Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain.llms import CTransformers | |
from langchain import PromptTemplate, LLMChain | |
config = {'max_new_tokens': 100, 'temperature': 0} | |
llm = CTransformers(model='TheBloke/Mistral-7B-Instruct-v0.1-GGUF', model_file="mistral-7b-instruct-v0.1.Q4_K_M.gguf", config=config) | |
template = """<s>[INST] You are a helpful, respectful and honest assistant. Answer exactly in few words from the context | |
Answer the question below from context below : | |
{context} | |
{question} [/INST] </s> | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["question","context"]) | |
llm_chain = LLMChain(prompt=prompt, llm=llm) | |
def question_answer(context: str, question: str): | |
print(context, question) | |
response = llm_chain.run({"question":question, "context":context}) | |
print(response) | |
return response | |
theme = gr.themes.Default( | |
primary_hue="indigo", | |
secondary_hue="pink", | |
neutral_hue="slate", | |
) | |
with gr.Blocks(theme=theme) as interface: | |
context = gr.Textbox(lines=5, placeholder="On August 10 said that its arm JSW Neo Energy has agreed to buy a portfolio of 1753 mega watt renewable energy generation capacity from Mytrah Energy India Pvt Ltd for Rs 10,530 crore.", label="Context") | |
question = gr.Textbox(placeholder="What company is buyer and seller here", label="Question") | |
answer = gr.Textbox(placeholder="Answer will be here", label="Answer") | |
ask_button = gr.Button("Ask (this might take a minute since it's using CPU)") | |
ask_button.click(fn=question_answer, inputs=[context, question], outputs=answer) | |
interface.launch(debug=True) |