|
import os |
|
import cv2 |
|
import time |
|
import yaml |
|
import torch |
|
import datetime |
|
from tensorboardX import SummaryWriter |
|
import torchvision.transforms as tvf |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
from nets.l2net import Quad_L2Net |
|
from nets.geom import getK, getWarp, _grid_positions |
|
from nets.loss import make_detector_loss |
|
from nets.score import extract_kpts |
|
from datasets.noise_simulator import NoiseSimulator |
|
from nets.l2net import Quad_L2Net |
|
|
|
|
|
class SingleTrainerNoRel: |
|
def __init__(self, config, device, loader, job_name, start_cnt): |
|
self.config = config |
|
self.device = device |
|
self.loader = loader |
|
|
|
|
|
os.makedirs('./runs/', exist_ok=True) |
|
if job_name != '': |
|
self.log_dir = f'runs/{job_name}' |
|
else: |
|
self.log_dir = f'runs/{datetime.datetime.now().strftime("%m-%d-%H%M%S")}' |
|
|
|
self.writer = SummaryWriter(self.log_dir) |
|
with open(f'{self.log_dir}/config.yaml', 'w') as f: |
|
yaml.dump(config, f) |
|
|
|
if config['network']['input_type'] == 'gray' or config['network']['input_type'] == 'raw-gray': |
|
self.model = eval(f'{config["network"]["model"]}(inchan=1)').to(device) |
|
elif config['network']['input_type'] == 'rgb' or config['network']['input_type'] == 'raw-demosaic': |
|
self.model = eval(f'{config["network"]["model"]}(inchan=3)').to(device) |
|
elif config['network']['input_type'] == 'raw': |
|
self.model = eval(f'{config["network"]["model"]}(inchan=4)').to(device) |
|
else: |
|
raise NotImplementedError() |
|
|
|
|
|
self.noise_maker = NoiseSimulator(device) |
|
|
|
|
|
self.cnt = 0 |
|
if start_cnt != 0: |
|
self.model.load_state_dict(torch.load(f'{self.log_dir}/model_{start_cnt:06d}.pth')) |
|
self.cnt = start_cnt + 1 |
|
|
|
|
|
if self.config['training']['optimizer'] == 'SGD': |
|
self.optimizer = torch.optim.SGD( |
|
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}], |
|
lr=self.config['training']['lr'], |
|
momentum=self.config['training']['momentum'], |
|
weight_decay=self.config['training']['weight_decay'], |
|
) |
|
elif self.config['training']['optimizer'] == 'Adam': |
|
self.optimizer = torch.optim.Adam( |
|
[{'params': self.model.parameters(), 'initial_lr': self.config['training']['lr']}], |
|
lr=self.config['training']['lr'], |
|
weight_decay=self.config['training']['weight_decay'] |
|
) |
|
else: |
|
raise NotImplementedError() |
|
|
|
self.lr_scheduler = torch.optim.lr_scheduler.StepLR( |
|
self.optimizer, |
|
step_size=self.config['training']['lr_step'], |
|
gamma=self.config['training']['lr_gamma'], |
|
last_epoch=start_cnt |
|
) |
|
for param_tensor in self.model.state_dict(): |
|
print(param_tensor, "\t", self.model.state_dict()[param_tensor].size()) |
|
|
|
|
|
def save(self, iter_num): |
|
torch.save(self.model.state_dict(), f'{self.log_dir}/model_{iter_num:06d}.pth') |
|
|
|
def load(self, path): |
|
self.model.load_state_dict(torch.load(path)) |
|
|
|
def train(self): |
|
self.model.train() |
|
|
|
for epoch in range(2): |
|
for batch_idx, inputs in enumerate(self.loader): |
|
self.optimizer.zero_grad() |
|
t = time.time() |
|
|
|
|
|
img0_ori, noise_img0_ori = self.preprocess_noise_pair(inputs['img0'], self.cnt) |
|
img1_ori, noise_img1_ori = self.preprocess_noise_pair(inputs['img1'], self.cnt) |
|
|
|
img0 = img0_ori.permute(0, 3, 1, 2).float().to(self.device) |
|
img1 = img1_ori.permute(0, 3, 1, 2).float().to(self.device) |
|
|
|
if self.config['network']['input_type'] == 'rgb': |
|
|
|
RGB_mean = [0.485, 0.456, 0.406] |
|
RGB_std = [0.229, 0.224, 0.225] |
|
norm_RGB = tvf.Normalize(mean=RGB_mean, std=RGB_std) |
|
img0 = norm_RGB(img0) |
|
img1 = norm_RGB(img1) |
|
noise_img0 = norm_RGB(noise_img0) |
|
noise_img1 = norm_RGB(noise_img1) |
|
|
|
elif self.config['network']['input_type'] == 'gray': |
|
|
|
img0 = torch.mean(img0, dim=1, keepdim=True) |
|
img1 = torch.mean(img1, dim=1, keepdim=True) |
|
noise_img0 = torch.mean(noise_img0, dim=1, keepdim=True) |
|
noise_img1 = torch.mean(noise_img1, dim=1, keepdim=True) |
|
norm_gray0 = tvf.Normalize(mean=img0.mean(), std=img0.std()) |
|
norm_gray1 = tvf.Normalize(mean=img1.mean(), std=img1.std()) |
|
img0 = norm_gray0(img0) |
|
img1 = norm_gray1(img1) |
|
noise_img0 = norm_gray0(noise_img0) |
|
noise_img1 = norm_gray1(noise_img1) |
|
|
|
elif self.config['network']['input_type'] == 'raw': |
|
|
|
pass |
|
|
|
elif self.config['network']['input_type'] == 'raw-demosaic': |
|
|
|
pass |
|
|
|
else: |
|
raise NotImplementedError() |
|
|
|
desc0, score_map0, _, _ = self.model(img0) |
|
desc1, score_map1, _, _ = self.model(img1) |
|
|
|
cur_feat_size0 = torch.tensor(score_map0.shape[2:]) |
|
cur_feat_size1 = torch.tensor(score_map1.shape[2:]) |
|
|
|
desc0 = desc0.permute(0, 2, 3, 1) |
|
desc1 = desc1.permute(0, 2, 3, 1) |
|
score_map0 = score_map0.permute(0, 2, 3, 1) |
|
score_map1 = score_map1.permute(0, 2, 3, 1) |
|
|
|
r_K0 = getK(inputs['ori_img_size0'], cur_feat_size0, inputs['K0']).to(self.device) |
|
r_K1 = getK(inputs['ori_img_size1'], cur_feat_size1, inputs['K1']).to(self.device) |
|
|
|
pos0 = _grid_positions( |
|
cur_feat_size0[0], cur_feat_size0[1], img0.shape[0]).to(self.device) |
|
|
|
pos0, pos1, _ = getWarp( |
|
pos0, inputs['rel_pose'].to(self.device), inputs['depth0'].to(self.device), |
|
r_K0, inputs['depth1'].to(self.device), r_K1, img0.shape[0]) |
|
|
|
det_structured_loss, det_accuracy = make_detector_loss( |
|
pos0, pos1, desc0, desc1, |
|
score_map0, score_map1, img0.shape[0], |
|
self.config['network']['use_corr_n'], |
|
self.config['network']['loss_type'], |
|
self.config |
|
) |
|
|
|
total_loss = det_structured_loss |
|
|
|
self.writer.add_scalar("acc/normal_acc", det_accuracy, self.cnt) |
|
self.writer.add_scalar("loss/total_loss", total_loss, self.cnt) |
|
self.writer.add_scalar("loss/det_loss_normal", det_structured_loss, self.cnt) |
|
print('iter={},\tloss={:.4f},\tacc={:.4f},\t{:.4f}s/iter'.format(self.cnt, total_loss, det_accuracy, time.time()-t)) |
|
|
|
if det_structured_loss != 0: |
|
total_loss.backward() |
|
self.optimizer.step() |
|
self.lr_scheduler.step() |
|
|
|
if self.cnt % 100 == 0: |
|
indices0, scores0 = extract_kpts( |
|
score_map0.permute(0, 3, 1, 2), |
|
k=self.config['network']['det']['kpt_n'], |
|
score_thld=self.config['network']['det']['score_thld'], |
|
nms_size=self.config['network']['det']['nms_size'], |
|
eof_size=self.config['network']['det']['eof_size'], |
|
edge_thld=self.config['network']['det']['edge_thld'] |
|
) |
|
indices1, scores1 = extract_kpts( |
|
score_map1.permute(0, 3, 1, 2), |
|
k=self.config['network']['det']['kpt_n'], |
|
score_thld=self.config['network']['det']['score_thld'], |
|
nms_size=self.config['network']['det']['nms_size'], |
|
eof_size=self.config['network']['det']['eof_size'], |
|
edge_thld=self.config['network']['det']['edge_thld'] |
|
) |
|
|
|
if self.config['network']['input_type'] == 'raw': |
|
kpt_img0 = self.showKeyPoints(img0_ori[0][..., :3] * 255., indices0[0]) |
|
kpt_img1 = self.showKeyPoints(img1_ori[0][..., :3] * 255., indices1[0]) |
|
else: |
|
kpt_img0 = self.showKeyPoints(img0_ori[0] * 255., indices0[0]) |
|
kpt_img1 = self.showKeyPoints(img1_ori[0] * 255., indices1[0]) |
|
|
|
self.writer.add_image('img0/kpts', kpt_img0, self.cnt, dataformats='HWC') |
|
self.writer.add_image('img1/kpts', kpt_img1, self.cnt, dataformats='HWC') |
|
self.writer.add_image('img0/score_map', score_map0[0], self.cnt, dataformats='HWC') |
|
self.writer.add_image('img1/score_map', score_map1[0], self.cnt, dataformats='HWC') |
|
|
|
if self.cnt % 10000 == 0: |
|
self.save(self.cnt) |
|
|
|
self.cnt += 1 |
|
|
|
|
|
def showKeyPoints(self, img, indices): |
|
key_points = cv2.KeyPoint_convert(indices.cpu().float().numpy()[:, ::-1]) |
|
img = img.numpy().astype('uint8') |
|
img = cv2.drawKeypoints(img, key_points, None, color=(0, 255, 0)) |
|
return img |
|
|
|
|
|
def preprocess(self, img, iter_idx): |
|
if not self.config['network']['noise'] and 'raw' not in self.config['network']['input_type']: |
|
return img |
|
|
|
raw = self.noise_maker.rgb2raw(img, batched=True) |
|
|
|
if self.config['network']['noise']: |
|
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep'] |
|
raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True) |
|
|
|
if self.config['network']['input_type'] == 'raw': |
|
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True)) |
|
|
|
if self.config['network']['input_type'] == 'raw-demosaic': |
|
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True)) |
|
|
|
rgb = self.noise_maker.raw2rgb(raw, batched=True) |
|
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray': |
|
return torch.tensor(rgb) |
|
|
|
raise NotImplementedError() |
|
|
|
|
|
def preprocess_noise_pair(self, img, iter_idx): |
|
assert self.config['network']['noise'] |
|
|
|
raw = self.noise_maker.rgb2raw(img, batched=True) |
|
|
|
ratio_dec = min(self.config['network']['noise_maxstep'], iter_idx) / self.config['network']['noise_maxstep'] |
|
noise_raw = self.noise_maker.raw2noisyRaw(raw, ratio_dec=ratio_dec, batched=True) |
|
|
|
if self.config['network']['input_type'] == 'raw': |
|
return torch.tensor(self.noise_maker.raw2packedRaw(raw, batched=True)), \ |
|
torch.tensor(self.noise_maker.raw2packedRaw(noise_raw, batched=True)) |
|
|
|
if self.config['network']['input_type'] == 'raw-demosaic': |
|
return torch.tensor(self.noise_maker.raw2demosaicRaw(raw, batched=True)), \ |
|
torch.tensor(self.noise_maker.raw2demosaicRaw(noise_raw, batched=True)) |
|
|
|
noise_rgb = self.noise_maker.raw2rgb(noise_raw, batched=True) |
|
if self.config['network']['input_type'] == 'rgb' or self.config['network']['input_type'] == 'gray': |
|
return img, torch.tensor(noise_rgb) |
|
|
|
raise NotImplementedError() |
|
|