Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 22,195 Bytes
68fa530 9346f1c 4596a70 2a5f9fb 60ff46b 2a5f9fb 8c49cb6 2246286 8c49cb6 b74e881 976f398 df66f6e 9d22eee e21873c 6da7311 df66f6e 8aaf0e7 df66f6e 9b2e755 df66f6e 2a5f9fb f2bc0a5 df66f6e 359d8a9 f2bc0a5 8c49cb6 60ff46b 9839977 2a73469 10f9b3c 94177ff d084b26 dbb8b5d 0c7ef71 68fa530 0c7ef71 8aaf0e7 d084b26 0c7ef71 8df1d5c 0c7ef71 a885f09 0c7ef71 ebb5810 8aaf0e7 2a73469 ebb5810 551debe ebb5810 614ee1f 1f60a20 8c49cb6 72a0f0f 6da7311 9839977 72a0f0f 6da7311 ef5b51c e21873c 512b095 a2790cb 72a0f0f 8b63c4c 512b095 aa7c3f4 adb0416 8c49cb6 9b2e755 8c49cb6 9b2e755 8c49cb6 ecef2dc 7644705 72a0f0f ef5b51c adb0416 ef5b51c adb0416 8c49cb6 6da7311 8c49cb6 9839977 2a5f9fb 9839977 8c49cb6 9839977 b762711 9839977 9b2e755 9839977 460ecf2 3ae1b8c ab6f548 6da7311 3ae1b8c dc0413f 3ae1b8c dc0413f d2179b0 8c49cb6 d2179b0 e21873c 9b2e755 6da7311 9839977 9b2e755 7644705 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 613696b ecef2dc 8c49cb6 e3a8804 72a0f0f e3a8804 8c49cb6 df66f6e 8c49cb6 9839977 88c4c5f 9839977 460ecf2 601f2e9 fc1e99b 9d22eee fc1e99b 6da7311 8c49cb6 6e8f400 8c49cb6 2a5f9fb 8c49cb6 2a5f9fb 6e8f400 ecef2dc f2e1acc 6e8f400 460d762 6e8f400 2a5f9fb 6e8f400 a2790cb 8c49cb6 a2790cb e3a8804 a2790cb 6da7311 9839977 8c49cb6 8b63c4c de891db 8b63c4c 6da7311 9839977 8b63c4c 6da7311 ab6f548 6da7311 9839977 ab6f548 f2bc0a5 359d8a9 b1a1395 359d8a9 613696b 6e8f400 2246286 0227006 613696b 8dfa543 0227006 8dfa543 6e8f400 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 ebb5810 00358b1 0227006 6e8f400 a163e5c 8c49cb6 b323764 9d22eee 8c49cb6 b323764 2762eff b323764 6da7311 0227006 6e8f400 12cea14 9d22eee 8c49cb6 12cea14 217b585 12cea14 9d22eee 8c49cb6 12cea14 6e8f400 8c49cb6 6e8f400 12cea14 6e8f400 12cea14 8c49cb6 6da7311 6e8f400 8cb7546 b74e881 67cd6fc d16cee2 67109fc d16cee2 adb0416 67cd6fc 39b7a5d 10f9b3c 5fd25b4 39b7a5d 10f9b3c 7bb3bb8 60ff46b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import os
import json
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from gradio_space_ci import enable_space_ci
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
FAQ_TEXT,
TITLE,
)
from src.display.changelog import CHANGELOG_TEXT
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
Tasks,
Language
)
from src.envs import (
API,
EVAL_REQUESTS_PATH,
DYNAMIC_INFO_REPO,
DYNAMIC_INFO_FILE_PATH,
DYNAMIC_INFO_PATH,
EVAL_RESULTS_PATH,
H4_TOKEN, IS_PUBLIC,
QUEUE_REPO,
REPO_ID,
RESULTS_REPO,
SHOW_INCOMPLETE_EVALS
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.scripts.update_all_request_files import update_dynamic_files
from src.tools.collections import update_collections
from src.tools.plots import (
create_metric_plot_obj,
create_plot_df,
create_scores_df,
create_lat_score_mem_plot_obj
)
# Start ephemeral Spaces on PRs (see config in README.md)
#enable_space_ci()
def restart_space():
try:
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
except:
print("Restart failed")
def init_space(full_init: bool = True):
if full_init:
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
try:
print(DYNAMIC_INFO_PATH)
snapshot_download(
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
# Init in case of empty
if not os.path.exists(DYNAMIC_INFO_FILE_PATH):
with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
json.dump({}, f, indent=2)
raw_data, original_df = get_leaderboard_df(
results_path=EVAL_RESULTS_PATH,
requests_path=EVAL_REQUESTS_PATH,
dynamic_path=DYNAMIC_INFO_FILE_PATH,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
show_incomplete=SHOW_INCOMPLETE_EVALS
)
update_collections(original_df.copy())
leaderboard_df = original_df.copy()
plot_df = create_plot_df(create_scores_df(raw_data))
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
failed_eval_queue_df
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS, show_incomplete=SHOW_INCOMPLETE_EVALS)
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, failed_eval_queue_df
leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, failed_eval_queue_df = init_space()
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
language_query: list,
hide_models: list,
query: str,
):
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, language_query=language_query, precision_query=precision_query, hide_models=hide_models)
filtered_df = filter_queries(query, filtered_df)
filtered_df = update_leaderboard_avg_scores(filtered_df, columns)
df = select_columns(filtered_df, columns)
return df
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
query = request.query_params.get("query") or ""
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
dummy_col = [AutoEvalColumn.dummy.name]
#AutoEvalColumn.model_type_symbol.name,
#AutoEvalColumn.model.name,
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame):
"""Added by Abishek"""
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, language_query: list, precision_query: list, hide_models: list
) -> pd.DataFrame:
# Show all models
if "Private or deleted" in hide_models:
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
else:
filtered_df = df
if "Contains a merge/moerge" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
if "MoE" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
if "Flagged" in hide_models:
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
filtered_df = filtered_df.loc[df[AutoEvalColumn.main_language.name].isin(language_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
def update_leaderboard_avg_scores(df, columns):
new_df = df.copy()
#update average with tasks in shown columns
task_columns = []
task_baseline = []
for task in Tasks:
column_name = getattr(AutoEvalColumn, task.name).name
if column_name in columns:
task_columns.append(column_name)
task_baseline.append(task.value.baseline)
new_df[AutoEvalColumn.average.name] = new_df[task_columns].mean(axis=1).apply(lambda x: round(x, 2))
new_df[AutoEvalColumn.npm.name] = (((new_df[task_columns] - task_baseline) / [100.0 - t for t in task_baseline]).mean(axis=1) * 100).apply(lambda x: round(x, 2))
return new_df
leaderboard_df = filter_models(
df=leaderboard_df,
type_query=[t.to_str(" : ") for t in ModelType],
size_query=list(NUMERIC_INTERVALS.keys()),
precision_query=[i.value.name for i in Precision],
language_query=[i.value.name for i in Language],
hide_models=["Contains a merge/moerge", "Flagged"], # "Private or deleted", "Contains a merge/moerge", "Flagged"
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
hide_models = gr.CheckboxGroup(
label="Hide models",
choices = ["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
value=["Contains a merge/moerge", "Flagged"],
interactive=True
)
with gr.Column(min_width=320):
#with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
filter_columns_language = gr.CheckboxGroup(
label="Model Main Language",
choices=[i.value.name for i in Language],
value=[i.value.name for i in Language],
interactive=True,
elem_id="filter-columns-language",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name]
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
#column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
filter_columns_language,
hide_models,
search_bar,
],
leaderboard_table,
)
# Define a hidden component that will trigger a reload only if a query parameter has been set
hidden_search_bar = gr.Textbox(value="", visible=False)
hidden_search_bar.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
filter_columns_language,
hide_models,
search_bar,
],
leaderboard_table,
)
# Check query parameter once at startup and update search bar + hidden component
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_language, hide_models]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
filter_columns_language,
hide_models,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π Metrics", elem_id="llm-benchmark-tab-table", id=4):
with gr.Row():
with gr.Column():
chart = create_metric_plot_obj(
plot_df,
[AutoEvalColumn.average.name],
title="Average of Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.Column():
chart = create_metric_plot_obj(
plot_df,
BENCHMARK_COLS,
title="Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.Row():
with gr.Column():
fig = create_lat_score_mem_plot_obj(leaderboard_df)
plot = gr.components.Plot(
value=fig,
elem_id="plot",
show_label=False,
)
gr.HTML("π Hover over the points π for additional information. ",elem_id="text")
gr.HTML('This plot the Evaluation Time from our backend GPU (Nvdia A100-80G) to run all the benchmarks, it\'s not a very precise performance benchmark of the models, for that look for the <a href="https://huggingface.co/spaces/optimum/llm-perf-leaderboard" target="_blank">π€ LLM-Perf Leaderboard</a>',elem_id="text")
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β Failed Evaluations ({len(failed_eval_queue_df)})",
open=False,
):
with gr.Row():
failed_eval_table = gr.components.Dataframe(
value=failed_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
main_language = gr.Dropdown(
choices=[i.value.name for i in Language if i != Language.Unknown],
label="Main Language",
multiselect=False,
value="English",
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type,
main_language
],
submission_result,
)
with gr.TabItem("β³ Changelog", elem_id="llm-benchmark-tab-table", id=5):
gr.Markdown(CHANGELOG_TEXT, elem_classes="markdown-text")
""" #TODO: FIX CITATIONS
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
"""
def update_dynamic_files_wrapper():
try:
return update_dynamic_files()
except Exception as e:
print(f"Error updating dynamic files: {e}")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h
scheduler.add_job(update_dynamic_files_wrapper, "cron", minute=30) # launched every hour on the hour
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |