File size: 4,652 Bytes
b562cff
 
 
f8211ee
6bd581c
bd4c825
 
6bd581c
fe7e0ce
bd4c825
 
fe7e0ce
6bd581c
bd4c825
b562cff
 
5b3a79a
 
78765d2
 
 
 
bd4c825
5c45105
 
86e9ce9
5c45105
bd4c825
5c45105
 
bd4c825
 
 
5c45105
 
 
bd4c825
5c45105
ca824ea
 
 
 
 
43c89dc
ca824ea
ce1e4b4
78765d2
 
4b88018
78765d2
bd4c825
4b88018
 
 
bd4c825
 
d3f3fad
78765d2
4b88018
78765d2
bd4c825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78765d2
bd4c825
 
 
 
 
 
 
 
 
 
4b88018
bd4c825
976b5d2
bd4c825
 
 
 
 
 
 
4b88018
da7c75f
 
4b88018
da7c75f
 
bd4c825
a60a3c0
 
d9ede2f
bd4c825
4b88018
 
78765d2
4b88018
bd4c825
78765d2
3b32f96
 
d3f3fad
fcfee08
98ea928
ce1e4b4
 
5644512
a5183ea
5b3a79a
a5183ea
5644512
5188ed5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import functools, operator

from datetime import date

from typing import Annotated, Any, Dict, List, Optional, Sequence, Tuple, TypedDict, Union

from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI

from langgraph.graph import StateGraph, END

LLM = "gpt-4o"

class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ]
    )
    agent = create_openai_tools_agent(llm, tools, prompt)
    executor = AgentExecutor(agent=agent, tools=tools)
    return executor

def agent_node(state, agent, name):
    result = agent.invoke(state)
    return {"messages": [HumanMessage(content=result["output"], name=name)]}

@tool
def today_tool(text: str) -> str:
    """Returns today's date. Use this for any questions related to knowing today's date. 
       The input should always be an empty string, and this function will always return today's date. 
       Any date mathematics should occur outside this function."""
    return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
    
def create_graph(topic):
    tavily_tool = TavilySearchResults(max_results=10)
    
    agents = ["Researcher", "Writer"]
    
    system_prompt = (
        "You are a Manager tasked with managing a conversation between the"
        " following agents: {agents}. Given the following user request,"
        " respond with the agent to act next. Each agent will perform a"
        " task and respond with their results and status. When finished,"
        " respond with FINISH."
    )

    options = ["FINISH"] + agents

    function_def = {
        "name": "route",
        "description": "Select the next role.",
        "parameters": {
            "title": "routeSchema",
            "type": "object",
            "properties": {
                "next": {
                    "title": "Next",
                    "anyOf": [
                        {"enum": options},
                    ],
                }
            },
            "required": ["next"],
        },
    }
    
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            (
                "system",
                "Given the conversation above, who should act next?"
                " Or should we FINISH? Select one of: {options}",
            ),
        ]
    ).partial(options=str(options), members=", ".join(agents))
    
    llm = ChatOpenAI(model=LLM)
    
    supervisor_chain = (
        prompt
        | llm.bind_functions(functions=[function_def], function_call="route")
        | JsonOutputFunctionsParser()
    )

    researcher_agent = create_agent(llm, [tavily_tool], system_prompt=f"Research content on topic: {topic}. Prioritize research papers, if available.")
    researcher_node = functools.partial(agent_node, agent=researcher_agent, name="Researcher")

    writer_agent = create_agent(llm, [today_tool], system_prompt=f"Write a 2000-word article on topic: {topic}. At the beginning, add current date and author: Multi-AI-Agent System based on GPT-4o. At the end, add a reference section with research papers.")
    writer_node = functools.partial(agent_node, agent=writer_agent, name="Writer")

    workflow = StateGraph(AgentState)
    workflow.add_node("Researcher", researcher_node)
    workflow.add_node("Writer", writer_node)
    workflow.add_node("Manager", supervisor_chain)

    for agent in agents:
        workflow.add_edge(agent, "Manager")

    conditional_map = {k: k for k in agents}
    conditional_map["FINISH"] = END
    
    workflow.add_conditional_edges("Manager", lambda x: x["next"], conditional_map)
    workflow.set_entry_point("Manager")
    
    return workflow.compile()

def run_multi_agent(topic):
    graph = create_graph(topic)
    result = graph.invoke({
        "messages": [
            HumanMessage(content=topic)
        ]
    })
    return result['messages'][-1].content