drkareemkamal commited on
Commit
1126a25
1 Parent(s): 8425629

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.prompts import PromptTemplate
2
+ import os
3
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
4
+ from langchain_community.vectorstores import FAISS
5
+ from langchain_community.llms.ctransformers import CTransformers
6
+ from langchain.chains.retrieval_qa.base import RetrievalQA
7
+ import streamlit as st
8
+ import fitz # PyMuPDF
9
+ from PIL import Image
10
+ import io
11
+
12
+ DB_FAISS_PATH = 'vectorstores/'
13
+ pdf_path = 'Oxford/Oxford-psychiatric-handbook-1-760.pdf'
14
+
15
+ # custom_prompt_template = '''use the following pieces of information to answer the user's questions.
16
+ # If you don't know the answer, please just say that don't know the answer, don't try to make uo an answer.
17
+ # Context : {context}
18
+ # Question : {question}
19
+ # only return the helpful answer below and nothing else.
20
+ # '''
21
+ custom_prompt_template = prompt_template="""
22
+ Use the following piece of context to answer the question asked.
23
+ Please try to provide the answer only based on the context
24
+ {context}
25
+ Question:{question}
26
+ """
27
+ def set_custom_prompt():
28
+ """
29
+ Prompt template for QA retrieval for vector stores
30
+ """
31
+ prompt = PromptTemplate(template = custom_prompt_template,
32
+ input_variables = ['context','question'])
33
+
34
+ return prompt
35
+
36
+
37
+ def load_llm():
38
+ # llm = CTransformers(
39
+ # model = 'TheBloke/Llama-2-7B-Chat-GGML',
40
+ # model_type = 'llama',
41
+ # max_new_token = 512,
42
+ # temperature = 0.5
43
+ # )
44
+ llm = HuggingFaceHub(
45
+ repo_id = "mistralai/Mistral-7B-v0.1",
46
+ model_kwargs = {'temperature': 0.1, "max_length": 500}
47
+ )
48
+ return llm
49
+
50
+ def retrieval_qa_chain(llm,prompt,db):
51
+ qa_chain = RetrievalQA.from_chain_type(
52
+ llm = llm,
53
+ chain_type = 'stuff',
54
+ retriever = db.as_retriever(search_type = 'similarity',search_kwargs = {'k': 3}),
55
+ return_source_documents = True,
56
+ chain_type_kwargs = {'prompt': prompt}
57
+ )
58
+
59
+ return qa_chain
60
+
61
+ def qa_bot():
62
+ embeddings = HuggingFaceBgeEmbeddings(model_name = 'BAAI/bge-small-en-v1.5',#'sentence-transformers/all-MiniLM-L6-v2',
63
+ model_kwargs = {'device':'cpu'},
64
+ encode_kwargs = {'normalize_embeddings': True})
65
+
66
+
67
+ db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
68
+ llm = load_llm()
69
+ qa_prompt = set_custom_prompt()
70
+ qa = retrieval_qa_chain(llm,qa_prompt, db)
71
+
72
+ return qa
73
+
74
+ def final_result(query):
75
+ qa_result = qa_bot()
76
+ response = qa_result({'query' : query})
77
+
78
+ return response
79
+
80
+ def get_pdf_page_as_image(pdf_path, page_number):
81
+ document = fitz.open(pdf_path)
82
+ page = document.load_page(page_number)
83
+ pix = page.get_pixmap()
84
+ img = Image.open(io.BytesIO(pix.tobytes()))
85
+ return img
86
+
87
+ # Streamlit webpage title
88
+ st.title('Medical Chatbot')
89
+
90
+ # User input
91
+ user_query = st.text_input("Please enter your question:")
92
+
93
+ # Button to get answer
94
+ if st.button('Get Answer'):
95
+ if user_query:
96
+ # Call the function from your chatbot script
97
+ response = final_result(user_query)
98
+ if response:
99
+ # Displaying the response
100
+ st.write("### Answer")
101
+ st.write(response['result'])
102
+
103
+ # Displaying source document details if available
104
+ if 'source_documents' in response:
105
+ st.write("### Source Document Information")
106
+ for doc in response['source_documents']:
107
+ # Retrieve and format page content by replacing '\n' with new line
108
+ formatted_content = doc.page_content.replace("\\n", "\n")
109
+ st.write("#### Document Content")
110
+ st.text_area(label="Page Content", value=formatted_content, height=300)
111
+
112
+ # Retrieve source and page from metadata
113
+ source = doc.metadata['source']
114
+ page = doc.metadata['page']
115
+ st.write(f"Source: {source}")
116
+ st.write(f"Page Number: {page+1}")
117
+
118
+ # Display the PDF page as an image
119
+ #source = r"{source}"
120
+ pdf_page_image = get_pdf_page_as_image(pdf_path, page)
121
+ st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
122
+
123
+ else:
124
+ st.write("Sorry, I couldn't find an answer to your question.")
125
+ else:
126
+ st.write("Please enter a question to get an answer.")