File size: 7,304 Bytes
c25e2cc
3cdacdf
 
 
 
 
6255790
 
5e25b83
6255790
c25e2cc
6255790
 
 
 
 
 
 
 
 
 
 
 
 
e79152d
 
6255790
 
 
 
 
 
 
 
 
 
 
 
 
e79152d
 
6255790
 
 
 
 
5e25b83
 
 
9b96547
f55706c
27e096e
6255790
 
3489b04
 
 
 
 
 
 
 
 
 
 
6255790
9b96547
6255790
 
 
3489b04
6255790
 
 
 
3489b04
 
6255790
5e25b83
 
3489b04
 
 
 
5e25b83
 
 
 
3489b04
1a248f3
3489b04
5e25b83
 
6255790
 
b30a076
3489b04
b30a076
3489b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b30a076
 
3489b04
 
 
 
b30a076
 
 
 
 
 
 
 
 
 
 
5e25b83
6255790
b30a076
 
 
 
 
 
 
 
 
 
3489b04
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode

def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):

  #  inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf, 
  #  based on the code in https://github.com/inbarhub/DDPM_inversion
   
  #  returns wt, zs, wts:
  #  wt - inverted latent
  #  wts - intermediate inverted latents
  #  zs - noise maps

  sd_pipe.scheduler.set_timesteps(num_diffusion_steps)

  # vae encode image
  with autocast("cuda"), inference_mode():
      w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()

  # find Zs and wts - forward process
  wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
  return wt, zs, wts



def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):

    # reverse process (via Zs and wT)
    w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
    
    # vae decode image
    with autocast("cuda"), inference_mode():
        x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
    if x0_dec.dim()<4:
        x0_dec = x0_dec[None,:,:,:]
    img = image_grid(x0_dec)
    return img

# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)


def edit(input_image, 
                    src_prompt, 
                    tar_prompt, 
                    steps,
                    src_cfg_scale,
                    skip,
                    tar_cfg_scale,
                    edit_concept,
                    sega_edit_guidance,
                    warm_up,
                    neg_guidance):
    offsets=(0,0,0,0)
    x0 = load_512(input_image, *offsets, device)


    # invert
    wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
    latnets = wts[skip].expand(1, -1, -1, -1)

    eta = 1 
    #pure DDPM output
    pure_ddpm_out = sample(wt, zs, wts, prompt_tar=tar_prompt, 
                           cfg_scale_tar=tar_cfg_scale, skip=skip, 
                           eta = eta)
    
    editing_args = dict(
    editing_prompt = [edit_concept],
    reverse_editing_direction = [neg_guidance],
    edit_warmup_steps=[warm_up],
    edit_guidance_scale=[sega_edit_guidance], 
    edit_threshold=[.93],
    edit_momentum_scale=0.5, 
    edit_mom_beta=0.6 
  )
    sega_out = sem_pipe(prompt=tar_prompt,eta=eta, latents=latnets, 
                        num_images_per_prompt=1,  
                        num_inference_steps=steps, 
                        use_ddpm=True,  wts=wts, zs=zs[skip:], **editing_args)
    return pure_ddpm_out,sega_out.images[0]


####################################

with gr.Blocks() as demo:
        gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
   Edit Friendly DDPM X Semantic Guidance: Editing Real Images
</h1>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
        with gr.Row():
            with gr.Column(scale=1, min_width=100):
                generate_button = gr.Button("Generate")
            # with gr.Column(scale=1, min_width=100):
            #     reset_button = gr.Button("Reset")
            # with gr.Column(scale=3):
            #     instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)

        with gr.Row():
            input_image = gr.Image(label="Input Image", type="pil", interactive=True)
            ddpm_edited_image = gr.Image(label=f"Reconstructed Image", type="pil", interactive=False)
            sega_edited_image = gr.Image(label=f"Edited Image", type="pil", interactive=False)
            input_image.style(height=512, width=512)
            ddpm_edited_image.style(height=512, width=512)
            sega_edited_image.style(height=512, width=512)
            
         with gr.Row():
            src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True)
            #edit
            tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True)

        with gr.Row():
            #inversion
            steps = gr.Number(value=100, precision=0, label="Steps", interactive=True)
            src_cfg_scale = gr.Number(value=3.5, label=f"Source CFG", interactive=True)
            # reconstruction
            skip = gr.Number(value=100, precision=0, label="Skip", interactive=True)
            tar_cfg_scale = gr.Number(value=15, label=f"Reconstruction CFG", interactive=True)
            # edit
            edit_concept = gr.Textbox(lines=1, label="Edit Concept", interactive=True)
            sega_edit_guidance = gr.Number(value=5, label=f"SEGA CFG", interactive=True)
            warm_up = gr.Number(value=5, label=f"Warm-up Steps", interactive=True)
            neg_guidance = gr.Checkbox(label="SEGA negative_guidance")
      

        gr.Markdown(help_text)

        generate_button.click(
            fn=edit,
            inputs=[input_image, 
                    src_prompt, 
                    tar_prompt, 
                    steps,
                    src_cfg_scale,
                    skip,
                    tar_cfg_scale,
                    edit_concept,
                    sega_edit_guidance,
                    warm_up,
                    neg_guidance     
            ],
            outputs=[input_image, ddpm_edited_image, sega_edited_image],
        )


demo.queue(concurrency_count=1)
demo.launch(share=False)
######################################################



# inputs = [
#     gr.Image(label="input image", shape=(512, 512)),
#     gr.Textbox(label="input prompt"),
#     gr.Textbox(label="target prompt"),
#     gr.Textbox(label="SEGA edit concept"),
#     gr.Checkbox(label="SEGA negative_guidance"),
#     gr.Slider(label="warmup steps", minimum=1, maximum=30, value=5),
#     gr.Slider(label="edit guidance scale", minimum=0, maximum=15, value=3.5),
#     gr.Slider(label="guidance scale", minimum=7, maximum=18, value=15),
#     gr.Slider(label="skip", minimum=0, maximum=40, value=36),
#     gr.Slider(label="num diffusion steps", minimum=0, maximum=300, value=100)
   
   
# ]
# outputs = [gr.Image(label="DDPM"),gr.Image(label="DDPM+SEGA")]

# # And the minimal interface
# demo = gr.Interface(
#     fn=edit,
#     inputs=inputs,
#     outputs=outputs,
# )
# demo.launch()  # debug=True allows you to see errors and output in Colab