ood-detection / imagenet_ood.py
edadaltocg's picture
update app
301b1c6
import logging
import os
from typing import Callable, Optional
from torchvision.datasets import ImageFolder
from torchvision.datasets.utils import check_integrity, download_and_extract_archive, verify_str_arg
_logger = logging.getLogger(__name__)
class ImageNetA(ImageFolder):
"""ImageNetA dataset.
- Paper: [https://arxiv.org/abs/1907.07174](https://arxiv.org/abs/1907.07174).
"""
base_folder = "imagenet-a"
url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar"
filename = "imagenet-a.tar"
tgz_md5 = "c3e55429088dc681f30d81f4726b6595"
def __init__(self, root: str, split=None, transform: Optional[Callable] = None, download: bool = False, **kwargs):
self.root = root
if download:
self.download()
if not self._check_integrity():
raise RuntimeError("Dataset not found or corrupted." + " You can use download=True to download it")
super().__init__(root=os.path.join(root, self.base_folder), transform=transform, **kwargs)
def _check_exists(self) -> bool:
return os.path.exists(os.path.join(self.root, self.base_folder))
def _check_integrity(self) -> bool:
return check_integrity(os.path.join(self.root, self.filename), self.tgz_md5)
def download(self) -> None:
if self._check_integrity() and self._check_exists():
_logger.debug("Files already downloaded and verified")
return
download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
class ImageNetO(ImageNetA):
"""ImageNetO datasets.
Contains unknown classes to ImageNet-1k.
- Paper: [https://arxiv.org/abs/1907.07174](https://arxiv.org/abs/1907.07174)
"""
base_folder = "imagenet-o"
url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar"
filename = "imagenet-o.tar"
tgz_md5 = "86bd7a50c1c4074fb18fc5f219d6d50b"
class ImageNetR(ImageNetA):
"""ImageNet-R(endition) dataset.
Contains art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paintings,
patterns, plastic objects,plush objects, sculptures, sketches, tattoos, toys,
and video game renditions of ImageNet-1k classes.
- Paper: [https://arxiv.org/abs/2006.16241](https://arxiv.org/abs/2006.16241)
"""
base_folder = "imagenet-r"
url = "https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar"
filename = "imagenet-r.tar"
tgz_md5 = "a61312130a589d0ca1a8fca1f2bd3337"
class NINCOFull(ImageFolder):
"""`NINCO` Dataset subset.
Args:
root (string): Root directory of dataset where directory
exists or will be saved to if download is set to True.
split (string, optional): The dataset split, not used.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, `transforms.RandomCrop`.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
**kwargs: Additional arguments passed to :class:`~torchvision.datasets.ImageFolder`.
"""
PAPER_URL = "https://arxiv.org/pdf/2306.00826.pdf"
base_folder = "ninco"
filename = "NINCO_all.tar.gz"
file_md5 = "b9ffae324363cd900a81ce3c367cd834"
url = "https://zenodo.org/record/8013288/files/NINCO_all.tar.gz"
# size: 15393
def __init__(
self, root: str, split=None, transform: Optional[Callable] = None, download: bool = False, **kwargs
) -> None:
self.root = os.path.expanduser(root)
self.dataset_folder = os.path.join(self.root, self.base_folder)
self.archive = os.path.join(self.root, self.filename)
if download:
self.download()
if not self._check_integrity():
raise RuntimeError("Dataset not found or corrupted." + " You can use download=True to download it")
super().__init__(self.dataset_folder, transform=transform, **kwargs)
def _check_integrity(self) -> bool:
return check_integrity(self.archive, self.file_md5)
def _check_exists(self) -> bool:
return os.path.exists(self.dataset_folder)
def download(self) -> None:
if self._check_integrity() and self._check_exists():
return
download_and_extract_archive(
self.url, download_root=self.root, extract_root=self.dataset_folder, md5=self.file_md5
)
if __name__ == "__main__":
ImageNetR(root="data", download=True)
ImageNetO(root="data", download=True)
ImageNetA(root="data", download=True)
NINCOFull(root="data", download=True)