File size: 4,866 Bytes
b562cff
 
 
f8211ee
6bd581c
bd4c825
 
6bd581c
4cbf7b5
fe7e0ce
bd4c825
 
fe7e0ce
6bd581c
bd4c825
b562cff
 
78765d2
 
 
 
bd4c825
5c45105
 
86e9ce9
5c45105
bd4c825
5c45105
 
bd4c825
 
 
5c45105
 
 
bd4c825
5c45105
ca824ea
 
 
 
 
43c89dc
ca824ea
6efa705
4cbf7b5
78765d2
 
41b74fc
78765d2
bd4c825
4b88018
41b74fc
4b88018
bd4c825
 
d3f3fad
78765d2
f3da07d
78765d2
bd4c825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78765d2
bd4c825
 
 
 
 
 
 
 
 
 
f3da07d
bd4c825
6efa705
bd4c825
 
 
 
 
 
 
4cbf7b5
 
 
 
 
da7c75f
 
bd4c825
a60a3c0
d9ede2f
bd4c825
f3da07d
 
78765d2
f3da07d
bd4c825
78765d2
3b32f96
 
d3f3fad
fcfee08
98ea928
6efa705
 
 
5644512
a5183ea
5b3a79a
a5183ea
5644512
6efa705
29adcdb
6efa705
3e8ab43
6efa705
3e8ab43
6efa705
29adcdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import functools, operator

from datetime import date

from typing import Annotated, Any, Dict, List, Optional, Sequence, Tuple, TypedDict, Union

from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.utilities import ArxivAPIWrapper
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI

from langgraph.graph import StateGraph, END

class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ]
    )
    agent = create_openai_tools_agent(llm, tools, prompt)
    executor = AgentExecutor(agent=agent, tools=tools)
    return executor

def agent_node(state, agent, name):
    result = agent.invoke(state)
    return {"messages": [HumanMessage(content=result["output"], name=name)]}

@tool
def today_tool(text: str) -> str:
    """Returns today's date. Use this for any questions related to knowing today's date. 
       The input should always be an empty string, and this function will always return today's date. 
       Any date mathematics should occur outside this function."""
    return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
    
def create_graph(model, topic):
    arxiv_tool = ArxivAPIWrapper()
    tavily_tool = TavilySearchResults(max_results=10)
    
    members = ["Researcher"]
    
    system_prompt = (
        "You are a Manager tasked with managing a conversation between the"
        " following agent(s): {members}. Given the following user request,"
        " respond with the agent to act next. Each agent will perform a"
        " task and respond with their results and status. When finished,"
        " respond with FINISH."
    )

    options = ["FINISH"] + members

    function_def = {
        "name": "route",
        "description": "Select the next role.",
        "parameters": {
            "title": "routeSchema",
            "type": "object",
            "properties": {
                "next": {
                    "title": "Next",
                    "anyOf": [
                        {"enum": options},
                    ],
                }
            },
            "required": ["next"],
        },
    }
    
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_prompt),
            MessagesPlaceholder(variable_name="messages"),
            (
                "system",
                "Given the conversation above, who should act next?"
                " Or should we FINISH? Select one of: {options}",
            ),
        ]
    ).partial(options=str(options), members=", ".join(members))
    
    llm = ChatOpenAI(model=model)
    
    supervisor_chain = (
        prompt
        | llm.bind_functions(functions=[function_def], function_call="route")
        | JsonOutputFunctionsParser()
    )

    researcher_agent = create_agent(llm, [arxiv_tool, tavily_tool, today_tool], system_prompt=
                                    "1. Research content on topic: " + topic + ", prioritizing research papers. "
                                    "2. Based on your research, write a 2000-word article on the topic. "
                                    "3. At the beginning of the article, add current date and author: Multi-AI-Agent System. "
                                    "4. At the end of the article, add a references section with research papers.")
    researcher_node = functools.partial(agent_node, agent=researcher_agent, name="Researcher")

    workflow = StateGraph(AgentState)
    workflow.add_node("Researcher", researcher_node)
    workflow.add_node("Manager", supervisor_chain)

    for member in members:
        workflow.add_edge(member, "Manager")

    conditional_map = {k: k for k in members}
    conditional_map["FINISH"] = END
    
    workflow.add_conditional_edges("Manager", lambda x: x["next"], conditional_map)
    workflow.set_entry_point("Manager")
    
    return workflow.compile()

def run_multi_agent(model, topic):
    graph = create_graph(model, topic)
    
    result = graph.invoke({
        "messages": [
            HumanMessage(content=topic)
        ]
    })
    
    article = result['messages'][-1].content
    
    print("===")
    print(article)
    print("===")
    
    return article