Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("ncoop57/DiGPTame-medium") | |
model = AutoModelForCausalLM.from_pretrained("ncoop57/DiGPTame-medium") | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() | |
# convert the tokens to text, and then split the responses into the right format | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list | |
return response, history | |
import gradio as gr | |
gr.Interface(fn=predict, | |
theme="default", | |
css=".footer {display:none !important}", | |
inputs=["text", "state"], | |
outputs=["chatbot", "state"]).launch() |