File size: 4,543 Bytes
bd4c825
 
d3f3fad
bd4c825
 
 
 
d3f3fad
5c45105
bd4c825
 
 
 
 
 
 
 
 
 
78765d2
 
 
 
bd4c825
5c45105
 
 
78765d2
 
5c45105
 
bd4c825
5c45105
 
bd4c825
 
 
5c45105
 
 
bd4c825
5c45105
fcfee08
78765d2
 
21171da
78765d2
bd4c825
 
78765d2
bd4c825
 
 
d3f3fad
78765d2
bd4c825
78765d2
bd4c825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78765d2
bd4c825
 
 
 
 
 
 
 
 
 
 
 
d733788
bd4c825
 
 
 
 
 
 
21171da
 
d3f3fad
dc28a53
feca4b6
d3f3fad
bd4c825
21171da
78765d2
d9ede2f
bd4c825
 
3b32f96
78765d2
bd4c825
 
78765d2
3b32f96
 
d3f3fad
fcfee08
98ea928
fcfee08
 
5644512
a5183ea
78765d2
a5183ea
5644512
 
 
 
5210223
5644512
5210223
5644512
5210223
5644512
5210223
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import Annotated, List, Tuple, Union

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool

from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_openai import ChatOpenAI

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser

import operator
from typing import Annotated, Any, Dict, List, Optional, Sequence, TypedDict
import functools

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import StateGraph, END

class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system", 
                system_prompt
            ),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ]
    )
    agent = create_openai_tools_agent(llm, tools, prompt)
    executor = AgentExecutor(agent=agent, tools=tools)
    return executor

def agent_node(state, agent, name):
    result = agent.invoke(state)
    return {"messages": [HumanMessage(content=result["output"], name=name)]}

def create_graph(topic, word_count):
    tavily_tool = TavilySearchResults(max_results=10)
    
    members = ["Blogger"]
    
    system_prompt = (
        "You are a supervisor tasked with managing a conversation between the"
        " following workers: {members}. Given the following user request,"
        " respond with the worker to act next. Each worker will perform a"
        " task and respond with their results and status. When finished,"
        " respond with FINISH."
    )

    options = ["FINISH"] + members

    function_def = {
        "name": "route",
        "description": "Select the next role.",
        "parameters": {
            "title": "routeSchema",
            "type": "object",
            "properties": {
                "next": {
                    "title": "Next",
                    "anyOf": [
                        {"enum": options},
                    ],
                }
            },
            "required": ["next"],
        },
    }
    
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            (
                "system",
                "Given the conversation above, who should act next?"
                " Or should we FINISH? Select one of: {options}",
            ),
        ]
    ).partial(options=str(options), members=", ".join(members))
    
    llm = ChatOpenAI(model="gpt-4o")
    
    supervisor_chain = (
        prompt
        | llm.bind_functions(functions=[function_def], function_call="route")
        | JsonOutputFunctionsParser()
    )

    #research_agent = create_agent(llm, [tavily_tool], f"Research content on topic {topic}")
    #research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
    
    blogger_agent = create_agent(llm, [tavily_tool], f"Based on research papers, write a {word_count}-word blog post on topic {topic}. Add a references section.")
    blogger_node = functools.partial(agent_node, agent=blogger_agent, name="Blogger")
    
    workflow = StateGraph(AgentState)
    #workflow.add_node("Researcher", research_node)
    workflow.add_node("Blogger", blogger_node)
    workflow.add_node("Manager", supervisor_chain)

    for member in members:
        workflow.add_edge(member, "Manager")

    conditional_map = {k: k for k in members}
    conditional_map["FINISH"] = END
    
    workflow.add_conditional_edges("Manager", lambda x: x["next"], conditional_map)
    workflow.set_entry_point("Manager")
    
    return workflow.compile()

def run_multi_agent(topic, word_count):
    graph = create_graph(topic, word_count)
    result = graph.invoke({
        "messages": [
            HumanMessage(content="Evolution of Retrieval-Augmented Generation from Naive RAG to Agentic RAG")
        ]
    })
    print("###")
    print(result)
    print("###")
    print(result['messages'])
    print("###")
    print(result['messages'][1])
    print("###")
    print(result['messages'][1].content)
    print("###")
    return result['messages'][1].content