|
import os |
|
import glob |
|
import pickle |
|
from posixpath import basename |
|
import numpy as np |
|
import h5py |
|
from .base_dumper import BaseDumper |
|
|
|
import sys |
|
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) |
|
sys.path.insert(0, ROOT_DIR) |
|
import utils |
|
|
|
class scannet(BaseDumper): |
|
def get_seqs(self): |
|
self.pair_list=np.loadtxt('../assets/scannet_eval_list.txt',dtype=str) |
|
self.seq_list=np.unique(np.asarray([path.split('/')[0] for path in self.pair_list[:,0]],dtype=str)) |
|
self.dump_seq,self.img_seq=[],[] |
|
for seq in self.seq_list: |
|
dump_dir=os.path.join(self.config['feature_dump_dir'],seq) |
|
cur_img_seq=glob.glob(os.path.join(os.path.join(self.config['rawdata_dir'],seq,'img','*.jpg'))) |
|
cur_dump_seq=[os.path.join(dump_dir,path.split('/')[-1])+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])\ |
|
+'.hdf5' for path in cur_img_seq] |
|
self.img_seq+=cur_img_seq |
|
self.dump_seq+=cur_dump_seq |
|
|
|
def format_dump_folder(self): |
|
if not os.path.exists(self.config['feature_dump_dir']): |
|
os.mkdir(self.config['feature_dump_dir']) |
|
for seq in self.seq_list: |
|
seq_dir=os.path.join(self.config['feature_dump_dir'],seq) |
|
if not os.path.exists(seq_dir): |
|
os.mkdir(seq_dir) |
|
|
|
def format_dump_data(self): |
|
print('Formatting data...') |
|
self.data={'K1':[],'K2':[],'R':[],'T':[],'e':[],'f':[],'fea_path1':[],'fea_path2':[],'img_path1':[],'img_path2':[]} |
|
|
|
for pair in self.pair_list: |
|
img_path1,img_path2=pair[0],pair[1] |
|
seq=img_path1.split('/')[0] |
|
index1,index2=int(img_path1.split('/')[-1][:-4]),int(img_path2.split('/')[-1][:-4]) |
|
ex1,ex2=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'extrinsic',str(index1)+'.txt'),dtype=float),\ |
|
np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'extrinsic',str(index2)+'.txt'),dtype=float) |
|
K1,K2=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'intrinsic',str(index1)+'.txt'),dtype=float),\ |
|
np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'intrinsic',str(index2)+'.txt'),dtype=float) |
|
|
|
|
|
relative_extrinsic=np.matmul(np.linalg.inv(ex2),ex1) |
|
dR,dt=relative_extrinsic[:3,:3],relative_extrinsic[:3,3] |
|
dt /= np.sqrt(np.sum(dt**2)) |
|
|
|
e_gt_unnorm = np.reshape(np.matmul( |
|
np.reshape(utils.evaluation_utils.np_skew_symmetric(dt.astype('float64').reshape(1, 3)), (3, 3)), |
|
np.reshape(dR.astype('float64'), (3, 3))), (3, 3)) |
|
e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) |
|
f_gt_unnorm=np.linalg.inv(K2.T)@e_gt@np.linalg.inv(K1) |
|
f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm) |
|
|
|
self.data['K1'].append(K1),self.data['K2'].append(K2) |
|
self.data['R'].append(dR),self.data['T'].append(dt) |
|
self.data['e'].append(e_gt),self.data['f'].append(f_gt) |
|
|
|
dump_seq_dir=os.path.join(self.config['feature_dump_dir'],seq) |
|
fea_path1,fea_path2=os.path.join(dump_seq_dir,img_path1.split('/')[-1]+'_'+self.config['extractor']['name'] |
|
+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5'),\ |
|
os.path.join(dump_seq_dir,img_path2.split('/')[-1]+'_'+self.config['extractor']['name'] |
|
+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5') |
|
self.data['img_path1'].append(img_path1),self.data['img_path2'].append(img_path2) |
|
self.data['fea_path1'].append(fea_path1),self.data['fea_path2'].append(fea_path2) |
|
|
|
self.form_standard_dataset() |
|
|