Files changed (1) hide show
  1. Em CPT +77 -0
Em CPT ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ for _ in range(RUN_COUNT):
2
+
3
+ # 1️⃣ Initialize a new W&B run to track this job
4
+ run = wandb.init(project=PROJECT, config=set_config())
5
+
6
+ for epoch in range(5):
7
+ # 2️⃣ Log metrics to W&B for each epoch of training
8
+ run.log(get_metrics(epoch))
9
+
10
+ # 3️⃣ At the end of training, save the model artifact
11
+ # Name this artifact after the current run
12
+ model_artifact_name = "demo_model_" + run.id
13
+ # Create a new artifact
14
+ model = wandb.Artifact(model_artifact_name, type='model')
15
+ # Add files to the artifact, in this case a simple text file
16
+ model.add_file(get_model())
17
+ # Log the model to W&B
18
+ run.log_artifact(model)
19
+
20
+ # Call finish if you're in a notebook, to mark the run as done
21
+ run.finish()
22
+
23
+
24
+
25
+ https://colab.research.google.com/github/wandb/examples/blob/master/colabs/wandb-model-registry/W%26B_Model_Registry_Quickstart.ipynb#scrollTo=CFXVyKSaRtUw
26
+
27
+ #@title 1) Run this cell to set up `wandb` and define helper functions
28
+
29
+
30
+ # INSTALL W&B LIBRARY
31
+ !pip install wandb -qqq
32
+
33
+ import wandb
34
+ import os
35
+ import math
36
+ import random
37
+
38
+ # FORM VARIABLES
39
+ PROJECT = "Model_Registry_Quickstart" #@param {type:"string"}
40
+ RUN_COUNT = 3 #@param {type:"integer"}
41
+
42
+
43
+ # HELPER FUNCTIONS
44
+ # Create fake data to simulate training a model.
45
+
46
+ # Simulate setting up hyperparameters
47
+ # Return: A dict of params to log as config to W&B
48
+ def set_config():
49
+ config={
50
+ "learning_rate": 0.01 + 0.1 * random.random(),
51
+ "batch_size": 128,
52
+ "architecture": "CNN",
53
+ }
54
+ return config
55
+
56
+ # Simulate training a model
57
+ # Return: A model file to log as an artifact to W&B
58
+ def get_model():
59
+ file_name = "demo_model.h5"
60
+ model_file = open(file_name, 'w')
61
+ model_file.write('Imagine this is a big model file! ' + str(random.random()))
62
+ model_file.close()
63
+ return file_name
64
+
65
+ # Simulate logging metrics from model training
66
+ # Return: A dictionary of metrics to log to W&B
67
+ def get_metrics(epoch):
68
+ metrics = {
69
+ "acc": .8 + 0.04 * (math.log(1 + epoch + random.random()) + (0.3 * random.random())),
70
+ "val_acc": .75 + 0.04 * (math.log(1 + epoch + random.random()) - (0.3 * random.random())),
71
+ "loss": .1 + 0.1 * (4 - math.log(1 + epoch + random.random()) + (0.3 * random.random())),
72
+ "val_loss": .1 + 0.16 * (5 - math.log(1 + epoch + random.random()) - (0.3 * random.random())),
73
+ }
74
+ return metrics
75
+
76
+ run.id
77
+ saved_model_weights.pt