Spaces:
Build error
Build error
metadata
title: Word Count
emoji: 🤗
colorFrom: green
colorTo: purple
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
- evaluate
- measurement
Measurement Card for Word Count
Measurement Description
The word_count
measurement returns the total number of word count of the input string, using the sklearn's CountVectorizer
How to Use
This measurement requires a list of strings as input:
>>> data = ["hello world and hello moon"]
>>> wordcount= evaluate.load("word_count")
>>> results = wordcount.compute(data=data)
Inputs
- data (list of
str
): The input list of strings for which the word length is calculated. - max_vocab (
int
): (optional) the top number of words to consider (can be specified if dataset is too large)
Output Values
- total_word_count (
int
): the total number of words in the input string(s). - unique_words (
int
): the number of unique words in the input string(s).
Output Example(s):
{'total_word_count': 5, 'unique_words': 4}
### Examples
Example for a single string
```python
>>> data = ["hello sun and goodbye moon"]
>>> wordcount = evaluate.load("word_count")
>>> results = wordcount.compute(data=data)
>>> print(results)
{'total_word_count': 5, 'unique_words': 5}
Example for a multiple strings
>>> data = ["hello sun and goodbye moon", "foo bar foo bar"]
>>> wordcount = evaluate.load("word_count")
>>> results = wordcount.compute(data=data)
>>> print(results)
{'total_word_count': 9, 'unique_words': 7}
Example for a dataset from 🤗 Datasets:
>>> imdb = datasets.load_dataset('imdb', split = 'train')
>>> wordcount = evaluate.load("word_count")
>>> results = wordcount.compute(data=imdb['text'])
>>> print(results)
{'total_word_count': 5678573, 'unique_words': 74849}