Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import copy | |
import logging | |
import os | |
import socket | |
import os.path as osp | |
import pickle | |
import platform | |
import time | |
import warnings | |
from collections import OrderedDict | |
from functools import partial | |
from typing import Callable, Dict, List, Optional, Sequence, Union | |
import torch | |
import torch.nn as nn | |
from torch.nn.parallel.distributed import DistributedDataParallel | |
from torch.optim import Optimizer | |
from torch.utils.data import DataLoader | |
import mmengine | |
from mmengine.config import Config, ConfigDict | |
from mmengine.dataset import worker_init_fn as default_worker_init_fn | |
from mmengine.device import get_device | |
from mmengine.dist import (broadcast, get_dist_info, get_rank, init_dist, | |
is_distributed, master_only) | |
from mmengine.evaluator import Evaluator | |
from mmengine.fileio import FileClient, join_path | |
from mmengine.hooks import Hook | |
from mmengine.logging import MessageHub, MMLogger, print_log | |
from mmengine.model import (MMDistributedDataParallel, convert_sync_batchnorm, | |
is_model_wrapper, revert_sync_batchnorm) | |
from mmengine.model.efficient_conv_bn_eval import \ | |
turn_on_efficient_conv_bn_eval | |
from mmengine.optim import (OptimWrapper, OptimWrapperDict, _ParamScheduler, | |
build_optim_wrapper) | |
from mmengine.registry import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS, | |
HOOKS, LOG_PROCESSORS, LOOPS, MODEL_WRAPPERS, | |
MODELS, OPTIM_WRAPPERS, PARAM_SCHEDULERS, | |
RUNNERS, VISUALIZERS, DefaultScope) | |
from mmengine.utils import apply_to, digit_version, get_git_hash, is_seq_of | |
from mmengine.utils.dl_utils import (TORCH_VERSION, collect_env, | |
set_multi_processing) | |
from mmengine.visualization import Visualizer | |
from .activation_checkpointing import turn_on_activation_checkpointing | |
from .base_loop import BaseLoop | |
from .checkpoint import (_load_checkpoint, _load_checkpoint_to_model, | |
find_latest_checkpoint, save_checkpoint, | |
weights_to_cpu) | |
from .log_processor import LogProcessor | |
from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop | |
from .priority import Priority, get_priority | |
from .utils import set_random_seed | |
ConfigType = Union[Dict, Config, ConfigDict] | |
ParamSchedulerType = Union[List[_ParamScheduler], Dict[str, | |
List[_ParamScheduler]]] | |
OptimWrapperType = Union[OptimWrapper, OptimWrapperDict] | |
class Runner: | |
"""A training helper for PyTorch. | |
Runner object can be built from config by ``runner = Runner.from_cfg(cfg)`` | |
where the ``cfg`` usually contains training, validation, and test-related | |
configurations to build corresponding components. We usually use the | |
same config to launch training, testing, and validation tasks. However, | |
only some of these components are necessary at the same time, e.g., | |
testing a model does not need training or validation-related components. | |
To avoid repeatedly modifying config, the construction of ``Runner`` adopts | |
lazy initialization to only initialize components when they are going to be | |
used. Therefore, the model is always initialized at the beginning, and | |
training, validation, and, testing related components are only initialized | |
when calling ``runner.train()``, ``runner.val()``, and ``runner.test()``, | |
respectively. | |
Args: | |
model (:obj:`torch.nn.Module` or dict): The model to be run. It can be | |
a dict used for build a model. | |
work_dir (str): The working directory to save checkpoints. The logs | |
will be saved in the subdirectory of `work_dir` named | |
:attr:`timestamp`. | |
train_dataloader (Dataloader or dict, optional): A dataloader object or | |
a dict to build a dataloader. If ``None`` is given, it means | |
skipping training steps. Defaults to None. | |
See :meth:`build_dataloader` for more details. | |
val_dataloader (Dataloader or dict, optional): A dataloader object or | |
a dict to build a dataloader. If ``None`` is given, it means | |
skipping validation steps. Defaults to None. | |
See :meth:`build_dataloader` for more details. | |
test_dataloader (Dataloader or dict, optional): A dataloader object or | |
a dict to build a dataloader. If ``None`` is given, it means | |
skipping test steps. Defaults to None. | |
See :meth:`build_dataloader` for more details. | |
train_cfg (dict, optional): A dict to build a training loop. If it does | |
not provide "type" key, it should contain "by_epoch" to decide | |
which type of training loop :class:`EpochBasedTrainLoop` or | |
:class:`IterBasedTrainLoop` should be used. If ``train_cfg`` | |
specified, :attr:`train_dataloader` should also be specified. | |
Defaults to None. See :meth:`build_train_loop` for more details. | |
val_cfg (dict, optional): A dict to build a validation loop. If it does | |
not provide "type" key, :class:`ValLoop` will be used by default. | |
If ``val_cfg`` specified, :attr:`val_dataloader` should also be | |
specified. If ``ValLoop`` is built with `fp16=True``, | |
``runner.val()`` will be performed under fp16 precision. | |
Defaults to None. See :meth:`build_val_loop` for more details. | |
test_cfg (dict, optional): A dict to build a test loop. If it does | |
not provide "type" key, :class:`TestLoop` will be used by default. | |
If ``test_cfg`` specified, :attr:`test_dataloader` should also be | |
specified. If ``ValLoop`` is built with `fp16=True``, | |
``runner.val()`` will be performed under fp16 precision. | |
Defaults to None. See :meth:`build_test_loop` for more details. | |
auto_scale_lr (dict, Optional): Config to scale the learning rate | |
automatically. It includes ``base_batch_size`` and ``enable``. | |
``base_batch_size`` is the batch size that the optimizer lr is | |
based on. ``enable`` is the switch to turn on and off the feature. | |
optim_wrapper (OptimWrapper or dict, optional): | |
Computing gradient of model parameters. If specified, | |
:attr:`train_dataloader` should also be specified. If automatic | |
mixed precision or gradient accmulation | |
training is required. The type of ``optim_wrapper`` should be | |
AmpOptimizerWrapper. See :meth:`build_optim_wrapper` for | |
examples. Defaults to None. | |
param_scheduler (_ParamScheduler or dict or list, optional): | |
Parameter scheduler for updating optimizer parameters. If | |
specified, :attr:`optimizer` should also be specified. | |
Defaults to None. | |
See :meth:`build_param_scheduler` for examples. | |
val_evaluator (Evaluator or dict or list, optional): A evaluator object | |
used for computing metrics for validation. It can be a dict or a | |
list of dict to build a evaluator. If specified, | |
:attr:`val_dataloader` should also be specified. Defaults to None. | |
test_evaluator (Evaluator or dict or list, optional): A evaluator | |
object used for computing metrics for test steps. It can be a dict | |
or a list of dict to build a evaluator. If specified, | |
:attr:`test_dataloader` should also be specified. Defaults to None. | |
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks to | |
execute default actions like updating model parameters and saving | |
checkpoints. Default hooks are ``OptimizerHook``, | |
``IterTimerHook``, ``LoggerHook``, ``ParamSchedulerHook`` and | |
``CheckpointHook``. Defaults to None. | |
See :meth:`register_default_hooks` for more details. | |
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute | |
custom actions like visualizing images processed by pipeline. | |
Defaults to None. | |
data_preprocessor (dict, optional): The pre-process config of | |
:class:`BaseDataPreprocessor`. If the ``model`` argument is a dict | |
and doesn't contain the key ``data_preprocessor``, set the argument | |
as the ``data_preprocessor`` of the ``model`` dict. | |
Defaults to None. | |
load_from (str, optional): The checkpoint file to load from. | |
Defaults to None. | |
resume (bool): Whether to resume training. Defaults to False. If | |
``resume`` is True and ``load_from`` is None, automatically to | |
find latest checkpoint from ``work_dir``. If not found, resuming | |
does nothing. | |
launcher (str): Way to launcher multi-process. Supported launchers | |
are 'pytorch', 'mpi', 'slurm' and 'none'. If 'none' is provided, | |
non-distributed environment will be launched. | |
env_cfg (dict): A dict used for setting environment. Defaults to | |
dict(dist_cfg=dict(backend='nccl')). | |
log_processor (dict, optional): A processor to format logs. Defaults to | |
None. | |
log_level (int or str): The log level of MMLogger handlers. | |
Defaults to 'INFO'. | |
visualizer (Visualizer or dict, optional): A Visualizer object or a | |
dict build Visualizer object. Defaults to None. If not | |
specified, default config will be used. | |
default_scope (str): Used to reset registries location. | |
Defaults to "mmengine". | |
randomness (dict): Some settings to make the experiment as reproducible | |
as possible like seed and deterministic. | |
Defaults to ``dict(seed=None)``. If seed is None, a random number | |
will be generated and it will be broadcasted to all other processes | |
if in distributed environment. If ``cudnn_benchmark`` is | |
``True`` in ``env_cfg`` but ``deterministic`` is ``True`` in | |
``randomness``, the value of ``torch.backends.cudnn.benchmark`` | |
will be ``False`` finally. | |
experiment_name (str, optional): Name of current experiment. If not | |
specified, timestamp will be used as ``experiment_name``. | |
Defaults to None. | |
cfg (dict or Configdict or :obj:`Config`, optional): Full config. | |
Defaults to None. | |
Note: | |
Since PyTorch 2.0.0, you can enable ``torch.compile`` by passing in | |
`cfg.compile = True`. If you want to control compile options, you | |
can pass a dict, e.g. ``cfg.compile = dict(backend='eager')``. | |
Refer to `PyTorch API Documentation <https://pytorch.org/docs/ | |
master/generated/torch.compile.html#torch.compile>`_ for more valid | |
options. | |
Examples: | |
>>> from mmengine.runner import Runner | |
>>> cfg = dict( | |
>>> model=dict(type='ToyModel'), | |
>>> work_dir='path/of/work_dir', | |
>>> train_dataloader=dict( | |
>>> dataset=dict(type='ToyDataset'), | |
>>> sampler=dict(type='DefaultSampler', shuffle=True), | |
>>> batch_size=1, | |
>>> num_workers=0), | |
>>> val_dataloader=dict( | |
>>> dataset=dict(type='ToyDataset'), | |
>>> sampler=dict(type='DefaultSampler', shuffle=False), | |
>>> batch_size=1, | |
>>> num_workers=0), | |
>>> test_dataloader=dict( | |
>>> dataset=dict(type='ToyDataset'), | |
>>> sampler=dict(type='DefaultSampler', shuffle=False), | |
>>> batch_size=1, | |
>>> num_workers=0), | |
>>> auto_scale_lr=dict(base_batch_size=16, enable=False), | |
>>> optim_wrapper=dict(type='OptimizerWrapper', optimizer=dict( | |
>>> type='SGD', lr=0.01)), | |
>>> param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]), | |
>>> val_evaluator=dict(type='ToyEvaluator'), | |
>>> test_evaluator=dict(type='ToyEvaluator'), | |
>>> train_cfg=dict(by_epoch=True, max_epochs=3, val_interval=1), | |
>>> val_cfg=dict(), | |
>>> test_cfg=dict(), | |
>>> custom_hooks=[], | |
>>> default_hooks=dict( | |
>>> timer=dict(type='IterTimerHook'), | |
>>> checkpoint=dict(type='CheckpointHook', interval=1), | |
>>> logger=dict(type='LoggerHook'), | |
>>> optimizer=dict(type='OptimizerHook', grad_clip=False), | |
>>> param_scheduler=dict(type='ParamSchedulerHook')), | |
>>> launcher='none', | |
>>> env_cfg=dict(dist_cfg=dict(backend='nccl')), | |
>>> log_processor=dict(window_size=20), | |
>>> visualizer=dict(type='Visualizer', | |
>>> vis_backends=[dict(type='LocalVisBackend', | |
>>> save_dir='temp_dir')]) | |
>>> ) | |
>>> runner = Runner.from_cfg(cfg) | |
>>> runner.train() | |
>>> runner.test() | |
""" | |
cfg: Config | |
_train_loop: Optional[Union[BaseLoop, Dict]] | |
_val_loop: Optional[Union[BaseLoop, Dict]] | |
_test_loop: Optional[Union[BaseLoop, Dict]] | |
def __init__( | |
self, | |
model: Union[nn.Module, Dict], | |
work_dir: str, | |
train_dataloader: Optional[Union[DataLoader, Dict]] = None, | |
val_dataloader: Optional[Union[DataLoader, Dict]] = None, | |
test_dataloader: Optional[Union[DataLoader, Dict]] = None, | |
train_cfg: Optional[Dict] = None, | |
val_cfg: Optional[Dict] = None, | |
test_cfg: Optional[Dict] = None, | |
auto_scale_lr: Optional[Dict] = None, | |
optim_wrapper: Optional[Union[OptimWrapper, Dict]] = None, | |
param_scheduler: Optional[Union[_ParamScheduler, Dict, List]] = None, | |
val_evaluator: Optional[Union[Evaluator, Dict, List]] = None, | |
test_evaluator: Optional[Union[Evaluator, Dict, List]] = None, | |
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None, | |
custom_hooks: Optional[List[Union[Hook, Dict]]] = None, | |
data_preprocessor: Union[nn.Module, Dict, None] = None, | |
load_from: Optional[str] = None, | |
resume: bool = False, | |
launcher: str = 'none', | |
env_cfg: Dict = dict(dist_cfg=dict(backend='nccl')), | |
log_processor: Optional[Dict] = None, | |
log_level: str = 'INFO', | |
visualizer: Optional[Union[Visualizer, Dict]] = None, | |
default_scope: str = 'mmengine', | |
randomness: Dict = dict(seed=None), | |
experiment_name: Optional[str] = None, | |
cfg: Optional[ConfigType] = None, | |
): | |
self._work_dir = osp.abspath(work_dir) | |
mmengine.mkdir_or_exist(self._work_dir) | |
# recursively copy the `cfg` because `self.cfg` will be modified | |
# everywhere. | |
if cfg is not None: | |
if isinstance(cfg, Config): | |
self.cfg = copy.deepcopy(cfg) | |
elif isinstance(cfg, dict): | |
self.cfg = Config(cfg) | |
else: | |
self.cfg = Config(dict()) | |
# lazy initialization | |
training_related = [train_dataloader, train_cfg, optim_wrapper] | |
if not (all(item is None for item in training_related) | |
or all(item is not None for item in training_related)): | |
raise ValueError( | |
'train_dataloader, train_cfg, and optim_wrapper should be ' | |
'either all None or not None, but got ' | |
f'train_dataloader={train_dataloader}, ' | |
f'train_cfg={train_cfg}, ' | |
f'optim_wrapper={optim_wrapper}.') | |
self._train_dataloader = train_dataloader | |
self._train_loop = train_cfg | |
self.optim_wrapper: Optional[Union[OptimWrapper, dict]] | |
self.optim_wrapper = optim_wrapper | |
self.auto_scale_lr = auto_scale_lr | |
# If there is no need to adjust learning rate, momentum or other | |
# parameters of optimizer, param_scheduler can be None | |
if param_scheduler is not None and self.optim_wrapper is None: | |
raise ValueError( | |
'param_scheduler should be None when optim_wrapper is None, ' | |
f'but got {param_scheduler}') | |
# Parse `param_scheduler` to a list or a dict. If `optim_wrapper` is a | |
# `dict` with single optimizer, parsed param_scheduler will be a | |
# list of parameter schedulers. If `optim_wrapper` is | |
# a `dict` with multiple optimizers, parsed `param_scheduler` will be | |
# dict with multiple list of parameter schedulers. | |
self._check_scheduler_cfg(param_scheduler) | |
self.param_schedulers = param_scheduler | |
val_related = [val_dataloader, val_cfg, val_evaluator] | |
if not (all(item is None | |
for item in val_related) or all(item is not None | |
for item in val_related)): | |
raise ValueError( | |
'val_dataloader, val_cfg, and val_evaluator should be either ' | |
'all None or not None, but got ' | |
f'val_dataloader={val_dataloader}, val_cfg={val_cfg}, ' | |
f'val_evaluator={val_evaluator}') | |
self._val_dataloader = val_dataloader | |
self._val_loop = val_cfg | |
self._val_evaluator = val_evaluator | |
test_related = [test_dataloader, test_cfg, test_evaluator] | |
if not (all(item is None for item in test_related) | |
or all(item is not None for item in test_related)): | |
raise ValueError( | |
'test_dataloader, test_cfg, and test_evaluator should be ' | |
'either all None or not None, but got ' | |
f'test_dataloader={test_dataloader}, test_cfg={test_cfg}, ' | |
f'test_evaluator={test_evaluator}') | |
self._test_dataloader = test_dataloader | |
self._test_loop = test_cfg | |
self._test_evaluator = test_evaluator | |
self._launcher = launcher | |
if self._launcher == 'none': | |
self._distributed = False | |
else: | |
self._distributed = True | |
# self._timestamp will be set in the `setup_env` method. Besides, | |
# it also will initialize multi-process and (or) distributed | |
# environment. | |
self.setup_env(env_cfg) | |
# self._deterministic and self._seed will be set in the | |
# `set_randomness`` method | |
self._randomness_cfg = randomness | |
self.set_randomness(**randomness) | |
if experiment_name is not None: | |
self._experiment_name = f'{experiment_name}_{self._timestamp}' | |
elif self.cfg.filename is not None: | |
filename_no_ext = osp.splitext(osp.basename(self.cfg.filename))[0] | |
self._experiment_name = f'{filename_no_ext}_{self._timestamp}' | |
else: | |
self._experiment_name = self.timestamp | |
self._log_dir = osp.join(self.work_dir, self.timestamp) | |
mmengine.mkdir_or_exist(self._log_dir) | |
# Used to reset registries location. See :meth:`Registry.build` for | |
# more details. | |
if default_scope is not None: | |
default_scope = DefaultScope.get_instance( # type: ignore | |
self._experiment_name, | |
scope_name=default_scope) | |
self.default_scope = default_scope | |
# Build log processor to format message. | |
log_processor = dict() if log_processor is None else log_processor | |
self.log_processor = self.build_log_processor(log_processor) | |
# Since `get_instance` could return any subclass of ManagerMixin. The | |
# corresponding attribute needs a type hint. | |
self.logger = self.build_logger(log_level=log_level) | |
# Collect and log environment information. | |
self._log_env(env_cfg) | |
# Build `message_hub` for communication among components. | |
# `message_hub` can store log scalars (loss, learning rate) and | |
# runtime information (iter and epoch). Those components that do not | |
# have access to the runner can get iteration or epoch information | |
# from `message_hub`. For example, models can get the latest created | |
# `message_hub` by | |
# `self.message_hub=MessageHub.get_current_instance()` and then get | |
# current epoch by `cur_epoch = self.message_hub.get_info('epoch')`. | |
# See `MessageHub` and `ManagerMixin` for more details. | |
self.message_hub = self.build_message_hub() | |
# visualizer used for writing log or visualizing all kinds of data | |
self.visualizer = self.build_visualizer(visualizer) | |
if self.cfg: | |
self.visualizer.add_config(self.cfg) | |
self._load_from = load_from | |
self._resume = resume | |
# flag to mark whether checkpoint has been loaded or resumed | |
self._has_loaded = False | |
# build a model | |
if isinstance(model, dict) and data_preprocessor is not None: | |
# Merge the data_preprocessor to model config. | |
model.setdefault('data_preprocessor', data_preprocessor) | |
self.model = self.build_model(model) | |
# wrap model | |
self.model = self.wrap_model( | |
self.cfg.get('model_wrapper_cfg'), self.model) | |
# get model name from the model class | |
if hasattr(self.model, 'module'): | |
self._model_name = self.model.module.__class__.__name__ | |
else: | |
self._model_name = self.model.__class__.__name__ | |
self._hooks: List[Hook] = [] | |
# register hooks to `self._hooks` | |
self.register_hooks(default_hooks, custom_hooks) | |
# log hooks information | |
self.logger.info(f'Hooks will be executed in the following ' | |
f'order:\n{self.get_hooks_info()}') | |
# dump `cfg` to `work_dir` | |
self.dump_config() | |
def from_cfg(cls, cfg: ConfigType) -> 'Runner': | |
"""Build a runner from config. | |
Args: | |
cfg (ConfigType): A config used for building runner. Keys of | |
``cfg`` can see :meth:`__init__`. | |
Returns: | |
Runner: A runner build from ``cfg``. | |
""" | |
cfg = copy.deepcopy(cfg) | |
runner = cls( | |
model=cfg['model'], | |
work_dir=cfg['work_dir'], | |
train_dataloader=cfg.get('train_dataloader'), | |
val_dataloader=cfg.get('val_dataloader'), | |
test_dataloader=cfg.get('test_dataloader'), | |
train_cfg=cfg.get('train_cfg'), | |
val_cfg=cfg.get('val_cfg'), | |
test_cfg=cfg.get('test_cfg'), | |
auto_scale_lr=cfg.get('auto_scale_lr'), | |
optim_wrapper=cfg.get('optim_wrapper'), | |
param_scheduler=cfg.get('param_scheduler'), | |
val_evaluator=cfg.get('val_evaluator'), | |
test_evaluator=cfg.get('test_evaluator'), | |
default_hooks=cfg.get('default_hooks'), | |
custom_hooks=cfg.get('custom_hooks'), | |
data_preprocessor=cfg.get('data_preprocessor'), | |
load_from=cfg.get('load_from'), | |
resume=cfg.get('resume', False), | |
launcher=cfg.get('launcher', 'none'), | |
env_cfg=cfg.get('env_cfg'), # type: ignore | |
log_processor=cfg.get('log_processor'), | |
log_level=cfg.get('log_level', 'INFO'), | |
visualizer=cfg.get('visualizer'), | |
default_scope=cfg.get('default_scope', 'mmengine'), | |
randomness=cfg.get('randomness', dict(seed=None)), | |
experiment_name=cfg.get('experiment_name'), | |
cfg=cfg, | |
) | |
return runner | |
def experiment_name(self): | |
"""str: Name of experiment.""" | |
return self._experiment_name | |
def model_name(self): | |
"""str: Name of the model, usually the module class name.""" | |
return self._model_name | |
def work_dir(self): | |
"""str: The working directory to save checkpoints and logs.""" | |
return self._work_dir | |
def log_dir(self): | |
return self._log_dir | |
def max_epochs(self): | |
"""int: Total epochs to train model.""" | |
if isinstance(self.train_loop, BaseLoop): | |
return self.train_loop.max_epochs | |
else: | |
return 0 | |
def max_iters(self): | |
"""int: Total iterations to train model.""" | |
if isinstance(self.train_loop, BaseLoop): | |
return self.train_loop.max_iters | |
else: | |
return 0 | |
def epoch(self): | |
"""int: Current epoch.""" | |
if isinstance(self.train_loop, BaseLoop): | |
return self.train_loop.epoch | |
else: | |
return 0 | |
def iter(self): | |
"""int: Current iteration.""" | |
if isinstance(self.train_loop, BaseLoop): | |
return self.train_loop.iter | |
else: | |
return 0 | |
def launcher(self): | |
"""str: Way to launcher multi processes.""" | |
return self._launcher | |
def distributed(self): | |
"""bool: Whether current environment is distributed.""" | |
return self._distributed | |
def rank(self): | |
"""int: Rank of current process.""" | |
return self._rank | |
def world_size(self): | |
"""int: Number of processes participating in the job.""" | |
return self._world_size | |
def deterministic(self): | |
"""int: Whether cudnn to select deterministic algorithms.""" | |
return self._deterministic | |
def seed(self): | |
"""int: A number to set random modules.""" | |
return self._seed | |
def timestamp(self): | |
"""str: Timestamp when creating experiment.""" | |
return self._timestamp | |
def hooks(self): | |
"""list[:obj:`Hook`]: A list of registered hooks.""" | |
return self._hooks | |
def train_loop(self): | |
""":obj:`BaseLoop`: A loop to run training.""" | |
if isinstance(self._train_loop, BaseLoop) or self._train_loop is None: | |
return self._train_loop | |
else: | |
self._train_loop = self.build_train_loop(self._train_loop) | |
return self._train_loop | |
def val_loop(self): | |
""":obj:`BaseLoop`: A loop to run validation.""" | |
if isinstance(self._val_loop, BaseLoop) or self._val_loop is None: | |
return self._val_loop | |
else: | |
self._val_loop = self.build_val_loop(self._val_loop) | |
return self._val_loop | |
def test_loop(self): | |
""":obj:`BaseLoop`: A loop to run testing.""" | |
if isinstance(self._test_loop, BaseLoop) or self._test_loop is None: | |
return self._test_loop | |
else: | |
self._test_loop = self.build_test_loop(self._test_loop) | |
return self._test_loop | |
def train_dataloader(self): | |
"""The data loader for training.""" | |
return self.train_loop.dataloader | |
def val_dataloader(self): | |
"""The data loader for validation.""" | |
return self.val_loop.dataloader | |
def test_dataloader(self): | |
"""The data loader for testing.""" | |
return self.test_loop.dataloader | |
def val_evaluator(self): | |
""":obj:`Evaluator`: An evaluator for validation.""" | |
return self.val_loop.evaluator | |
def test_evaluator(self): | |
""":obj:`Evaluator`: An evaluator for testing.""" | |
return self.test_loop.evaluator | |
def val_interval(self): | |
"""int: Interval to run validation during training.""" | |
return self.train_loop.val_interval | |
def val_begin(self): | |
"""int: The epoch/iteration to start running validation during | |
training.""" | |
return self.train_loop.val_begin | |
def setup_env(self, env_cfg: Dict) -> None: | |
"""Setup environment. | |
An example of ``env_cfg``:: | |
env_cfg = dict( | |
cudnn_benchmark=True, | |
mp_cfg=dict( | |
mp_start_method='fork', | |
opencv_num_threads=0 | |
), | |
dist_cfg=dict(backend='nccl', timeout=1800), | |
resource_limit=4096 | |
) | |
Args: | |
env_cfg (dict): Config for setting environment. | |
""" | |
if env_cfg.get('cudnn_benchmark'): | |
torch.backends.cudnn.benchmark = True | |
mp_cfg: dict = env_cfg.get('mp_cfg', {}) | |
set_multi_processing(**mp_cfg, distributed=self.distributed) | |
# init distributed env first, since logger depends on the dist info. | |
if self.distributed and not is_distributed(): | |
dist_cfg: dict = env_cfg.get('dist_cfg', {}) | |
init_dist(self.launcher, **dist_cfg) | |
self._rank, self._world_size = get_dist_info() | |
timestamp = torch.tensor(time.time(), dtype=torch.float64) | |
# broadcast timestamp from 0 process to other processes | |
broadcast(timestamp) | |
self._timestamp = time.strftime('%Y%m%d_%H%M%S', | |
time.localtime(timestamp.item())) | |
# https://github.com/pytorch/pytorch/issues/973 | |
# set resource limit | |
if platform.system() != 'Windows': | |
import resource | |
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
base_soft_limit = rlimit[0] | |
hard_limit = rlimit[1] | |
soft_limit = min( | |
max(env_cfg.get('resource_limit', 4096), base_soft_limit), | |
hard_limit) | |
resource.setrlimit(resource.RLIMIT_NOFILE, | |
(soft_limit, hard_limit)) | |
def set_randomness(self, | |
seed, | |
diff_rank_seed: bool = False, | |
deterministic: bool = False) -> None: | |
"""Set random seed to guarantee reproducible results. | |
Args: | |
seed (int): A number to set random modules. | |
diff_rank_seed (bool): Whether or not set different seeds according | |
to global rank. Defaults to False. | |
deterministic (bool): Whether to set the deterministic option for | |
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` | |
to True and `torch.backends.cudnn.benchmark` to False. | |
Defaults to False. | |
See https://pytorch.org/docs/stable/notes/randomness.html for | |
more details. | |
""" | |
self._deterministic = deterministic | |
self._seed = set_random_seed( | |
seed=seed, | |
deterministic=deterministic, | |
diff_rank_seed=diff_rank_seed) | |
def build_logger(self, | |
log_level: Union[int, str] = 'INFO', | |
log_file: str = None, | |
**kwargs) -> MMLogger: | |
"""Build a global asscessable MMLogger. | |
Args: | |
log_level (int or str): The log level of MMLogger handlers. | |
Defaults to 'INFO'. | |
log_file (str, optional): Path of filename to save log. | |
Defaults to None. | |
**kwargs: Remaining parameters passed to ``MMLogger``. | |
Returns: | |
MMLogger: A MMLogger object build from ``logger``. | |
""" | |
if log_file is None: | |
log_file = osp.join(self._log_dir, f'{self.timestamp}.log') | |
log_cfg = dict(log_level=log_level, log_file=log_file, **kwargs) | |
log_cfg.setdefault('name', self._experiment_name) | |
# `torch.compile` in PyTorch 2.0 could close all user defined handlers | |
# unexpectedly. Using file mode 'a' can help prevent abnormal | |
# termination of the FileHandler and ensure that the log file could | |
# be continuously updated during the lifespan of the runner. | |
log_cfg.setdefault('file_mode', 'a') | |
return MMLogger.get_instance(**log_cfg) # type: ignore | |
def build_message_hub(self, | |
message_hub: Optional[Dict] = None) -> MessageHub: | |
"""Build a global asscessable MessageHub. | |
Args: | |
message_hub (dict, optional): A dict to build MessageHub object. | |
If not specified, default config will be used to build | |
MessageHub object. Defaults to None. | |
Returns: | |
MessageHub: A MessageHub object build from ``message_hub``. | |
""" | |
if message_hub is None: | |
message_hub = dict(name=self._experiment_name) | |
elif isinstance(message_hub, dict): | |
# ensure message_hub containing name key | |
message_hub.setdefault('name', self._experiment_name) | |
else: | |
raise TypeError( | |
f'message_hub should be dict or None, but got {message_hub}') | |
return MessageHub.get_instance(**message_hub) | |
def build_visualizer( | |
self, | |
visualizer: Optional[Union[Visualizer, | |
Dict]] = None) -> Visualizer: | |
"""Build a global asscessable Visualizer. | |
Args: | |
visualizer (Visualizer or dict, optional): A Visualizer object | |
or a dict to build Visualizer object. If ``visualizer`` is a | |
Visualizer object, just returns itself. If not specified, | |
default config will be used to build Visualizer object. | |
Defaults to None. | |
Returns: | |
Visualizer: A Visualizer object build from ``visualizer``. | |
""" | |
if visualizer is None: | |
visualizer = dict( | |
name=self._experiment_name, | |
vis_backends=[dict(type='LocalVisBackend')], | |
save_dir=self._log_dir) | |
return Visualizer.get_instance(**visualizer) | |
if isinstance(visualizer, Visualizer): | |
return visualizer | |
if isinstance(visualizer, dict): | |
# ensure visualizer containing name key | |
visualizer.setdefault('name', self._experiment_name) | |
visualizer.setdefault('save_dir', self._log_dir) | |
return VISUALIZERS.build(visualizer) | |
else: | |
raise TypeError( | |
'visualizer should be Visualizer object, a dict or None, ' | |
f'but got {visualizer}') | |
def build_model(self, model: Union[nn.Module, Dict]) -> nn.Module: | |
"""Build model. | |
If ``model`` is a dict, it will be used to build a nn.Module object. | |
Else, if ``model`` is a nn.Module object it will be returned directly. | |
An example of ``model``:: | |
model = dict(type='ResNet') | |
Args: | |
model (nn.Module or dict): A ``nn.Module`` object or a dict to | |
build nn.Module object. If ``model`` is a nn.Module object, | |
just returns itself. | |
Note: | |
The returned model must implement ``train_step``, ``test_step`` | |
if ``runner.train`` or ``runner.test`` will be called. If | |
``runner.val`` will be called or ``val_cfg`` is configured, | |
model must implement `val_step`. | |
Returns: | |
nn.Module: Model build from ``model``. | |
""" | |
if isinstance(model, nn.Module): | |
return model | |
elif isinstance(model, dict): | |
model = MODELS.build(model) | |
return model # type: ignore | |
else: | |
raise TypeError('model should be a nn.Module object or dict, ' | |
f'but got {model}') | |
def wrap_model( | |
self, model_wrapper_cfg: Optional[Dict], | |
model: nn.Module) -> Union[DistributedDataParallel, nn.Module]: | |
"""Wrap the model to :obj:`MMDistributedDataParallel` or other custom | |
distributed data-parallel module wrappers. | |
An example of ``model_wrapper_cfg``:: | |
model_wrapper_cfg = dict( | |
broadcast_buffers=False, | |
find_unused_parameters=False | |
) | |
Args: | |
model_wrapper_cfg (dict, optional): Config to wrap model. If not | |
specified, ``DistributedDataParallel`` will be used in | |
distributed environment. Defaults to None. | |
model (nn.Module): Model to be wrapped. | |
Returns: | |
nn.Module or DistributedDataParallel: nn.Module or subclass of | |
``DistributedDataParallel``. | |
""" | |
if is_model_wrapper(model): | |
if model_wrapper_cfg is not None: | |
raise TypeError( | |
'model has been wrapped and "model_wrapper_cfg" should be ' | |
f'None, but got {model_wrapper_cfg}') | |
return model | |
# Set `export CUDA_VISIBLE_DEVICES=-1` to enable CPU training. | |
model = model.to(get_device()) | |
if not self.distributed: | |
self.logger.info( | |
'Distributed training is not used, all SyncBatchNorm (SyncBN) ' | |
'layers in the model will be automatically reverted to ' | |
'BatchNormXd layers if they are used.') | |
model = revert_sync_batchnorm(model) | |
return model # type: ignore | |
else: | |
sync_bn = self.cfg.get('sync_bn', None) | |
if sync_bn is not None: | |
try: | |
model = convert_sync_batchnorm(model, sync_bn) | |
except ValueError as e: | |
self.logger.error('cfg.sync_bn should be "torch" or ' | |
f'"mmcv", but got {sync_bn}') | |
raise e | |
if model_wrapper_cfg is None: | |
find_unused_parameters = self.cfg.get('find_unused_parameters', | |
False) | |
# Sets the `find_unused_parameters` parameter in | |
# torch.nn.parallel.DistributedDataParallel | |
# TODO: may use a more elegant way to get local device ID. | |
model = MMDistributedDataParallel( | |
module=model, | |
device_ids=[int(os.environ['LOCAL_RANK'])], | |
broadcast_buffers=False, | |
find_unused_parameters=find_unused_parameters) | |
else: | |
model_wrapper_cfg.setdefault('type', 'MMDistributedDataParallel') | |
model_wrapper_type = MODEL_WRAPPERS.get( | |
model_wrapper_cfg.get('type')) # type: ignore | |
default_args: dict = dict() | |
if issubclass( | |
model_wrapper_type, # type: ignore | |
DistributedDataParallel): | |
default_args['device_ids'] = [int(os.environ['LOCAL_RANK'])] | |
default_args['module'] = model | |
model = MODEL_WRAPPERS.build( | |
model_wrapper_cfg, default_args=default_args) | |
return model | |
def _init_model_weights(self) -> None: | |
"""Initialize the model weights if the model has | |
:meth:`init_weights`""" | |
model = self.model.module if is_model_wrapper( | |
self.model) else self.model | |
if hasattr(model, 'init_weights'): | |
model.init_weights() | |
# sync params and buffers | |
for name, params in model.state_dict().items(): | |
broadcast(params) | |
def scale_lr(self, | |
optim_wrapper: OptimWrapper, | |
auto_scale_lr: Optional[Dict] = None) -> None: | |
"""Automatically scaling learning rate in training according to the | |
ratio of ``base_batch_size`` in ``autoscalelr_cfg`` and real batch | |
size. | |
It scales the learning rate linearly according to the | |
`paper <https://arxiv.org/abs/1706.02677>`_. | |
Note: | |
``scale_lr`` must be called after building optimizer wrappers | |
and before building parameter schedulers. | |
Args: | |
optim_wrapper (OptimWrapper): An OptimWrapper object whose | |
parameter groups' learning rate need to be scaled. | |
auto_scale_lr (Dict, Optional): Config to scale the learning | |
rate automatically. It includes ``base_batch_size`` and | |
``enable``. ``base_batch_size`` is the batch size that the | |
optimizer lr is based on. ``enable`` is the switch to turn on | |
and off the feature. | |
""" | |
if (auto_scale_lr is None or not auto_scale_lr.get('enable', False)): | |
return None | |
assert 'base_batch_size' in auto_scale_lr, \ | |
'Lack of `base_batch_size` in `auto_scale_lr`.' | |
dataloader: Union[DataLoader, Dict] = self._train_dataloader | |
bs = dataloader.batch_size if isinstance( | |
dataloader, DataLoader) else dataloader['batch_size'] | |
real_bs = self.world_size * bs | |
base_bs = auto_scale_lr['base_batch_size'] | |
ratio = float(real_bs) / float(base_bs) | |
print("\033[96m" + f'LR is set based on batch size of {base_bs} ' | |
f'and the current batch size is {real_bs}. ' | |
f'Scaling the original LR by {ratio}.' + "\033[0m") | |
def _is_built(schedulers): | |
if isinstance(schedulers, dict): | |
return False if 'type' in schedulers else any( | |
_is_built(s) for s in schedulers.values()) | |
if isinstance(schedulers, list): | |
return any(_is_built(s) for s in schedulers) | |
return isinstance(schedulers, _ParamScheduler) | |
if _is_built(self.param_schedulers): | |
raise RuntimeError('`scale_lr` should be called before building ' | |
'ParamScheduler because ParamScheduler will ' | |
'store initial lr from optimizer wrappers') | |
assert isinstance(optim_wrapper, OptimWrapper), \ | |
'`scale_lr should be called after building OptimWrapper' | |
wrappers = list(optim_wrapper.values()) if isinstance( | |
optim_wrapper, OptimWrapperDict) else [optim_wrapper] | |
for wrapper in wrappers: | |
for group in wrapper.optimizer.param_groups: | |
group['lr'] = group['lr'] * ratio | |
def build_optim_wrapper( | |
self, optim_wrapper: Union[Optimizer, OptimWrapper, Dict] | |
) -> Union[OptimWrapper, OptimWrapperDict]: | |
"""Build optimizer wrapper. | |
If ``optim_wrapper`` is a config dict for only one optimizer, | |
the keys must contain ``optimizer``, and ``type`` is optional. | |
It will build a :obj:`OptimWrapper` by default. | |
If ``optim_wrapper`` is a config dict for multiple optimizers, i.e., | |
it has multiple keys and each key is for an optimizer wrapper. The | |
constructor must be specified since | |
:obj:`DefaultOptimizerConstructor` cannot handle the building of | |
training with multiple optimizers. | |
If ``optim_wrapper`` is a dict of pre-built optimizer wrappers, i.e., | |
each value of ``optim_wrapper`` represents an ``OptimWrapper`` | |
instance. ``build_optim_wrapper`` will directly build the | |
:obj:`OptimWrapperDict` instance from ``optim_wrapper``. | |
Args: | |
optim_wrapper (OptimWrapper or dict): An OptimWrapper object or a | |
dict to build OptimWrapper objects. If ``optim_wrapper`` is an | |
OptimWrapper, just return an ``OptimizeWrapper`` instance. | |
Note: | |
For single optimizer training, if `optim_wrapper` is a config | |
dict, `type` is optional(defaults to :obj:`OptimWrapper`) and it | |
must contain `optimizer` to build the corresponding optimizer. | |
Examples: | |
>>> # build an optimizer | |
>>> optim_wrapper_cfg = dict(type='OptimWrapper', optimizer=dict( | |
... type='SGD', lr=0.01)) | |
>>> # optim_wrapper_cfg = dict(optimizer=dict(type='SGD', lr=0.01)) | |
>>> # is also valid. | |
>>> optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg) | |
>>> optim_wrapper | |
Type: OptimWrapper | |
accumulative_counts: 1 | |
optimizer: | |
SGD ( | |
Parameter Group 0 | |
dampening: 0 | |
lr: 0.01 | |
momentum: 0 | |
nesterov: False | |
weight_decay: 0 | |
) | |
>>> # build optimizer without `type` | |
>>> optim_wrapper_cfg = dict(optimizer=dict(type='SGD', lr=0.01)) | |
>>> optim_wrapper = runner.build_optim_wrapper(optim_wrapper_cfg) | |
>>> optim_wrapper | |
Type: OptimWrapper | |
accumulative_counts: 1 | |
optimizer: | |
SGD ( | |
Parameter Group 0 | |
dampening: 0 | |
lr: 0.01 | |
maximize: False | |
momentum: 0 | |
nesterov: False | |
weight_decay: 0 | |
) | |
>>> # build multiple optimizers | |
>>> optim_wrapper_cfg = dict( | |
... generator=dict(type='OptimWrapper', optimizer=dict( | |
... type='SGD', lr=0.01)), | |
... discriminator=dict(type='OptimWrapper', optimizer=dict( | |
... type='Adam', lr=0.001)) | |
... # need to customize a multiple optimizer constructor | |
... constructor='CustomMultiOptimizerConstructor', | |
...) | |
>>> optim_wrapper = runner.optim_wrapper(optim_wrapper_cfg) | |
>>> optim_wrapper | |
name: generator | |
Type: OptimWrapper | |
accumulative_counts: 1 | |
optimizer: | |
SGD ( | |
Parameter Group 0 | |
dampening: 0 | |
lr: 0.1 | |
momentum: 0 | |
nesterov: False | |
weight_decay: 0 | |
) | |
name: discriminator | |
Type: OptimWrapper | |
accumulative_counts: 1 | |
optimizer: | |
'discriminator': Adam ( | |
Parameter Group 0 | |
dampening: 0 | |
lr: 0.02 | |
momentum: 0 | |
nesterov: False | |
weight_decay: 0 | |
) | |
Important: | |
If you need to build multiple optimizers, you should implement a | |
MultiOptimWrapperConstructor which gets parameters passed to | |
corresponding optimizers and compose the ``OptimWrapperDict``. | |
More details about how to customize OptimizerConstructor can be | |
found at `optimizer-docs`_. | |
Returns: | |
OptimWrapper: Optimizer wrapper build from ``optimizer_cfg``. | |
""" # noqa: E501 | |
if isinstance(optim_wrapper, OptimWrapper): | |
return optim_wrapper | |
if isinstance(optim_wrapper, (dict, ConfigDict, Config)): | |
# optimizer must be defined for single optimizer training. | |
optimizer = optim_wrapper.get('optimizer', None) | |
# If optimizer is a built `Optimizer` instance, the optimizer | |
# wrapper should be built by `OPTIM_WRAPPERS` registry. | |
if isinstance(optimizer, Optimizer): | |
optim_wrapper.setdefault('type', 'OptimWrapper') | |
return OPTIM_WRAPPERS.build(optim_wrapper) # type: ignore | |
# If `optimizer` is not None or `constructor` is defined, it means, | |
# optimizer wrapper will be built by optimizer wrapper | |
# constructor. Therefore, `build_optim_wrapper` should be called. | |
if optimizer is not None or 'constructor' in optim_wrapper: | |
return build_optim_wrapper(self.model, optim_wrapper) | |
else: | |
# if `optimizer` is not defined, it should be the case of | |
# training with multiple optimizers. If `constructor` is not | |
# defined either, each value of `optim_wrapper` must be an | |
# `OptimWrapper` instance since `DefaultOptimizerConstructor` | |
# will not handle the case of training with multiple | |
# optimizers. `build_optim_wrapper` will directly build the | |
# `OptimWrapperDict` instance from `optim_wrapper.` | |
optim_wrappers = OrderedDict() | |
for name, optim in optim_wrapper.items(): | |
if not isinstance(optim, OptimWrapper): | |
raise ValueError( | |
'each item mush be an optimizer object when ' | |
'"type" and "constructor" are not in ' | |
f'optimizer, but got {name}={optim}') | |
optim_wrappers[name] = optim | |
return OptimWrapperDict(**optim_wrappers) | |
else: | |
raise TypeError('optimizer wrapper should be an OptimWrapper ' | |
f'object or dict, but got {optim_wrapper}') | |
def _build_param_scheduler( | |
self, scheduler: Union[_ParamScheduler, Dict, List], | |
optim_wrapper: OptimWrapper) -> List[_ParamScheduler]: | |
"""Build parameter schedulers for a single optimizer. | |
Args: | |
scheduler (_ParamScheduler or dict or list): A Param Scheduler | |
object or a dict or list of dict to build parameter schedulers. | |
optim_wrapper (OptimWrapper): An optimizer wrapper object is | |
passed to construct ParamScheduler object. | |
Returns: | |
list[_ParamScheduler]: List of parameter schedulers build from | |
``scheduler``. | |
Note: | |
If the train loop is built, when building parameter schedulers, | |
it supports setting the max epochs/iters as the default ``end`` | |
of schedulers, and supports converting epoch-based schedulers | |
to iter-based according to the ``convert_to_iter_based`` key. | |
""" | |
if not isinstance(scheduler, Sequence): | |
schedulers = [scheduler] | |
else: | |
schedulers = scheduler | |
param_schedulers = [] | |
for scheduler in schedulers: | |
if isinstance(scheduler, _ParamScheduler): | |
param_schedulers.append(scheduler) | |
elif isinstance(scheduler, dict): | |
_scheduler = copy.deepcopy(scheduler) | |
# Set default end | |
if isinstance(self._train_loop, BaseLoop): | |
default_end = self.max_epochs if _scheduler.get( | |
'by_epoch', True) else self.max_iters | |
_scheduler.setdefault('end', default_end) | |
self.logger.debug( | |
f'The `end` of {_scheduler["type"]} is not set. ' | |
'Use the max epochs/iters of train loop as default.') | |
param_schedulers.append( | |
PARAM_SCHEDULERS.build( | |
_scheduler, | |
default_args=dict( | |
optimizer=optim_wrapper, | |
epoch_length=len(self.train_dataloader)))) | |
else: | |
raise TypeError( | |
'scheduler should be a _ParamScheduler object or dict, ' | |
f'but got {scheduler}') | |
return param_schedulers | |
def build_param_scheduler( | |
self, scheduler: Union[_ParamScheduler, Dict, | |
List]) -> ParamSchedulerType: | |
"""Build parameter schedulers. | |
``build_param_scheduler`` should be called after | |
``build_optim_wrapper`` because the building logic will change | |
according to the number of optimizers built by the runner. | |
The cases are as below: | |
- Single optimizer: When only one optimizer is built and used in the | |
runner, ``build_param_scheduler`` will return a list of | |
parameter schedulers. | |
- Multiple optimizers: When two or more optimizers are built and used | |
in runner, ``build_param_scheduler`` will return a dict containing | |
the same keys with multiple optimizers and each value is a list of | |
parameter schedulers. Note that, if you want different optimizers to | |
use different parameter schedulers to update optimizer's | |
hyper-parameters, the input parameter ``scheduler`` also needs to be | |
a dict and its key are consistent with multiple optimizers. | |
Otherwise, the same parameter schedulers will be used to update | |
optimizer's hyper-parameters. | |
Args: | |
scheduler (_ParamScheduler or dict or list): A Param Scheduler | |
object or a dict or list of dict to build parameter schedulers. | |
Examples: | |
>>> # build one scheduler | |
>>> optim_cfg = dict(dict(type='SGD', lr=0.01)) | |
>>> runner.optim_wrapper = runner.build_optim_wrapper( | |
>>> optim_cfg) | |
>>> scheduler_cfg = dict(type='MultiStepLR', milestones=[1, 2]) | |
>>> schedulers = runner.build_param_scheduler(scheduler_cfg) | |
>>> schedulers | |
[<mmengine.optim.scheduler.lr_scheduler.MultiStepLR at 0x7f70f6966290>] # noqa: E501 | |
>>> # build multiple schedulers | |
>>> scheduler_cfg = [ | |
... dict(type='MultiStepLR', milestones=[1, 2]), | |
... dict(type='StepLR', step_size=1) | |
... ] | |
>>> schedulers = runner.build_param_scheduler(scheduler_cfg) | |
>>> schedulers | |
[<mmengine.optim.scheduler.lr_scheduler.MultiStepLR at 0x7f70f60dd3d0>, # noqa: E501 | |
<mmengine.optim.scheduler.lr_scheduler.StepLR at 0x7f70f6eb6150>] | |
Above examples only provide the case of one optimizer and one scheduler | |
or multiple schedulers. If you want to know how to set parameter | |
scheduler when using multiple optimizers, you can find more examples | |
`optimizer-docs`_. | |
Returns: | |
list[_ParamScheduler] or dict[str, list[_ParamScheduler]]: List of | |
parameter schedulers or a dictionary contains list of parameter | |
schedulers build from ``scheduler``. | |
.. _optimizer-docs: | |
https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html | |
""" | |
param_schedulers: ParamSchedulerType | |
if not isinstance(self.optim_wrapper, OptimWrapperDict): | |
# Since `OptimWrapperDict` inherits from `OptimWrapper`, | |
# `isinstance(self.optim_wrapper, OptimWrapper)` cannot tell | |
# whether `self.optim_wrapper` is an `OptimizerWrapper` or | |
# `OptimWrapperDict` instance. Therefore, here we simply check | |
# self.optim_wrapper is not an `OptimWrapperDict` instance and | |
# then assert it is an OptimWrapper instance. | |
assert isinstance(self.optim_wrapper, OptimWrapper), ( | |
'`build_optimizer` should be called before' | |
'`build_param_scheduler` because the latter depends ' | |
'on the former') | |
param_schedulers = self._build_param_scheduler( | |
scheduler, self.optim_wrapper) # type: ignore | |
return param_schedulers | |
else: | |
param_schedulers = dict() | |
for name, optimizer in self.optim_wrapper.items(): | |
if isinstance(scheduler, dict) and 'type' not in scheduler: | |
# scheduler is a dict and each item is a ParamScheduler | |
# object or a config to build ParamScheduler objects | |
param_schedulers[name] = self._build_param_scheduler( | |
scheduler[name], optimizer) | |
else: | |
param_schedulers[name] = self._build_param_scheduler( | |
scheduler, optimizer) | |
return param_schedulers | |
def build_evaluator(self, evaluator: Union[Dict, List, | |
Evaluator]) -> Evaluator: | |
"""Build evaluator. | |
Examples of ``evaluator``:: | |
# evaluator could be a built Evaluator instance | |
evaluator = Evaluator(metrics=[ToyMetric()]) | |
# evaluator can also be a list of dict | |
evaluator = [ | |
dict(type='ToyMetric1'), | |
dict(type='ToyEvaluator2') | |
] | |
# evaluator can also be a list of built metric | |
evaluator = [ToyMetric1(), ToyMetric2()] | |
# evaluator can also be a dict with key metrics | |
evaluator = dict(metrics=ToyMetric()) | |
# metric is a list | |
evaluator = dict(metrics=[ToyMetric()]) | |
Args: | |
evaluator (Evaluator or dict or list): An Evaluator object or a | |
config dict or list of config dict used to build an Evaluator. | |
Returns: | |
Evaluator: Evaluator build from ``evaluator``. | |
""" | |
if isinstance(evaluator, Evaluator): | |
return evaluator | |
elif isinstance(evaluator, dict): | |
# if `metrics` in dict keys, it means to build customized evalutor | |
if 'metrics' in evaluator: | |
evaluator.setdefault('type', 'Evaluator') | |
return EVALUATOR.build(evaluator) | |
# otherwise, default evalutor will be built | |
else: | |
return Evaluator(evaluator) # type: ignore | |
elif isinstance(evaluator, list): | |
# use the default `Evaluator` | |
return Evaluator(evaluator) # type: ignore | |
else: | |
raise TypeError( | |
'evaluator should be one of dict, list of dict, and Evaluator' | |
f', but got {evaluator}') | |
def build_dataloader(dataloader: Union[DataLoader, Dict], | |
seed: Optional[int] = None, | |
diff_rank_seed: bool = False) -> DataLoader: | |
"""Build dataloader. | |
The method builds three components: | |
- Dataset | |
- Sampler | |
- Dataloader | |
An example of ``dataloader``:: | |
dataloader = dict( | |
dataset=dict(type='ToyDataset'), | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_size=1, | |
num_workers=9 | |
) | |
Args: | |
dataloader (DataLoader or dict): A Dataloader object or a dict to | |
build Dataloader object. If ``dataloader`` is a Dataloader | |
object, just returns itself. | |
seed (int, optional): Random seed. Defaults to None. | |
diff_rank_seed (bool): Whether or not set different seeds to | |
different ranks. If True, the seed passed to sampler is set | |
to None, in order to synchronize the seeds used in samplers | |
across different ranks. | |
Returns: | |
Dataloader: DataLoader build from ``dataloader_cfg``. | |
""" | |
if isinstance(dataloader, DataLoader): | |
return dataloader | |
dataloader_cfg = copy.deepcopy(dataloader) | |
# build dataset | |
dataset_cfg = dataloader_cfg.pop('dataset') | |
if isinstance(dataset_cfg, dict): | |
dataset = DATASETS.build(dataset_cfg) | |
if hasattr(dataset, 'full_init'): | |
dataset.full_init() | |
else: | |
# fallback to raise error in dataloader | |
# if `dataset_cfg` is not a valid type | |
dataset = dataset_cfg | |
# build sampler | |
sampler_cfg = dataloader_cfg.pop('sampler') | |
if isinstance(sampler_cfg, dict): | |
sampler_seed = None if diff_rank_seed else seed | |
sampler = DATA_SAMPLERS.build( | |
sampler_cfg, | |
default_args=dict(dataset=dataset, seed=sampler_seed)) | |
else: | |
# fallback to raise error in dataloader | |
# if `sampler_cfg` is not a valid type | |
sampler = sampler_cfg | |
# build batch sampler | |
batch_sampler_cfg = dataloader_cfg.pop('batch_sampler', None) | |
if batch_sampler_cfg is None: | |
batch_sampler = None | |
elif isinstance(batch_sampler_cfg, dict): | |
batch_sampler = DATA_SAMPLERS.build( | |
batch_sampler_cfg, | |
default_args=dict( | |
sampler=sampler, | |
batch_size=dataloader_cfg.pop('batch_size'))) | |
else: | |
# fallback to raise error in dataloader | |
# if `batch_sampler_cfg` is not a valid type | |
batch_sampler = batch_sampler_cfg | |
# build dataloader | |
init_fn: Optional[partial] | |
if 'worker_init_fn' in dataloader_cfg: | |
worker_init_fn_cfg = dataloader_cfg.pop('worker_init_fn') | |
worker_init_fn_type = worker_init_fn_cfg.pop('type') | |
if isinstance(worker_init_fn_type, str): | |
worker_init_fn = FUNCTIONS.get(worker_init_fn_type) | |
elif callable(worker_init_fn_type): | |
worker_init_fn = worker_init_fn_type | |
else: | |
raise TypeError( | |
'type of worker_init_fn should be string or callable ' | |
f'object, but got {type(worker_init_fn_type)}') | |
assert callable(worker_init_fn) | |
init_fn = partial(worker_init_fn, | |
**worker_init_fn_cfg) # type: ignore | |
else: | |
if seed is not None: | |
disable_subprocess_warning = dataloader_cfg.pop( | |
'disable_subprocess_warning', False) | |
assert isinstance(disable_subprocess_warning, bool), ( | |
'disable_subprocess_warning should be a bool, but got ' | |
f'{type(disable_subprocess_warning)}') | |
init_fn = partial( | |
default_worker_init_fn, | |
num_workers=dataloader_cfg.get('num_workers'), | |
rank=get_rank(), | |
seed=seed, | |
disable_subprocess_warning=disable_subprocess_warning) | |
else: | |
init_fn = None | |
# `persistent_workers` requires pytorch version >= 1.7 | |
if ('persistent_workers' in dataloader_cfg | |
and digit_version(TORCH_VERSION) < digit_version('1.7.0')): | |
print_log( | |
'`persistent_workers` is only available when ' | |
'pytorch version >= 1.7', | |
logger='current', | |
level=logging.WARNING) | |
dataloader_cfg.pop('persistent_workers') | |
# The default behavior of `collat_fn` in dataloader is to | |
# merge a list of samples to form a mini-batch of Tensor(s). | |
# However, in mmengine, if `collate_fn` is not defined in | |
# dataloader_cfg, `pseudo_collate` will only convert the list of | |
# samples into a dict without stacking the batch tensor. | |
collate_fn_cfg = dataloader_cfg.pop('collate_fn', | |
dict(type='pseudo_collate')) | |
if isinstance(collate_fn_cfg, dict): | |
collate_fn_type = collate_fn_cfg.pop('type') | |
if isinstance(collate_fn_type, str): | |
collate_fn = FUNCTIONS.get(collate_fn_type) | |
else: | |
collate_fn = collate_fn_type | |
collate_fn = partial(collate_fn, **collate_fn_cfg) # type: ignore | |
elif callable(collate_fn_cfg): | |
collate_fn = collate_fn_cfg | |
else: | |
raise TypeError( | |
'collate_fn should be a dict or callable object, but got ' | |
f'{collate_fn_cfg}') | |
data_loader = DataLoader( | |
dataset=dataset, | |
sampler=sampler if batch_sampler is None else None, | |
batch_sampler=batch_sampler, | |
collate_fn=collate_fn, | |
worker_init_fn=init_fn, | |
**dataloader_cfg) | |
return data_loader | |
def build_train_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop: | |
"""Build training loop. | |
Examples of ``loop``:: | |
# `EpochBasedTrainLoop` will be used | |
loop = dict(by_epoch=True, max_epochs=3) | |
# `IterBasedTrainLoop` will be used | |
loop = dict(by_epoch=False, max_epochs=3) | |
# custom training loop | |
loop = dict(type='CustomTrainLoop', max_epochs=3) | |
Args: | |
loop (BaseLoop or dict): A training loop or a dict to build | |
training loop. If ``loop`` is a training loop object, just | |
returns itself. | |
Returns: | |
:obj:`BaseLoop`: Training loop object build from ``loop``. | |
""" | |
if isinstance(loop, BaseLoop): | |
return loop | |
elif not isinstance(loop, dict): | |
raise TypeError( | |
f'train_loop should be a Loop object or dict, but got {loop}') | |
loop_cfg = copy.deepcopy(loop) | |
if 'type' in loop_cfg and 'by_epoch' in loop_cfg: | |
raise RuntimeError( | |
'Only one of `type` or `by_epoch` can exist in `loop_cfg`.') | |
if 'type' in loop_cfg: | |
loop = LOOPS.build( | |
loop_cfg, | |
default_args=dict( | |
runner=self, dataloader=self._train_dataloader)) | |
else: | |
by_epoch = loop_cfg.pop('by_epoch') | |
if by_epoch: | |
loop = EpochBasedTrainLoop( | |
**loop_cfg, runner=self, dataloader=self._train_dataloader) | |
else: | |
loop = IterBasedTrainLoop( | |
**loop_cfg, runner=self, dataloader=self._train_dataloader) | |
return loop # type: ignore | |
def build_val_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop: | |
"""Build validation loop. | |
Examples of ``loop``: | |
# `ValLoop` will be used | |
loop = dict() | |
# custom validation loop | |
loop = dict(type='CustomValLoop') | |
Args: | |
loop (BaseLoop or dict): A validation loop or a dict to build | |
validation loop. If ``loop`` is a validation loop object, just | |
returns itself. | |
Returns: | |
:obj:`BaseLoop`: Validation loop object build from ``loop``. | |
""" | |
if isinstance(loop, BaseLoop): | |
return loop | |
elif not isinstance(loop, dict): | |
raise TypeError( | |
f'val_loop should be a Loop object or dict, but got {loop}') | |
loop_cfg = copy.deepcopy(loop) | |
if 'type' in loop_cfg: | |
loop = LOOPS.build( | |
loop_cfg, | |
default_args=dict( | |
runner=self, | |
dataloader=self._val_dataloader, | |
evaluator=self._val_evaluator)) | |
else: | |
loop = ValLoop( | |
**loop_cfg, | |
runner=self, | |
dataloader=self._val_dataloader, | |
evaluator=self._val_evaluator) # type: ignore | |
return loop # type: ignore | |
def build_test_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop: | |
"""Build test loop. | |
Examples of ``loop``:: | |
# `TestLoop` will be used | |
loop = dict() | |
# custom test loop | |
loop = dict(type='CustomTestLoop') | |
Args: | |
loop (BaseLoop or dict): A test loop or a dict to build test loop. | |
If ``loop`` is a test loop object, just returns itself. | |
Returns: | |
:obj:`BaseLoop`: Test loop object build from ``loop_cfg``. | |
""" | |
if isinstance(loop, BaseLoop): | |
return loop | |
elif not isinstance(loop, dict): | |
raise TypeError( | |
f'test_loop should be a Loop object or dict, but got {loop}') | |
loop_cfg = copy.deepcopy(loop) # type: ignore | |
if 'type' in loop_cfg: | |
loop = LOOPS.build( | |
loop_cfg, | |
default_args=dict( | |
runner=self, | |
dataloader=self._test_dataloader, | |
evaluator=self._test_evaluator)) | |
else: | |
loop = TestLoop( | |
**loop_cfg, | |
runner=self, | |
dataloader=self._test_dataloader, | |
evaluator=self._test_evaluator) # type: ignore | |
return loop # type: ignore | |
def build_log_processor( | |
self, log_processor: Union[LogProcessor, Dict]) -> LogProcessor: | |
"""Build test log_processor. | |
Examples of ``log_processor``: | |
# `LogProcessor` will be used | |
log_processor = dict() | |
# custom log_processor | |
log_processor = dict(type='CustomLogProcessor') | |
Args: | |
log_processor (LogProcessor or dict): A log processor or a dict | |
to build log processor. If ``log_processor`` is a log processor | |
object, just returns itself. | |
Returns: | |
:obj:`LogProcessor`: Log processor object build from | |
``log_processor_cfg``. | |
""" | |
if isinstance(log_processor, LogProcessor): | |
return log_processor | |
elif not isinstance(log_processor, dict): | |
raise TypeError( | |
'log processor should be a LogProcessor object or dict, but' | |
f'got {log_processor}') | |
log_processor_cfg = copy.deepcopy(log_processor) # type: ignore | |
if 'type' in log_processor_cfg: | |
log_processor = LOG_PROCESSORS.build(log_processor_cfg) | |
else: | |
log_processor = LogProcessor(**log_processor_cfg) # type: ignore | |
return log_processor # type: ignore | |
def get_hooks_info(self) -> str: | |
# Get hooks info in each stage | |
stage_hook_map: Dict[str, list] = {stage: [] for stage in Hook.stages} | |
for hook in self.hooks: | |
try: | |
priority = Priority(hook.priority).name # type: ignore | |
except ValueError: | |
priority = hook.priority # type: ignore | |
classname = hook.__class__.__name__ | |
hook_info = f'({priority:<12}) {classname:<35}' | |
for trigger_stage in hook.get_triggered_stages(): | |
stage_hook_map[trigger_stage].append(hook_info) | |
stage_hook_infos = [] | |
for stage in Hook.stages: | |
hook_infos = stage_hook_map[stage] | |
if len(hook_infos) > 0: | |
info = f'{stage}:\n' | |
info += '\n'.join(hook_infos) | |
info += '\n -------------------- ' | |
stage_hook_infos.append(info) | |
return '\n'.join(stage_hook_infos) | |
def load_or_resume(self) -> None: | |
"""load or resume checkpoint.""" | |
if self._has_loaded: | |
return None | |
# decide to load from checkpoint or resume from checkpoint | |
resume_from = None | |
if self._resume and self._load_from is None: | |
# auto resume from the latest checkpoint | |
resume_from = find_latest_checkpoint(self.work_dir) | |
self.logger.info( | |
f'Auto resumed from the latest checkpoint {resume_from}.') | |
elif self._resume and self._load_from is not None: | |
# resume from the specified checkpoint | |
resume_from = self._load_from | |
if resume_from is not None: | |
self.resume(resume_from) | |
self._has_loaded = True | |
elif self._load_from is not None: | |
self.load_checkpoint(self._load_from) | |
self._has_loaded = True | |
def train(self) -> nn.Module: | |
"""Launch training. | |
Returns: | |
nn.Module: The model after training. | |
""" | |
if is_model_wrapper(self.model): | |
ori_model = self.model.module | |
else: | |
ori_model = self.model | |
assert hasattr(ori_model, 'train_step'), ( | |
'If you want to train your model, please make sure your model ' | |
'has implemented `train_step`.') | |
if self._val_loop is not None: | |
assert hasattr(ori_model, 'val_step'), ( | |
'If you want to validate your model, please make sure your ' | |
'model has implemented `val_step`.') | |
if self._train_loop is None: | |
raise RuntimeError( | |
'`self._train_loop` should not be None when calling train ' | |
'method. Please provide `train_dataloader`, `train_cfg`, ' | |
'`optimizer` and `param_scheduler` arguments when ' | |
'initializing runner.') | |
self._train_loop = self.build_train_loop( | |
self._train_loop) # type: ignore | |
# `build_optimizer` should be called before `build_param_scheduler` | |
# because the latter depends on the former | |
self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper) | |
# Automatically scaling lr by linear scaling rule | |
self.scale_lr(self.optim_wrapper, self.auto_scale_lr) | |
if self.param_schedulers is not None: | |
self.param_schedulers = self.build_param_scheduler( # type: ignore | |
self.param_schedulers) # type: ignore | |
if self._val_loop is not None: | |
self._val_loop = self.build_val_loop( | |
self._val_loop) # type: ignore | |
# TODO: add a contextmanager to avoid calling `before_run` many times | |
self.call_hook('before_run') | |
# initialize the model weights | |
self.logger.info(f'\033[96mInitializing model weights!\033[0m') | |
self._init_model_weights() | |
self.logger.info(f'\033[96mDone initializing model weights!\033[0m') | |
# try to enable activation_checkpointing feature | |
modules = self.cfg.get('activation_checkpointing', None) | |
if modules is not None: | |
self.logger.info(f'Enabling the "activation_checkpointing" feature' | |
f' for sub-modules: {modules}') | |
turn_on_activation_checkpointing(ori_model, modules) | |
# try to enable efficient_conv_bn_eval feature | |
modules = self.cfg.get('efficient_conv_bn_eval', None) | |
if modules is not None: | |
self.logger.info(f'Enabling the "efficient_conv_bn_eval" feature' | |
f' for sub-modules: {modules}') | |
turn_on_efficient_conv_bn_eval(ori_model, modules) | |
# make sure checkpoint-related hooks are triggered after `before_run` | |
server_name = socket.gethostname().split('.')[0] | |
self.logger.info(f'\033[96mTrying to load or resume!\033[0m') | |
# print(f'\033[96m{server_name}, rank:{self._rank}, Trying to load or resume!\033[0m') | |
self.load_or_resume() | |
self.logger.info(f'\033[96mCompleted load or resume!\033[0m') | |
# print(f'\033[96m{server_name}, rank:{self._rank}, Completed load or resume!\033[0m') | |
# Initiate inner count of `optim_wrapper`. | |
self.optim_wrapper.initialize_count_status( | |
self.model, | |
self._train_loop.iter, # type: ignore | |
self._train_loop.max_iters) # type: ignore | |
# Maybe compile the model according to options in self.cfg.compile | |
# This must be called **AFTER** model has been wrapped. | |
self._maybe_compile('train_step') | |
self.logger.info(f'\033[96mStarting training!\033[0m') | |
# print(f'\033[96m{server_name}, rank:{self._rank}, Starting training!\033[0m') | |
model = self.train_loop.run() # type: ignore | |
self.logger.info(f'\033[96mDone training!\033[0m') | |
# print(f'\033[96m{server_name}, rank:{self._rank}, Done training!\033[0m') | |
self.call_hook('after_run') | |
return model | |
def val(self) -> dict: | |
"""Launch validation. | |
Returns: | |
dict: A dict of metrics on validation set. | |
""" | |
if self._val_loop is None: | |
raise RuntimeError( | |
'`self._val_loop` should not be None when calling val method.' | |
'Please provide `val_dataloader`, `val_cfg` and ' | |
'`val_evaluator` arguments when initializing runner.') | |
self._val_loop = self.build_val_loop(self._val_loop) # type: ignore | |
self.call_hook('before_run') | |
# make sure checkpoint-related hooks are triggered after `before_run` | |
self.load_or_resume() | |
metrics = self.val_loop.run() # type: ignore | |
self.call_hook('after_run') | |
return metrics | |
def test(self) -> dict: | |
"""Launch test. | |
Returns: | |
dict: A dict of metrics on testing set. | |
""" | |
if self._test_loop is None: | |
raise RuntimeError( | |
'`self._test_loop` should not be None when calling test ' | |
'method. Please provide `test_dataloader`, `test_cfg` and ' | |
'`test_evaluator` arguments when initializing runner.') | |
self._test_loop = self.build_test_loop(self._test_loop) # type: ignore | |
self.call_hook('before_run') | |
# make sure checkpoint-related hooks are triggered after `before_run` | |
self.load_or_resume() | |
metrics = self.test_loop.run() # type: ignore | |
self.call_hook('after_run') | |
return metrics | |
def call_hook(self, fn_name: str, **kwargs) -> None: | |
"""Call all hooks. | |
Args: | |
fn_name (str): The function name in each hook to be called, such as | |
"before_train_epoch". | |
**kwargs: Keyword arguments passed to hook. | |
""" | |
for hook in self._hooks: | |
# support adding additional custom hook methods | |
if hasattr(hook, fn_name): | |
try: | |
getattr(hook, fn_name)(self, **kwargs) | |
except TypeError as e: | |
raise TypeError(f'{e} in {hook}') from None | |
def register_hook( | |
self, | |
hook: Union[Hook, Dict], | |
priority: Optional[Union[str, int, Priority]] = None) -> None: | |
"""Register a hook into the hook list. | |
The hook will be inserted into a priority queue, with the specified | |
priority (See :class:`Priority` for details of priorities). | |
For hooks with the same priority, they will be triggered in the same | |
order as they are registered. | |
Priority of hook will be decided with the following priority: | |
- ``priority`` argument. If ``priority`` is given, it will be priority | |
of hook. | |
- If ``hook`` argument is a dict and ``priority`` in it, the priority | |
will be the value of ``hook['priority']``. | |
- If ``hook`` argument is a dict but ``priority`` not in it or ``hook`` | |
is an instance of ``hook``, the priority will be ``hook.priority``. | |
Args: | |
hook (:obj:`Hook` or dict): The hook to be registered. | |
priority (int or str or :obj:`Priority`, optional): Hook priority. | |
Lower value means higher priority. | |
""" | |
if not isinstance(hook, (Hook, dict)): | |
raise TypeError( | |
f'hook should be an instance of Hook or dict, but got {hook}') | |
_priority = None | |
if isinstance(hook, dict): | |
if 'priority' in hook: | |
_priority = hook.pop('priority') | |
hook_obj = HOOKS.build(hook) | |
else: | |
hook_obj = hook | |
if priority is not None: | |
hook_obj.priority = priority | |
elif _priority is not None: | |
hook_obj.priority = _priority | |
inserted = False | |
for i in range(len(self._hooks) - 1, -1, -1): | |
if get_priority(hook_obj.priority) >= get_priority( | |
self._hooks[i].priority): | |
self._hooks.insert(i + 1, hook_obj) | |
inserted = True | |
break | |
if not inserted: | |
self._hooks.insert(0, hook_obj) | |
def register_default_hooks( | |
self, | |
hooks: Optional[Dict[str, Union[Hook, Dict]]] = None) -> None: | |
"""Register default hooks into hook list. | |
``hooks`` will be registered into runner to execute some default | |
actions like updating model parameters or saving checkpoints. | |
Default hooks and their priorities: | |
+----------------------+-------------------------+ | |
| Hooks | Priority | | |
+======================+=========================+ | |
| RuntimeInfoHook | VERY_HIGH (10) | | |
+----------------------+-------------------------+ | |
| IterTimerHook | NORMAL (50) | | |
+----------------------+-------------------------+ | |
| DistSamplerSeedHook | NORMAL (50) | | |
+----------------------+-------------------------+ | |
| LoggerHook | BELOW_NORMAL (60) | | |
+----------------------+-------------------------+ | |
| ParamSchedulerHook | LOW (70) | | |
+----------------------+-------------------------+ | |
| CheckpointHook | VERY_LOW (90) | | |
+----------------------+-------------------------+ | |
If ``hooks`` is None, above hooks will be registered by | |
default:: | |
default_hooks = dict( | |
runtime_info=dict(type='RuntimeInfoHook'), | |
timer=dict(type='IterTimerHook'), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
logger=dict(type='LoggerHook'), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=1), | |
) | |
If not None, ``hooks`` will be merged into ``default_hooks``. | |
If there are None value in default_hooks, the corresponding item will | |
be popped from ``default_hooks``:: | |
hooks = dict(timer=None) | |
The final registered default hooks will be :obj:`RuntimeInfoHook`, | |
:obj:`DistSamplerSeedHook`, :obj:`LoggerHook`, | |
:obj:`ParamSchedulerHook` and :obj:`CheckpointHook`. | |
Args: | |
hooks (dict[str, Hook or dict], optional): Default hooks or configs | |
to be registered. | |
""" | |
default_hooks: dict = dict( | |
runtime_info=dict(type='RuntimeInfoHook'), | |
timer=dict(type='IterTimerHook'), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
logger=dict(type='LoggerHook'), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=1), | |
) | |
if hooks is not None: | |
for name, hook in hooks.items(): | |
if name in default_hooks and hook is None: | |
# remove hook from _default_hooks | |
default_hooks.pop(name) | |
else: | |
assert hook is not None | |
default_hooks[name] = hook | |
for hook in default_hooks.values(): | |
self.register_hook(hook) | |
def register_custom_hooks(self, hooks: List[Union[Hook, Dict]]) -> None: | |
"""Register custom hooks into hook list. | |
Args: | |
hooks (list[Hook | dict]): List of hooks or configs to be | |
registered. | |
""" | |
for hook in hooks: | |
self.register_hook(hook) | |
def register_hooks( | |
self, | |
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None, | |
custom_hooks: Optional[List[Union[Hook, Dict]]] = None) -> None: | |
"""Register default hooks and custom hooks into hook list. | |
Args: | |
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks | |
to execute default actions like updating model parameters and | |
saving checkpoints. Defaults to None. | |
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute | |
custom actions like visualizing images processed by pipeline. | |
Defaults to None. | |
""" | |
self.register_default_hooks(default_hooks) | |
if custom_hooks is not None: | |
self.register_custom_hooks(custom_hooks) | |
def resume(self, | |
filename: str, | |
resume_optimizer: bool = True, | |
resume_param_scheduler: bool = True, | |
map_location: Union[str, Callable] = 'default') -> None: | |
"""Resume model from checkpoint. | |
Args: | |
filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
``open-mmlab://xxx``. | |
resume_optimizer (bool): Whether to resume optimizer state. | |
Defaults to True. | |
resume_param_scheduler (bool): Whether to resume param scheduler | |
state. Defaults to True. | |
map_location (str or callable):A string or a callable function to | |
specifying how to remap storage locations. | |
Defaults to 'default'. | |
""" | |
server_name = socket.gethostname().split('.')[0] | |
if map_location == 'default': | |
device = get_device() | |
checkpoint = self.load_checkpoint(filename, map_location=device) | |
else: | |
checkpoint = self.load_checkpoint( | |
filename, map_location=map_location) | |
self.train_loop._epoch = checkpoint['meta']['epoch'] | |
self.train_loop._iter = checkpoint['meta']['iter'] | |
# check whether the number of GPU used for current experiment | |
# is consistent with resuming from checkpoint | |
if 'config' in checkpoint['meta']: | |
config = mmengine.Config.fromstring( | |
checkpoint['meta']['config'], file_format='.py') | |
previous_gpu_ids = config.get('gpu_ids', None) | |
if (previous_gpu_ids is not None and len(previous_gpu_ids) > 0 | |
and len(previous_gpu_ids) != self._world_size): | |
# TODO, should we modify the iteration? | |
if (self.auto_scale_lr is None | |
or not self.auto_scale_lr.get('enable', False)): | |
raise RuntimeError( | |
'Number of GPUs used for current experiment is not ' | |
'consistent with the checkpoint being resumed from. ' | |
'This will result in poor performance due to the ' | |
'learning rate. You must set the ' | |
'`auto_scale_lr` parameter for Runner and make ' | |
'`auto_scale_lr["enable"]=True`.') | |
else: | |
self.logger.info( | |
'Number of GPU used for current experiment is not ' | |
'consistent with resuming from checkpoint but the ' | |
'leaning rate will be adjusted according to the ' | |
f'setting in auto_scale_lr={self.auto_scale_lr}') | |
# resume random seed | |
resumed_seed = checkpoint['meta'].get('seed', None) | |
current_seed = self._randomness_cfg.get('seed') | |
if resumed_seed is not None and resumed_seed != current_seed: | |
if current_seed is not None: | |
self.logger.warning(f'The value of random seed in the ' | |
f'checkpoint "{resumed_seed}" is ' | |
f'different from the value in ' | |
f'`randomness` config "{current_seed}"') | |
self._randomness_cfg.update(seed=resumed_seed) | |
self.set_randomness(**self._randomness_cfg) | |
resumed_dataset_meta = checkpoint['meta'].get('dataset_meta', None) | |
dataset_meta = getattr(self.train_dataloader.dataset, 'metainfo', None) | |
# `resumed_dataset_meta` and `dataset_meta` could be object like | |
# np.ndarray, which cannot be directly judged as equal or not, | |
# therefore we just compared their dumped results. | |
if pickle.dumps(resumed_dataset_meta) != pickle.dumps(dataset_meta): | |
self.logger.warning( | |
'The dataset metainfo from the resumed checkpoint is ' | |
'different from the current training dataset, please ' | |
'check the correctness of the checkpoint or the training ' | |
'dataset.') | |
self.message_hub.load_state_dict(checkpoint['message_hub']) | |
# resume optimizer | |
if 'optimizer' in checkpoint and resume_optimizer: | |
self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper) | |
self.optim_wrapper.load_state_dict( # type: ignore | |
checkpoint['optimizer']) | |
# resume param scheduler | |
if resume_param_scheduler and self.param_schedulers is None: | |
self.logger.warning( | |
'`resume_param_scheduler` is True but `self.param_schedulers` ' | |
'is None, so skip resuming parameter schedulers') | |
resume_param_scheduler = False | |
if 'param_schedulers' in checkpoint and resume_param_scheduler: | |
self.param_schedulers = self.build_param_scheduler( # type: ignore | |
self.param_schedulers) # type: ignore | |
if isinstance(self.param_schedulers, dict): | |
for name, schedulers in self.param_schedulers.items(): | |
for scheduler, ckpt_scheduler in zip( | |
schedulers, checkpoint['param_schedulers'][name]): | |
scheduler.load_state_dict(ckpt_scheduler) | |
else: | |
for scheduler, ckpt_scheduler in zip( | |
self.param_schedulers, # type: ignore | |
checkpoint['param_schedulers']): | |
scheduler.load_state_dict(ckpt_scheduler) | |
self._has_loaded = True | |
self.logger.info(f'{server_name}: resumed epoch: {self.epoch}, iter: {self.iter}') | |
def load_checkpoint(self, | |
filename: str, | |
map_location: Union[str, Callable] = 'cpu', | |
strict: bool = False, | |
revise_keys: list = [(r'^module.', '')]): | |
"""Load checkpoint from given ``filename``. | |
Args: | |
filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
``open-mmlab://xxx``. | |
map_location (str or callable): A string or a callable function to | |
specifying how to remap storage locations. | |
Defaults to 'cpu'. | |
strict (bool): strict (bool): Whether to allow different params for | |
the model and checkpoint. | |
revise_keys (list): A list of customized keywords to modify the | |
state_dict in checkpoint. Each item is a (pattern, replacement) | |
pair of the regular expression operations. Defaults to strip | |
the prefix 'module.' by [(r'^module\\.', '')]. | |
""" | |
checkpoint = _load_checkpoint(filename, map_location=map_location) | |
# Add comments to describe the usage of `after_load_ckpt` | |
self.call_hook('after_load_checkpoint', checkpoint=checkpoint) | |
if is_model_wrapper(self.model): | |
model = self.model.module | |
else: | |
model = self.model | |
checkpoint = _load_checkpoint_to_model( | |
model, checkpoint, strict, revise_keys=revise_keys) | |
self._has_loaded = True | |
self.logger.info(f'Load checkpoint from {filename}') | |
return checkpoint | |
def save_checkpoint( | |
self, | |
out_dir: str, | |
filename: str, | |
file_client_args: Optional[dict] = None, | |
save_optimizer: bool = True, | |
save_param_scheduler: bool = True, | |
meta: Optional[dict] = None, | |
by_epoch: bool = True, | |
backend_args: Optional[dict] = None, | |
): | |
"""Save checkpoints. | |
``CheckpointHook`` invokes this method to save checkpoints | |
periodically. | |
Args: | |
out_dir (str): The directory that checkpoints are saved. | |
filename (str): The checkpoint filename. | |
file_client_args (dict, optional): Arguments to instantiate a | |
FileClient. See :class:`mmengine.fileio.FileClient` for | |
details. Defaults to None. It will be deprecated in future. | |
Please use `backend_args` instead. | |
save_optimizer (bool): Whether to save the optimizer to | |
the checkpoint. Defaults to True. | |
save_param_scheduler (bool): Whether to save the param_scheduler | |
to the checkpoint. Defaults to True. | |
meta (dict, optional): The meta information to be saved in the | |
checkpoint. Defaults to None. | |
by_epoch (bool): Decide the number of epoch or iteration saved in | |
checkpoint. Defaults to True. | |
backend_args (dict, optional): Arguments to instantiate the | |
prefix of uri corresponding backend. Defaults to None. | |
New in v0.2.0. | |
""" | |
if meta is None: | |
meta = {} | |
elif not isinstance(meta, dict): | |
raise TypeError( | |
f'meta should be a dict or None, but got {type(meta)}') | |
if by_epoch: | |
# self.epoch increments 1 after | |
# `self.call_hook('after_train_epoch)` but `save_checkpoint` is | |
# called by `after_train_epoch`` method of `CheckpointHook` so | |
# `epoch` should be `self.epoch + 1` | |
meta.setdefault('epoch', self.epoch + 1) | |
meta.setdefault('iter', self.iter) | |
else: | |
meta.setdefault('epoch', self.epoch) | |
meta.setdefault('iter', self.iter + 1) | |
if file_client_args is not None: | |
warnings.warn( | |
'"file_client_args" will be deprecated in future. ' | |
'Please use "backend_args" instead', DeprecationWarning) | |
if backend_args is not None: | |
raise ValueError( | |
'"file_client_args" and "backend_args" cannot be set at ' | |
'the same time.') | |
file_client = FileClient.infer_client(file_client_args, out_dir) | |
filepath = file_client.join_path(out_dir, filename) | |
else: | |
filepath = join_path( # type: ignore | |
out_dir, filename, backend_args=backend_args) | |
meta.update( | |
cfg=self.cfg.pretty_text, | |
seed=self.seed, | |
experiment_name=self.experiment_name, | |
time=time.strftime('%Y%m%d_%H%M%S', time.localtime()), | |
mmengine_version=mmengine.__version__ + get_git_hash()) | |
if hasattr(self.train_dataloader.dataset, 'metainfo'): | |
meta.update(dataset_meta=self.train_dataloader.dataset.metainfo) | |
if is_model_wrapper(self.model): | |
model = self.model.module | |
else: | |
model = self.model | |
checkpoint = { | |
'meta': | |
meta, | |
'state_dict': | |
weights_to_cpu(model.state_dict()), | |
'message_hub': | |
apply_to(self.message_hub.state_dict(), | |
lambda x: hasattr(x, 'cpu'), lambda x: x.cpu()), | |
} | |
# save optimizer state dict to checkpoint | |
if save_optimizer: | |
if isinstance(self.optim_wrapper, OptimWrapper): | |
checkpoint['optimizer'] = apply_to( | |
self.optim_wrapper.state_dict(), | |
lambda x: hasattr(x, 'cpu'), lambda x: x.cpu()) | |
else: | |
raise TypeError( | |
'self.optim_wrapper should be an `OptimWrapper` ' | |
'or `OptimWrapperDict` instance, but got ' | |
f'{self.optim_wrapper}') | |
# save param scheduler state dict | |
if save_param_scheduler and self.param_schedulers is None: | |
self.logger.warning( | |
'`save_param_scheduler` is True but `self.param_schedulers` ' | |
'is None, so skip saving parameter schedulers') | |
save_param_scheduler = False | |
if save_param_scheduler: | |
if isinstance(self.param_schedulers, dict): | |
checkpoint['param_schedulers'] = dict() | |
for name, schedulers in self.param_schedulers.items(): | |
checkpoint['param_schedulers'][name] = [] | |
for scheduler in schedulers: | |
state_dict = scheduler.state_dict() | |
checkpoint['param_schedulers'][name].append(state_dict) | |
else: | |
checkpoint['param_schedulers'] = [] | |
for scheduler in self.param_schedulers: # type: ignore | |
state_dict = scheduler.state_dict() # type: ignore | |
checkpoint['param_schedulers'].append(state_dict) | |
self.call_hook('before_save_checkpoint', checkpoint=checkpoint) | |
save_checkpoint( | |
checkpoint, | |
filepath, | |
file_client_args=file_client_args, | |
backend_args=backend_args) | |
def dump_config(self) -> None: | |
"""Dump config to `work_dir`.""" | |
if self.cfg.filename is not None: | |
filename = osp.basename(self.cfg.filename) | |
else: | |
filename = f'{self.timestamp}.py' | |
self.cfg.dump(osp.join(self.work_dir, filename)) | |
def _check_scheduler_cfg( | |
self, param_scheduler: Optional[Union[dict, list, | |
_ParamScheduler]]) -> None: | |
"""Parse `param_scheduler` to a list of parameter schedulers, or a | |
`dict` of which each value is a list of parameter schedulers. | |
If only one optimizer is used, the parsed config should be a | |
list of parameter scheduler configs or instances. If multiple | |
optimizers are used, the parsed config should be `dict`. | |
Its key should be consistent with the optimizer `dict` and its value | |
should be a list of parameter scheduler configs or instances. See | |
:meth:`build_param_scheduler` for more details. | |
Examples: | |
>>> # valid scheduler: | |
>>> # empty scheduler | |
>>> scheduler = None | |
>>> # Single scheduler | |
>>> scheduler = dict(type='MultiStepLR', milestones=[1, 2]) | |
>>> # Single list schedulers | |
>>> scheduler = [dict(type='MultiStepLR', milestones=[1, 2]), | |
>>> dict(type='MultiStepLR', milestones=[2, 3])] | |
>>> # `dict` of schedulers | |
>>> scheduler = dict(linear1=dict(type='MultiStepLR', milestones=[1, 2]), | |
>>> linear2=dict(type='MultiStepLR', milestones=[1, 2])) | |
>>> # `dict` of `list` of schedulers | |
>>> scheduler = dict(linear1=[dict(type='MultiStepLR', milestones=[1, 2])], | |
>>> linear2=[dict(type='MultiStepLR', milestones=[1, 2])]) | |
>>> # Single built scheduler | |
>>> from mmengine.optim import MultiStepLR | |
>>> scheduler = MultiStepLR(milestones=[1, 2], optimizer=optimizer) | |
>>> # Single built list schedulers | |
>>> scheduler = [MultiStepLR(milestones=[1, 2], optimizer=optimizer)] | |
>>> # dict of built scheduler | |
>>> scheduler = dict(linear1=MultiStepLR(milestones=[1, 2], optimizer=optimizer), | |
>>> linear2=MultiStepLR(milestones=[1, 2], optimizer=optimizer)) | |
>>> # dict of built list schedulers | |
>>> scheduler = dict(linear1=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)], | |
>>> linear2=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)]) | |
Args: | |
param_scheduler (dict or list): The original parameter scheduler. | |
""" # noqa: E501 | |
if param_scheduler is None: | |
return | |
if isinstance(param_scheduler, _ParamScheduler): | |
return | |
if is_seq_of(param_scheduler, _ParamScheduler): | |
return | |
if is_seq_of(param_scheduler, dict): | |
for _param_scheduler in param_scheduler: | |
assert 'type' in _param_scheduler, ( | |
'Each parameter scheduler should contain the key type, ' | |
f'but got {_param_scheduler}') | |
elif isinstance(param_scheduler, dict): | |
if 'type' not in param_scheduler: | |
for key, _param_scheduler in param_scheduler.items(): | |
assert isinstance( | |
_param_scheduler, | |
(dict, tuple, list, _ParamScheduler)), ( | |
'Each value of `param_scheduler` should be a ' | |
f'dict or a list, but got {_param_scheduler} with ' | |
f'type {type(_ParamScheduler)}') | |
else: | |
raise TypeError( | |
'`param_scheduler` should be a `_ParamScheduler`, `dict`, ' | |
f'list or a tuple, but got {type(param_scheduler)}. If ' | |
'`param_scheduler` is a list of dict, it means a list of ' | |
'scheduler configs for single optimizer. If it is a dict and ' | |
'contains key `type`, it means a scheduler config for a ' | |
'single optimizer. If it does not contain key `type`, it ' | |
'means multiple lists of schedulers for multiple optimizers.') | |
def _log_env(self, env_cfg: dict) -> None: | |
"""Logging environment information of the current task. | |
Args: | |
env_cfg (dict): The environment config of the runner. | |
""" | |
# Collect and log environment information. | |
env = collect_env() | |
runtime_env = OrderedDict() | |
runtime_env.update(env_cfg) | |
runtime_env.update(self._randomness_cfg) | |
runtime_env['seed'] = self._seed | |
runtime_env['Distributed launcher'] = self._launcher | |
runtime_env['Distributed training'] = self._distributed | |
runtime_env['GPU number'] = self._world_size | |
env_info = '\n ' + '\n '.join(f'{k}: {v}' | |
for k, v in env.items()) | |
runtime_env_info = '\n ' + '\n '.join( | |
f'{k}: {v}' for k, v in runtime_env.items()) | |
dash_line = '-' * 60 | |
self.logger.info('\n' + dash_line + '\nSystem environment:' + | |
env_info + '\n' | |
'\nRuntime environment:' + runtime_env_info + '\n' + | |
dash_line + '\n') | |
if self.cfg._cfg_dict: | |
self.logger.info(f'Config:\n{self.cfg.pretty_text}') | |
def _maybe_compile(self, target: str) -> None: | |
"""Use `torch.compile` to optimize model/wrapped_model.""" | |
compile_cfg = self.cfg.get('compile', None) | |
if compile_cfg is None: | |
# no compile options given, won't compile | |
return | |
if isinstance(compile_cfg, bool): | |
if not compile_cfg: | |
# compile=False, compilation is disabled | |
return | |
# compile=True, use default configurations | |
compile_cfg = dict() | |
assert digit_version(TORCH_VERSION) >= digit_version('2.0.0'), ( | |
'PyTorch >= 2.0.0 is required to enable torch.compile') | |
assert isinstance(compile_cfg, dict), ( | |
f'`compile` should be a dict or bool, got {type(compile_cfg)}') | |
func = getattr(self.model, target) | |
compiled_func = torch.compile(func, **compile_cfg) | |
setattr(self.model, target, compiled_func) | |
self.logger.info('Model has been "compiled". The first few iterations' | |
' will be slow, please be patient.') | |