Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import collections.abc | |
import functools | |
import itertools | |
import logging | |
import re | |
import subprocess | |
import textwrap | |
import warnings | |
from collections import abc | |
from importlib import import_module | |
from inspect import getfullargspec, ismodule | |
from itertools import repeat | |
from typing import Any, Callable, Optional, Type, Union | |
# From PyTorch internals | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_1tuple = _ntuple(1) | |
to_2tuple = _ntuple(2) | |
to_3tuple = _ntuple(3) | |
to_4tuple = _ntuple(4) | |
to_ntuple = _ntuple | |
def is_str(x): | |
"""Whether the input is an string instance. | |
Note: This method is deprecated since python 2 is no longer supported. | |
""" | |
return isinstance(x, str) | |
def import_modules_from_strings(imports, allow_failed_imports=False): | |
"""Import modules from the given list of strings. | |
Args: | |
imports (list | str | None): The given module names to be imported. | |
allow_failed_imports (bool): If True, the failed imports will return | |
None. Otherwise, an ImportError is raise. Defaults to False. | |
Returns: | |
list[module] | module | None: The imported modules. | |
Examples: | |
>>> osp, sys = import_modules_from_strings( | |
... ['os.path', 'sys']) | |
>>> import os.path as osp_ | |
>>> import sys as sys_ | |
>>> assert osp == osp_ | |
>>> assert sys == sys_ | |
""" | |
if not imports: | |
return | |
single_import = False | |
if isinstance(imports, str): | |
single_import = True | |
imports = [imports] | |
if not isinstance(imports, list): | |
raise TypeError( | |
f'custom_imports must be a list but got type {type(imports)}') | |
imported = [] | |
for imp in imports: | |
if not isinstance(imp, str): | |
raise TypeError( | |
f'{imp} is of type {type(imp)} and cannot be imported.') | |
try: | |
imported_tmp = import_module(imp) | |
except ImportError: | |
if allow_failed_imports: | |
warnings.warn(f'{imp} failed to import and is ignored.', | |
UserWarning) | |
imported_tmp = None | |
else: | |
raise ImportError(f'Failed to import {imp}') | |
imported.append(imported_tmp) | |
if single_import: | |
imported = imported[0] | |
return imported | |
def iter_cast(inputs, dst_type, return_type=None): | |
"""Cast elements of an iterable object into some type. | |
Args: | |
inputs (Iterable): The input object. | |
dst_type (type): Destination type. | |
return_type (type, optional): If specified, the output object will be | |
converted to this type, otherwise an iterator. | |
Returns: | |
iterator or specified type: The converted object. | |
""" | |
if not isinstance(inputs, abc.Iterable): | |
raise TypeError('inputs must be an iterable object') | |
if not isinstance(dst_type, type): | |
raise TypeError('"dst_type" must be a valid type') | |
out_iterable = map(dst_type, inputs) | |
if return_type is None: | |
return out_iterable | |
else: | |
return return_type(out_iterable) | |
def list_cast(inputs, dst_type): | |
"""Cast elements of an iterable object into a list of some type. | |
A partial method of :func:`iter_cast`. | |
""" | |
return iter_cast(inputs, dst_type, return_type=list) | |
def tuple_cast(inputs, dst_type): | |
"""Cast elements of an iterable object into a tuple of some type. | |
A partial method of :func:`iter_cast`. | |
""" | |
return iter_cast(inputs, dst_type, return_type=tuple) | |
def is_seq_of(seq: Any, | |
expected_type: Union[Type, tuple], | |
seq_type: Type = None) -> bool: | |
"""Check whether it is a sequence of some type. | |
Args: | |
seq (Sequence): The sequence to be checked. | |
expected_type (type or tuple): Expected type of sequence items. | |
seq_type (type, optional): Expected sequence type. Defaults to None. | |
Returns: | |
bool: Return True if ``seq`` is valid else False. | |
Examples: | |
>>> from mmengine.utils import is_seq_of | |
>>> seq = ['a', 'b', 'c'] | |
>>> is_seq_of(seq, str) | |
True | |
>>> is_seq_of(seq, int) | |
False | |
""" | |
if seq_type is None: | |
exp_seq_type = abc.Sequence | |
else: | |
assert isinstance(seq_type, type) | |
exp_seq_type = seq_type | |
if not isinstance(seq, exp_seq_type): | |
return False | |
for item in seq: | |
if not isinstance(item, expected_type): | |
return False | |
return True | |
def is_list_of(seq, expected_type): | |
"""Check whether it is a list of some type. | |
A partial method of :func:`is_seq_of`. | |
""" | |
return is_seq_of(seq, expected_type, seq_type=list) | |
def is_tuple_of(seq, expected_type): | |
"""Check whether it is a tuple of some type. | |
A partial method of :func:`is_seq_of`. | |
""" | |
return is_seq_of(seq, expected_type, seq_type=tuple) | |
def slice_list(in_list, lens): | |
"""Slice a list into several sub lists by a list of given length. | |
Args: | |
in_list (list): The list to be sliced. | |
lens(int or list): The expected length of each out list. | |
Returns: | |
list: A list of sliced list. | |
""" | |
if isinstance(lens, int): | |
assert len(in_list) % lens == 0 | |
lens = [lens] * int(len(in_list) / lens) | |
if not isinstance(lens, list): | |
raise TypeError('"indices" must be an integer or a list of integers') | |
elif sum(lens) != len(in_list): | |
raise ValueError('sum of lens and list length does not ' | |
f'match: {sum(lens)} != {len(in_list)}') | |
out_list = [] | |
idx = 0 | |
for i in range(len(lens)): | |
out_list.append(in_list[idx:idx + lens[i]]) | |
idx += lens[i] | |
return out_list | |
def concat_list(in_list): | |
"""Concatenate a list of list into a single list. | |
Args: | |
in_list (list): The list of list to be merged. | |
Returns: | |
list: The concatenated flat list. | |
""" | |
return list(itertools.chain(*in_list)) | |
def apply_to(data: Any, expr: Callable, apply_func: Callable): | |
"""Apply function to each element in dict, list or tuple that matches with | |
the expression. | |
For examples, if you want to convert each element in a list of dict from | |
`np.ndarray` to `Tensor`. You can use the following code: | |
Examples: | |
>>> from mmengine.utils import apply_to | |
>>> import numpy as np | |
>>> import torch | |
>>> data = dict(array=[np.array(1)]) # {'array': [array(1)]} | |
>>> result = apply_to(data, lambda x: isinstance(x, np.ndarray), lambda x: torch.from_numpy(x)) | |
>>> print(result) # {'array': [tensor(1)]} | |
Args: | |
data (Any): Data to be applied. | |
expr (Callable): Expression to tell which data should be applied with | |
the function. It should return a boolean. | |
apply_func (Callable): Function applied to data. | |
Returns: | |
Any: The data after applying. | |
""" # noqa: E501 | |
if isinstance(data, dict): | |
# Keep the original dict type | |
res = type(data)() | |
for key, value in data.items(): | |
res[key] = apply_to(value, expr, apply_func) | |
return res | |
elif isinstance(data, tuple) and hasattr(data, '_fields'): | |
# namedtuple | |
return type(data)(*(apply_to(sample, expr, apply_func) for sample in data)) # type: ignore # noqa: E501 # yapf:disable | |
elif isinstance(data, (tuple, list)): | |
return type(data)(apply_to(sample, expr, apply_func) for sample in data) # type: ignore # noqa: E501 # yapf:disable | |
elif expr(data): | |
return apply_func(data) | |
else: | |
return data | |
def check_prerequisites( | |
prerequisites, | |
checker, | |
msg_tmpl='Prerequisites "{}" are required in method "{}" but not ' | |
'found, please install them first.'): # yapf: disable | |
"""A decorator factory to check if prerequisites are satisfied. | |
Args: | |
prerequisites (str of list[str]): Prerequisites to be checked. | |
checker (callable): The checker method that returns True if a | |
prerequisite is meet, False otherwise. | |
msg_tmpl (str): The message template with two variables. | |
Returns: | |
decorator: A specific decorator. | |
""" | |
def wrap(func): | |
def wrapped_func(*args, **kwargs): | |
requirements = [prerequisites] if isinstance( | |
prerequisites, str) else prerequisites | |
missing = [] | |
for item in requirements: | |
if not checker(item): | |
missing.append(item) | |
if missing: | |
print(msg_tmpl.format(', '.join(missing), func.__name__)) | |
raise RuntimeError('Prerequisites not meet.') | |
else: | |
return func(*args, **kwargs) | |
return wrapped_func | |
return wrap | |
def _check_py_package(package): | |
try: | |
import_module(package) | |
except ImportError: | |
return False | |
else: | |
return True | |
def _check_executable(cmd): | |
if subprocess.call(f'which {cmd}', shell=True) != 0: | |
return False | |
else: | |
return True | |
def requires_package(prerequisites): | |
"""A decorator to check if some python packages are installed. | |
Example: | |
>>> @requires_package('numpy') | |
>>> func(arg1, args): | |
>>> return numpy.zeros(1) | |
array([0.]) | |
>>> @requires_package(['numpy', 'non_package']) | |
>>> func(arg1, args): | |
>>> return numpy.zeros(1) | |
ImportError | |
""" | |
return check_prerequisites(prerequisites, checker=_check_py_package) | |
def requires_executable(prerequisites): | |
"""A decorator to check if some executable files are installed. | |
Example: | |
>>> @requires_executable('ffmpeg') | |
>>> func(arg1, args): | |
>>> print(1) | |
1 | |
""" | |
return check_prerequisites(prerequisites, checker=_check_executable) | |
def deprecated_api_warning(name_dict: dict, | |
cls_name: Optional[str] = None) -> Callable: | |
"""A decorator to check if some arguments are deprecate and try to replace | |
deprecate src_arg_name to dst_arg_name. | |
Args: | |
name_dict(dict): | |
key (str): Deprecate argument names. | |
val (str): Expected argument names. | |
Returns: | |
func: New function. | |
""" | |
def api_warning_wrapper(old_func): | |
def new_func(*args, **kwargs): | |
# get the arg spec of the decorated method | |
args_info = getfullargspec(old_func) | |
# get name of the function | |
func_name = old_func.__name__ | |
if cls_name is not None: | |
func_name = f'{cls_name}.{func_name}' | |
if args: | |
arg_names = args_info.args[:len(args)] | |
for src_arg_name, dst_arg_name in name_dict.items(): | |
if src_arg_name in arg_names: | |
warnings.warn( | |
f'"{src_arg_name}" is deprecated in ' | |
f'`{func_name}`, please use "{dst_arg_name}" ' | |
'instead', DeprecationWarning) | |
arg_names[arg_names.index(src_arg_name)] = dst_arg_name | |
if kwargs: | |
for src_arg_name, dst_arg_name in name_dict.items(): | |
if src_arg_name in kwargs: | |
assert dst_arg_name not in kwargs, ( | |
f'The expected behavior is to replace ' | |
f'the deprecated key `{src_arg_name}` to ' | |
f'new key `{dst_arg_name}`, but got them ' | |
f'in the arguments at the same time, which ' | |
f'is confusing. `{src_arg_name} will be ' | |
f'deprecated in the future, please ' | |
f'use `{dst_arg_name}` instead.') | |
warnings.warn( | |
f'"{src_arg_name}" is deprecated in ' | |
f'`{func_name}`, please use "{dst_arg_name}" ' | |
'instead', DeprecationWarning) | |
kwargs[dst_arg_name] = kwargs.pop(src_arg_name) | |
# apply converted arguments to the decorated method | |
output = old_func(*args, **kwargs) | |
return output | |
return new_func | |
return api_warning_wrapper | |
def is_method_overridden(method: str, base_class: type, | |
derived_class: Union[type, Any]) -> bool: | |
"""Check if a method of base class is overridden in derived class. | |
Args: | |
method (str): the method name to check. | |
base_class (type): the class of the base class. | |
derived_class (type | Any): the class or instance of the derived class. | |
""" | |
assert isinstance(base_class, type), \ | |
"base_class doesn't accept instance, Please pass class instead." | |
if not isinstance(derived_class, type): | |
derived_class = derived_class.__class__ | |
base_method = getattr(base_class, method) | |
derived_method = getattr(derived_class, method) | |
return derived_method != base_method | |
def has_method(obj: object, method: str) -> bool: | |
"""Check whether the object has a method. | |
Args: | |
method (str): The method name to check. | |
obj (object): The object to check. | |
Returns: | |
bool: True if the object has the method else False. | |
""" | |
return hasattr(obj, method) and callable(getattr(obj, method)) | |
def deprecated_function(since: str, removed_in: str, | |
instructions: str) -> Callable: | |
"""Marks functions as deprecated. | |
Throw a warning when a deprecated function is called, and add a note in the | |
docstring. Modified from https://github.com/pytorch/pytorch/blob/master/torch/onnx/_deprecation.py | |
Args: | |
since (str): The version when the function was first deprecated. | |
removed_in (str): The version when the function will be removed. | |
instructions (str): The action users should take. | |
Returns: | |
Callable: A new function, which will be deprecated soon. | |
""" # noqa: E501 | |
from mmengine import print_log | |
def decorator(function): | |
def wrapper(*args, **kwargs): | |
print_log( | |
f"'{function.__module__}.{function.__name__}' " | |
f'is deprecated in version {since} and will be ' | |
f'removed in version {removed_in}. Please {instructions}.', | |
logger='current', | |
level=logging.WARNING, | |
) | |
return function(*args, **kwargs) | |
indent = ' ' | |
# Add a deprecation note to the docstring. | |
docstring = function.__doc__ or '' | |
# Add a note to the docstring. | |
deprecation_note = textwrap.dedent(f"""\ | |
.. deprecated:: {since} | |
Deprecated and will be removed in version {removed_in}. | |
Please {instructions}. | |
""") | |
# Split docstring at first occurrence of newline | |
pattern = '\n\n' | |
summary_and_body = re.split(pattern, docstring, 1) | |
if len(summary_and_body) > 1: | |
summary, body = summary_and_body | |
body = textwrap.indent(textwrap.dedent(body), indent) | |
summary = '\n'.join( | |
[textwrap.dedent(string) for string in summary.split('\n')]) | |
summary = textwrap.indent(summary, prefix=indent) | |
# Dedent the body. We cannot do this with the presence of the | |
# summary because the body contains leading whitespaces when the | |
# summary does not. | |
new_docstring_parts = [ | |
deprecation_note, '\n\n', summary, '\n\n', body | |
] | |
else: | |
summary = summary_and_body[0] | |
summary = '\n'.join( | |
[textwrap.dedent(string) for string in summary.split('\n')]) | |
summary = textwrap.indent(summary, prefix=indent) | |
new_docstring_parts = [deprecation_note, '\n\n', summary] | |
wrapper.__doc__ = ''.join(new_docstring_parts) | |
return wrapper | |
return decorator | |
def get_object_from_string(obj_name: str): | |
"""Get object from name. | |
Args: | |
obj_name (str): The name of the object. | |
Examples: | |
>>> get_object_from_string('torch.optim.sgd.SGD') | |
>>> torch.optim.sgd.SGD | |
""" | |
parts = iter(obj_name.split('.')) | |
module_name = next(parts) | |
# import module | |
while True: | |
try: | |
module = import_module(module_name) | |
part = next(parts) | |
# mmcv.ops has nms.py and nms function at the same time. So the | |
# function will have a higher priority | |
obj = getattr(module, part, None) | |
if obj is not None and not ismodule(obj): | |
break | |
module_name = f'{module_name}.{part}' | |
except StopIteration: | |
# if obj is a module | |
return module | |
except ImportError: | |
return None | |
# get class or attribute from module | |
obj = module | |
while True: | |
try: | |
obj = getattr(obj, part) | |
part = next(parts) | |
except StopIteration: | |
return obj | |
except AttributeError: | |
return None | |