Spaces:
Running
on
A10G
Running
on
A10G
File size: 10,795 Bytes
c25e2cc 3cdacdf 6255790 5e25b83 6255790 98c6b44 c25e2cc 6255790 e79152d 6255790 e79152d 6255790 5e25b83 9b96547 f55706c 27e096e 6255790 7f61c74 b12e6a1 33f6feb dd85adc 33f6feb b12e6a1 b13a3d4 33f6feb b13a3d4 33f6feb b13a3d4 652f06c 2331708 652f06c 33f6feb 652f06c 33f6feb 652f06c 7f61c74 7078734 05f89f0 277aca5 05f89f0 98c6b44 3be3aae 5a65206 8134c37 48725b2 6255790 277aca5 6f62fc3 6255790 774cc5f 6255790 3489b04 774cc5f 88f076f 8eddb9e e6519b8 98c6b44 88f076f 98c6b44 88f076f 98c6b44 88f076f 93e1172 88f076f 98c6b44 61507ea 98c6b44 5e25b83 88f076f 98c6b44 5e25b83 6f62fc3 1a248f3 3489b04 5e25b83 e6519b8 6255790 88f076f db50056 660a4aa 393519b 3489b04 393519b aefef30 c635e15 1ff3548 3489b04 7bb8383 d64d565 a4fdf11 d0a0320 d64d565 77d316c f948a49 d58e1aa 77d316c 7bb8383 ffe201d 7bb8383 b885715 448a301 4b95bff 001613c 4b95bff d0a0320 001613c 4b95bff e6410ba 71ff7e9 4b95bff 001613c 88f076f 448a301 7bb8383 fdf34ba 7bb8383 7078734 7bb8383 1df825b 6f62fc3 001613c 6f62fc3 5a65206 277aca5 da366cb 277aca5 b12e6a1 7bb0fbf 9cd84bd 33f6feb 2b4fe45 539fd6d 7f61c74 3489b04 a93910d b30a076 3489b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode
import re
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
return wt, zs, wts
def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
def get_example():
case = [
[
'examples/source_a_man_wearing_a_brown_hoodie_in_a_crowded_street.jpeg',
'a man wearing a brown hoodie in a crowded street',
'a robot wearing a brown hoodie in a crowded street',
100,
36,
15,
'+painting',
10,
1,
'examples/ddpm_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png',
'examples/ddpm_sega_painting_of_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png'
],
[
'examples/source_wall_with_framed_photos.jpeg',
'',
'',
100,
36,
15,
'+pink drawings of muffins',
10,
1,
'examples/ddpm_wall_with_framed_photos.png',
'examples/ddpm_sega_plus_pink_drawings_of_muffins.png'
],
[
'examples/source_an_empty_room_with_concrete_walls.jpg',
'an empty room with concrete walls',
'glass walls',
100,
36,
17,
'+giant elephant',
10,
1,
'examples/ddpm_glass_walls.png',
'examples/ddpm_sega_glass_walls_gian_elephant.png'
]]
return case
def edit(input_image,
src_prompt ="",
tar_prompt="",
steps=100,
# src_cfg_scale,
skip=36,
tar_cfg_scale=15,
edit_concept="",
sega_edit_guidance=0,
warm_up=None,
# neg_guidance=False,
left = 0,
right = 0,
top = 0,
bottom = 0):
# offsets=(0,0,0,0)
x0 = load_512(input_image, left,right, top, bottom, device)
# invert
# wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps)
latnets = wts[skip].expand(1, -1, -1, -1)
#pure DDPM output
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=tar_prompt,
cfg_scale_tar=tar_cfg_scale, skip=skip)
if not edit_concept or not sega_edit_guidance:
return pure_ddpm_out, pure_ddpm_out
# SEGA
# parse concepts and neg guidance
edit_concepts = edit_concept.split(",")
num_concepts = len(edit_concepts)
neg_guidance =[]
for edit_concept in edit_concepts:
edit_concept=edit_concept.strip(" ")
if edit_concept.startswith("-"):
neg_guidance.append(True)
else:
neg_guidance.append(False)
edit_concepts = [concept.strip("+|-") for concept in edit_concepts]
# parse warm-up steps
default_warm_up_steps = [1]*num_concepts
if warm_up:
digit_pattern = re.compile(r"^\d+$")
warm_up_steps_str = warm_up.split(",")
for i,num_steps in enumerate(warm_up_steps_str[:num_concepts]):
if not digit_pattern.match(num_steps):
raise gr.Error("Invalid value for warm-up steps, using 1 instead")
else:
default_warm_up_steps[i] = int(num_steps)
editing_args = dict(
editing_prompt = edit_concepts,
reverse_editing_direction = neg_guidance,
edit_warmup_steps=default_warm_up_steps,
edit_guidance_scale=[sega_edit_guidance]*num_concepts,
edit_threshold=[.93]*num_concepts,
edit_momentum_scale=0.5,
edit_mom_beta=0.6
)
sega_out = sem_pipe(prompt=tar_prompt,eta=1, latents=latnets, guidance_scale = tar_cfg_scale,
num_images_per_prompt=1,
num_inference_steps=steps,
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
return pure_ddpm_out,sega_out.images[0]
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
Edit Friendly DDPM X Semantic Guidance
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a> X
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">SEGA: Instructing Diffusion using Semantic Dimensions</a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks() as demo:
gr.HTML(intro)
with gr.Row():
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="optional: describe the original image")
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="optional: describe the target image to edit with DDPM")
edit_concept = gr.Textbox(lines=1, label="SEGA Edit Concepts", interactive=True, placeholder="optional: type a list of concepts to add/remove with SEGA\n (e.g. +dog,-cat,+oil painting)")
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
ddpm_edited_image = gr.Image(label=f"DDPM Reconstructed Image", interactive=False)
sega_edited_image = gr.Image(label=f"DDPM + SEGA Edited Image", interactive=False)
input_image.style(height=512, width=512)
ddpm_edited_image.style(height=512, width=512)
sega_edited_image.style(height=512, width=512)
with gr.Row():
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Run")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
#inversion
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
# src_cfg_scale = gr.Number(value=3.5, label=f"Source CFG", interactive=True)
# reconstruction
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True)
with gr.Column():
sega_edit_guidance = gr.Slider(value=10, label=f"SEGA Edit Guidance Scale", interactive=True)
warm_up = gr.Textbox(label=f"SEGA Warm-up Steps", interactive=True, placeholder="type #warm-up steps for each concpets (e.g. 2,7,5...")
#shift
with gr.Column():
left = gr.Number(value=0, precision=0, label="Left Shift", interactive=True)
right = gr.Number(value=0, precision=0, label="Right Shift", interactive=True)
top = gr.Number(value=0, precision=0, label="Top Shift", interactive=True)
bottom = gr.Number(value=0, precision=0, label="Bottom Shift", interactive=True)
# neg_guidance = gr.Checkbox(label="SEGA Negative Guidance")
# gr.Markdown(help_text)
generate_button.click(
fn=edit,
inputs=[input_image,
src_prompt,
tar_prompt,
steps,
# src_cfg_scale,
skip,
tar_cfg_scale,
edit_concept,
sega_edit_guidance,
warm_up,
# neg_guidance,
left,
right,
top,
bottom
],
outputs=[ddpm_edited_image, sega_edited_image],
)
gr.Examples(
label='Examples',
examples=get_example(),
inputs=[input_image, src_prompt, tar_prompt, steps,
# src_cfg_scale,
skip,
tar_cfg_scale,
edit_concept,
sega_edit_guidance,
warm_up,
# neg_guidance,
ddpm_edited_image, sega_edited_image
],
outputs=[ddpm_edited_image, sega_edited_image],
# fn=edit,
# cache_examples=True
)
demo.queue()
demo.launch(share=False)
|