File size: 4,660 Bytes
b562cff f8211ee 6bd581c bd4c825 6bd581c fe7e0ce bd4c825 fe7e0ce 6bd581c bd4c825 b562cff 5b3a79a 78765d2 bd4c825 5c45105 86e9ce9 5c45105 bd4c825 5c45105 bd4c825 5c45105 bd4c825 5c45105 ca824ea 43c89dc ca824ea ce1e4b4 78765d2 f3da07d 78765d2 bd4c825 4b88018 f3da07d 4b88018 bd4c825 d3f3fad 78765d2 f3da07d 78765d2 bd4c825 78765d2 bd4c825 f3da07d bd4c825 976b5d2 bd4c825 4b88018 da7c75f 4b88018 da7c75f bd4c825 a60a3c0 d9ede2f bd4c825 f3da07d 78765d2 f3da07d bd4c825 78765d2 3b32f96 d3f3fad fcfee08 98ea928 ce1e4b4 5644512 a5183ea 5b3a79a a5183ea 5644512 5188ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import functools, operator
from datetime import date
from typing import Annotated, Any, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, END
LLM = "gpt-4o"
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
next: str
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
agent = create_openai_tools_agent(llm, tools, prompt)
executor = AgentExecutor(agent=agent, tools=tools)
return executor
def agent_node(state, agent, name):
result = agent.invoke(state)
return {"messages": [HumanMessage(content=result["output"], name=name)]}
@tool
def today_tool(text: str) -> str:
"""Returns today's date. Use this for any questions related to knowing today's date.
The input should always be an empty string, and this function will always return today's date.
Any date mathematics should occur outside this function."""
return (str(date.today()) + "\n\nIf you have completed all tasks, respond with FINAL ANSWER.")
def create_graph(topic):
tavily_tool = TavilySearchResults(max_results=10)
members = ["Researcher", "Writer"]
system_prompt = (
"You are a Manager tasked with managing a conversation between the"
" following agents: {members}. Given the following user request,"
" respond with the agent to act next. Each agent will perform a"
" task and respond with their results and status. When finished,"
" respond with FINISH."
)
options = ["FINISH"] + members
function_def = {
"name": "route",
"description": "Select the next role.",
"parameters": {
"title": "routeSchema",
"type": "object",
"properties": {
"next": {
"title": "Next",
"anyOf": [
{"enum": options},
],
}
},
"required": ["next"],
},
}
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
(
"system",
"Given the conversation above, who should act next?"
" Or should we FINISH? Select one of: {options}",
),
]
).partial(options=str(options), members=", ".join(members))
llm = ChatOpenAI(model=LLM)
supervisor_chain = (
prompt
| llm.bind_functions(functions=[function_def], function_call="route")
| JsonOutputFunctionsParser()
)
researcher_agent = create_agent(llm, [tavily_tool], system_prompt=f"Research content on topic: {topic}. Prioritize research papers, if available.")
researcher_node = functools.partial(agent_node, agent=researcher_agent, name="Researcher")
writer_agent = create_agent(llm, [today_tool], system_prompt=f"Write a 2000-word article on topic: {topic}. At the beginning, add current date and author: Multi-AI-Agent System based on GPT-4o. At the end, add a reference section with research papers.")
writer_node = functools.partial(agent_node, agent=writer_agent, name="Writer")
workflow = StateGraph(AgentState)
workflow.add_node("Researcher", researcher_node)
workflow.add_node("Writer", writer_node)
workflow.add_node("Manager", supervisor_chain)
for member in members:
workflow.add_edge(member, "Manager")
conditional_map = {k: k for k in members}
conditional_map["FINISH"] = END
workflow.add_conditional_edges("Manager", lambda x: x["next"], conditional_map)
workflow.set_entry_point("Manager")
return workflow.compile()
def run_multi_agent(topic):
graph = create_graph(topic)
result = graph.invoke({
"messages": [
HumanMessage(content=topic)
]
})
return result['messages'][-1].content |