File size: 4,308 Bytes
bd4c825 d3f3fad bd4c825 a9795d3 bd4c825 d3f3fad 5c45105 bd4c825 78765d2 bd4c825 5c45105 78765d2 5c45105 bd4c825 5c45105 bd4c825 5c45105 bd4c825 5c45105 fcfee08 78765d2 bd4c825 78765d2 bd4c825 d3f3fad 78765d2 bd4c825 78765d2 bd4c825 78765d2 bd4c825 d733788 bd4c825 78765d2 d3f3fad 78765d2 feca4b6 d3f3fad bd4c825 d3f3fad 78765d2 bd4c825 78765d2 bd4c825 78765d2 bd4c825 d3f3fad fcfee08 98ea928 fcfee08 a5183ea 78765d2 a5183ea 2fb08c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
from typing import Annotated, List, Tuple, Union
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
import operator
from typing import Annotated, Any, Dict, List, Optional, Sequence, TypedDict
import functools
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import StateGraph, END
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
next: str
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
system_prompt
),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
agent = create_openai_tools_agent(llm, tools, prompt)
executor = AgentExecutor(agent=agent, tools=tools)
return executor
def agent_node(state, agent, name):
result = agent.invoke(state)
return {"messages": [HumanMessage(content=result["output"], name=name)]}
def create_graph(topic, word_count):
tavily_tool = TavilySearchResults(max_results=10)
members = ["Researcher", "Blogger"]
system_prompt = (
"You are a supervisor tasked with managing a conversation between the"
" following workers: {members}. Given the following user request,"
" respond with the worker to act next. Each worker will perform a"
" task and respond with their results and status. When finished,"
" respond with FINISH."
)
options = ["FINISH"] + members
function_def = {
"name": "route",
"description": "Select the next role.",
"parameters": {
"title": "routeSchema",
"type": "object",
"properties": {
"next": {
"title": "Next",
"anyOf": [
{"enum": options},
],
}
},
"required": ["next"],
},
}
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
(
"system",
"Given the conversation above, who should act next?"
" Or should we FINISH? Select one of: {options}",
),
]
).partial(options=str(options), members=", ".join(members))
llm = ChatOpenAI(model="gpt-4o")
supervisor_chain = (
prompt
| llm.bind_functions(functions=[function_def], function_call="route")
| JsonOutputFunctionsParser()
)
research_agent = create_agent(llm, [tavily_tool], "Research content on topic {topic}")
research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
blogger_agent = create_agent(llm, [], "Write a {word_count}-word blog post on topic {topic}")
blogger_node = functools.partial(agent_node, agent=blogger_agent, name="Blogger")
workflow = StateGraph(AgentState)
workflow.add_node("Researcher", research_node)
workflow.add_node("Blogger", blogger_node)
workflow.add_node("supervisor", supervisor_chain)
for member in members:
workflow.add_edge(member, "supervisor")
conditional_map = {k: k for k in members}
conditional_map["FINISH"] = END
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
workflow.set_entry_point("supervisor")
return workflow.compile()
def run_multi_agent(topic, word_count):
graph = create_graph(topic, word_count)
result = graph.invoke({
"messages": [
HumanMessage(content="Evolution of Retrieval-Augmented Generation from Naive RAG to Agentic RAG")
]
}) |