS
5
- from langchain_community.llms.ctransformers import CTransformers
6
- from langchain.chains.retrieval_qa.base import RetrievalQA
7
- import streamlit as st
8
-
9
- DB_FAISS_PATH = 'vectorstores/'
10
-
11
- custom_prompt_template = '''use the following pieces of information to answer the user's questions.
12
- If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
13
- Context : {context}
14
- Question : {question}
15
- only return the helpful answer below and nothing else.
16
- '''
17
-
18
- # custom_prompt_template = '''
19
- # <|im_start|>system
20
- # use the following pieces of information to answer the user's questions.
21
- # If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
22
- # Context : {context}
23
- # Question : {question}
24
- # only return the helpful answer below and nothing else.
25
- # '''
26
-
27
-
28
-
29
- def set_custom_prompt():
30
- """
31
- Prompt template for QA retrieval for vector stores
32
- """
33
- prompt = PromptTemplate(template=custom_prompt_template,
34
- input_variables=['context', 'question'])
35
- return prompt
36
-
37
- def load_llm():
38
- llm = CTransformers(
39
- model='epfl-llm/meditron-7b',
40
- model_type='llma',
41
- max_new_token=512,
42
- temperature=0.5
43
- )
44
- return llm
45
-
46
- def load_embeddings():
47
- embeddings = HuggingFaceBgeEmbeddings(model_name='NeuML/pubmedbert-base-embeddings',
48
- model_kwargs={'device': 'cpu'})
49
- return embeddings
50
-
51
- def load_faiss_index(embeddings):
52
- db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
53
- return db
54
-
55
- def retrieval_qa_chain(llm, prompt, db):
56
- qa_chain = RetrievalQA.from_chain_type(
57
- llm=llm,
58
- chain_type='stuff',
59
- retriever=db.as_retriever(search_kwargs={'k': 2}),
60
- return_source_documents=True,
61
- chain_type_kwargs={'prompt': prompt}
62
- )
63
- return qa_chain
64
-
65
- def qa_bot():
66
- embeddings = load_embeddings()
67
- db = load_faiss_index(embeddings)
68
- llm = load_llm()
69
- qa_prompt = set_custom_prompt()
70
- qa = retrieval_qa_chain(llm, qa_prompt, db)
71
- return qa
72
-
73
- def final_result(query):
74
- qa_result = qa_bot()
75
- response = qa_result({'query': query})
76
- return response
77
-
78
- import streamlit as st
79
-
80
- # Initialize the bot
81
- bot = qa_bot()
82
-
83
- # Streamlit webpage title
84
- st.title('Medical Chatbot')
85
-
86
- # User input
87
- user_query = st.text_input("Please enter your question:")
88
-
89
- # Button to get answer
90
- if st.button('Get Answer'):
91
- if user_query:
92
- # Call the function from your chatbot script
93
- response = final_result(user_query)
94
- if response:
95
- # Displaying the response
96
- st.write("### Answer")
97
- st.write(response['result'])
98
-
99
- # Displaying source document details if available
100
- if 'source_documents' in response:
101
- st.write("### Source Document Information")
102
- for doc in response['source_documents']:
103
- # Retrieve and format page content by replacing '\n' with new line
104
- formatted_content = doc.page_content.replace("\\n", "\n")
105
- st.write("#### Document Content")
106
- st.text_area(label="Page Content", value=formatted_content, height=300)
107
-
108
- # Retrieve source and page from metadata
109
- source = doc.metadata.get('source', 'Unknown')
110
- page = doc.metadata.get('page', 'Unknown')
111
- st.write(f"Source: {source}")
112
- st.write(f"Page Number: {page}")
113
-
114
- else:
115
- st.write("Sorry, I couldn't find an answer to your question.")
116
- else:
117
- st.write("Please enter a question to get an answer.")