|
""" |
|
File to process and load the Holicity dataset. |
|
""" |
|
import os |
|
import math |
|
import copy |
|
import PIL |
|
import numpy as np |
|
import h5py |
|
import cv2 |
|
import pickle |
|
from skimage.io import imread |
|
from skimage import color |
|
import torch |
|
import torch.utils.data.dataloader as torch_loader |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
|
|
from ..config.project_config import Config as cfg |
|
from .transforms import photometric_transforms as photoaug |
|
from .transforms import homographic_transforms as homoaug |
|
from .transforms.utils import random_scaling |
|
from .synthetic_util import get_line_heatmap |
|
from ..misc.geometry_utils import warp_points, mask_points |
|
from ..misc.train_utils import parse_h5_data |
|
|
|
|
|
def holicity_collate_fn(batch): |
|
""" Customized collate_fn. """ |
|
batch_keys = ["image", "junction_map", "valid_mask", "heatmap", |
|
"heatmap_pos", "heatmap_neg", "homography", |
|
"line_points", "line_indices"] |
|
list_keys = ["junctions", "line_map", "line_map_pos", |
|
"line_map_neg", "file_key"] |
|
|
|
outputs = {} |
|
for data_key in batch[0].keys(): |
|
batch_match = sum([_ in data_key for _ in batch_keys]) |
|
list_match = sum([_ in data_key for _ in list_keys]) |
|
|
|
if batch_match > 0 and list_match == 0: |
|
outputs[data_key] = torch_loader.default_collate( |
|
[b[data_key] for b in batch]) |
|
elif batch_match == 0 and list_match > 0: |
|
outputs[data_key] = [b[data_key] for b in batch] |
|
elif batch_match == 0 and list_match == 0: |
|
continue |
|
else: |
|
raise ValueError( |
|
"[Error] A key matches batch keys and list keys simultaneously.") |
|
|
|
return outputs |
|
|
|
|
|
class HolicityDataset(Dataset): |
|
def __init__(self, mode="train", config=None): |
|
super(HolicityDataset, self).__init__() |
|
if not mode in ["train", "test"]: |
|
raise ValueError( |
|
"[Error] Unknown mode for Holicity dataset. Only 'train' and 'test'.") |
|
self.mode = mode |
|
|
|
if config is None: |
|
self.config = self.get_default_config() |
|
else: |
|
self.config = config |
|
|
|
self.default_config = self.get_default_config() |
|
|
|
|
|
self.dataset_name = self.get_dataset_name() |
|
self.cache_name = self.get_cache_name() |
|
self.cache_path = cfg.holicity_cache_path |
|
|
|
|
|
self.gt_source = None |
|
if "gt_source_%s"%(self.mode) in self.config: |
|
self.gt_source = self.config.get("gt_source_%s"%(self.mode)) |
|
self.gt_source = os.path.join(cfg.export_dataroot, self.gt_source) |
|
|
|
if not os.path.exists(self.gt_source): |
|
raise ValueError( |
|
"[Error] The specified ground truth source does not exist.") |
|
|
|
|
|
print("[Info] Initializing Holicity dataset...") |
|
self.filename_dataset, self.datapoints = self.construct_dataset() |
|
|
|
|
|
self.dataset_length = len(self.datapoints) |
|
|
|
|
|
print("[Info] Successfully initialized dataset") |
|
print("\t Name: Holicity") |
|
print("\t Mode: %s" %(self.mode)) |
|
print("\t Gt: %s" %(self.config.get("gt_source_%s"%(self.mode), |
|
"None"))) |
|
print("\t Counts: %d" %(self.dataset_length)) |
|
print("----------------------------------------") |
|
|
|
|
|
|
|
|
|
def construct_dataset(self): |
|
""" Construct the dataset (from scratch or from cache). """ |
|
|
|
|
|
if self.check_dataset_cache(): |
|
print("\t Found filename cache %s at %s"%(self.cache_name, |
|
self.cache_path)) |
|
print("\t Load filename cache...") |
|
filename_dataset, datapoints = self.get_filename_dataset_from_cache() |
|
|
|
else: |
|
print("\t Can't find filename cache ...") |
|
print("\t Create filename dataset from scratch...") |
|
filename_dataset, datapoints = self.get_filename_dataset() |
|
print("\t Create filename dataset cache...") |
|
self.create_filename_dataset_cache(filename_dataset, datapoints) |
|
|
|
return filename_dataset, datapoints |
|
|
|
def create_filename_dataset_cache(self, filename_dataset, datapoints): |
|
""" Create filename dataset cache for faster initialization. """ |
|
|
|
if not os.path.exists(self.cache_path): |
|
os.makedirs(self.cache_path) |
|
|
|
cache_file_path = os.path.join(self.cache_path, self.cache_name) |
|
data = { |
|
"filename_dataset": filename_dataset, |
|
"datapoints": datapoints |
|
} |
|
with open(cache_file_path, "wb") as f: |
|
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) |
|
|
|
def get_filename_dataset_from_cache(self): |
|
""" Get filename dataset from cache. """ |
|
|
|
cache_file_path = os.path.join(self.cache_path, self.cache_name) |
|
with open(cache_file_path, "rb") as f: |
|
data = pickle.load(f) |
|
|
|
return data["filename_dataset"], data["datapoints"] |
|
|
|
def get_filename_dataset(self): |
|
""" Get the path to the dataset. """ |
|
if self.mode == "train": |
|
|
|
dataset_path = [os.path.join(cfg.holicity_dataroot, p) |
|
for p in self.config["train_splits"]] |
|
else: |
|
|
|
dataset_path = [os.path.join(cfg.holicity_dataroot, "2018-03")] |
|
|
|
|
|
image_paths = [] |
|
for folder in dataset_path: |
|
image_paths += [os.path.join(folder, img) |
|
for img in os.listdir(folder) |
|
if os.path.splitext(img)[-1] == ".jpg"] |
|
image_paths = sorted(image_paths) |
|
|
|
|
|
for idx in range(len(image_paths)): |
|
image_path = image_paths[idx] |
|
if not (os.path.exists(image_path)): |
|
raise ValueError( |
|
"[Error] The image does not exist. %s"%(image_path)) |
|
|
|
|
|
num_pad = int(math.ceil(math.log10(len(image_paths))) + 1) |
|
filename_dataset = {} |
|
for idx in range(len(image_paths)): |
|
|
|
key = self.get_padded_filename(num_pad, idx) |
|
|
|
filename_dataset[key] = {"image": image_paths[idx]} |
|
|
|
|
|
datapoints = list(sorted(filename_dataset.keys())) |
|
|
|
return filename_dataset, datapoints |
|
|
|
def get_dataset_name(self): |
|
""" Get dataset name from dataset config / default config. """ |
|
dataset_name = self.config.get("dataset_name", |
|
self.default_config["dataset_name"]) |
|
dataset_name = dataset_name + "_%s" % self.mode |
|
return dataset_name |
|
|
|
def get_cache_name(self): |
|
""" Get cache name from dataset config / default config. """ |
|
dataset_name = self.config.get("dataset_name", |
|
self.default_config["dataset_name"]) |
|
dataset_name = dataset_name + "_%s" % self.mode |
|
|
|
cache_name = dataset_name + "_cache.pkl" |
|
return cache_name |
|
|
|
def check_dataset_cache(self): |
|
""" Check if dataset cache exists. """ |
|
cache_file_path = os.path.join(self.cache_path, self.cache_name) |
|
if os.path.exists(cache_file_path): |
|
return True |
|
else: |
|
return False |
|
|
|
@staticmethod |
|
def get_padded_filename(num_pad, idx): |
|
""" Get the padded filename using adaptive padding. """ |
|
file_len = len("%d" % (idx)) |
|
filename = "0" * (num_pad - file_len) + "%d" % (idx) |
|
return filename |
|
|
|
def get_default_config(self): |
|
""" Get the default configuration. """ |
|
return { |
|
"dataset_name": "holicity", |
|
"train_split": "2018-01", |
|
"add_augmentation_to_all_splits": False, |
|
"preprocessing": { |
|
"resize": [512, 512], |
|
"blur_size": 11 |
|
}, |
|
"augmentation":{ |
|
"photometric":{ |
|
"enable": False |
|
}, |
|
"homographic":{ |
|
"enable": False |
|
}, |
|
}, |
|
} |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
def get_data_from_path(data_path): |
|
""" Get data from the information from filename dataset. """ |
|
output = {} |
|
|
|
|
|
image_path = data_path["image"] |
|
image = imread(image_path) |
|
output["image"] = image |
|
|
|
return output |
|
|
|
@staticmethod |
|
def convert_line_map(lcnn_line_map, num_junctions): |
|
""" Convert the line_pos or line_neg |
|
(represented by two junction indexes) to our line map. """ |
|
|
|
line_map = np.zeros([num_junctions, num_junctions]) |
|
|
|
|
|
for idx in range(lcnn_line_map.shape[0]): |
|
index1 = lcnn_line_map[idx, 0] |
|
index2 = lcnn_line_map[idx, 1] |
|
|
|
line_map[index1, index2] = 1 |
|
line_map[index2, index1] = 1 |
|
|
|
return line_map |
|
|
|
@staticmethod |
|
def junc_to_junc_map(junctions, image_size): |
|
""" Convert junction points to junction maps. """ |
|
junctions = np.round(junctions).astype(np.int) |
|
|
|
junctions[:, 0] = np.clip(junctions[:, 0], 0., image_size[0]-1) |
|
junctions[:, 1] = np.clip(junctions[:, 1], 0., image_size[1]-1) |
|
|
|
|
|
junc_map = np.zeros([image_size[0], image_size[1]]) |
|
junc_map[junctions[:, 0], junctions[:, 1]] = 1 |
|
|
|
return junc_map[..., None].astype(np.int) |
|
|
|
def parse_transforms(self, names, all_transforms): |
|
""" Parse the transform. """ |
|
trans = all_transforms if (names == 'all') \ |
|
else (names if isinstance(names, list) else [names]) |
|
assert set(trans) <= set(all_transforms) |
|
return trans |
|
|
|
def get_photo_transform(self): |
|
""" Get list of photometric transforms (according to the config). """ |
|
|
|
photo_config = self.config["augmentation"]["photometric"] |
|
if not photo_config["enable"]: |
|
raise ValueError( |
|
"[Error] Photometric augmentation is not enabled.") |
|
|
|
|
|
trans_lst = self.parse_transforms(photo_config["primitives"], |
|
photoaug.available_augmentations) |
|
trans_config_lst = [photo_config["params"].get(p, {}) |
|
for p in trans_lst] |
|
|
|
|
|
photometric_trans_lst = [ |
|
getattr(photoaug, trans)(**conf) \ |
|
for (trans, conf) in zip(trans_lst, trans_config_lst) |
|
] |
|
|
|
return photometric_trans_lst |
|
|
|
def get_homo_transform(self): |
|
""" Get homographic transforms (according to the config). """ |
|
|
|
homo_config = self.config["augmentation"]["homographic"]["params"] |
|
if not self.config["augmentation"]["homographic"]["enable"]: |
|
raise ValueError( |
|
"[Error] Homographic augmentation is not enabled") |
|
|
|
|
|
image_shape = self.config["preprocessing"]["resize"] |
|
|
|
|
|
try: |
|
min_label_tmp = self.config["generation"]["min_label_len"] |
|
except: |
|
min_label_tmp = None |
|
|
|
|
|
if isinstance(min_label_tmp, float): |
|
min_label_len = min_label_tmp * min(image_shape) |
|
|
|
elif isinstance(min_label_tmp, int): |
|
scale_ratio = (self.config["preprocessing"]["resize"] |
|
/ self.config["generation"]["image_size"][0]) |
|
min_label_len = (self.config["generation"]["min_label_len"] |
|
* scale_ratio) |
|
|
|
else: |
|
min_label_len = 0 |
|
|
|
|
|
homographic_trans = homoaug.homography_transform( |
|
image_shape, homo_config, 0, min_label_len) |
|
|
|
return homographic_trans |
|
|
|
def get_line_points(self, junctions, line_map, H1=None, H2=None, |
|
img_size=None, warp=False): |
|
""" Sample evenly points along each line segments |
|
and keep track of line idx. """ |
|
if np.sum(line_map) == 0: |
|
|
|
line_indices = np.zeros(self.config["max_pts"], dtype=int) |
|
line_points = np.zeros((self.config["max_pts"], 2), dtype=float) |
|
return line_points, line_indices |
|
|
|
|
|
junc_indices = np.array( |
|
[[i, j] for (i, j) in zip(*np.where(line_map)) if j > i]) |
|
line_segments = np.stack([junctions[junc_indices[:, 0]], |
|
junctions[junc_indices[:, 1]]], axis=1) |
|
|
|
line_lengths = np.linalg.norm( |
|
line_segments[:, 0] - line_segments[:, 1], axis=1) |
|
|
|
|
|
|
|
num_samples = np.minimum(line_lengths // self.config["min_dist_pts"], |
|
self.config["max_num_samples"]) |
|
line_points = [] |
|
line_indices = [] |
|
cur_line_idx = 1 |
|
for n in np.arange(2, self.config["max_num_samples"] + 1): |
|
|
|
cur_line_seg = line_segments[num_samples == n] |
|
line_points_x = np.linspace(cur_line_seg[:, 0, 0], |
|
cur_line_seg[:, 1, 0], |
|
n, axis=-1).flatten() |
|
line_points_y = np.linspace(cur_line_seg[:, 0, 1], |
|
cur_line_seg[:, 1, 1], |
|
n, axis=-1).flatten() |
|
jitter = self.config.get("jittering", 0) |
|
if jitter: |
|
|
|
angles = np.arctan2( |
|
cur_line_seg[:, 1, 0] - cur_line_seg[:, 0, 0], |
|
cur_line_seg[:, 1, 1] - cur_line_seg[:, 0, 1]).repeat(n) |
|
jitter_hyp = (np.random.rand(len(angles)) * 2 - 1) * jitter |
|
line_points_x += jitter_hyp * np.sin(angles) |
|
line_points_y += jitter_hyp * np.cos(angles) |
|
line_points.append(np.stack([line_points_x, line_points_y], axis=-1)) |
|
|
|
num_cur_lines = len(cur_line_seg) |
|
line_idx = np.arange(cur_line_idx, cur_line_idx + num_cur_lines) |
|
line_indices.append(line_idx.repeat(n)) |
|
cur_line_idx += num_cur_lines |
|
line_points = np.concatenate(line_points, |
|
axis=0)[:self.config["max_pts"]] |
|
line_indices = np.concatenate(line_indices, |
|
axis=0)[:self.config["max_pts"]] |
|
|
|
|
|
|
|
if warp and H2 is not None: |
|
warp_points2 = warp_points(line_points, H2) |
|
line_points = warp_points(line_points, H1) |
|
mask = mask_points(line_points, img_size) |
|
mask2 = mask_points(warp_points2, img_size) |
|
mask = mask * mask2 |
|
|
|
elif warp and H2 is None: |
|
line_points = warp_points(line_points, H1) |
|
mask = mask_points(line_points, img_size) |
|
else: |
|
if H1 is not None: |
|
raise ValueError("[Error] Wrong combination of homographies.") |
|
|
|
warped_points = warp_points(line_points, H1) |
|
mask = mask_points(warped_points, img_size) |
|
line_points = line_points[mask] |
|
line_indices = line_indices[mask] |
|
|
|
|
|
|
|
line_indices = np.concatenate([line_indices, np.zeros( |
|
self.config["max_pts"] - len(line_indices))], axis=0) |
|
line_points = np.concatenate( |
|
[line_points, |
|
np.zeros((self.config["max_pts"] - len(line_points), 2), |
|
dtype=float)], axis=0) |
|
|
|
return line_points, line_indices |
|
|
|
def export_preprocessing(self, data, numpy=False): |
|
""" Preprocess the exported data. """ |
|
|
|
image = data["image"] |
|
image_size = image.shape[:2] |
|
|
|
|
|
if not(list(image_size) == self.config["preprocessing"]["resize"]): |
|
|
|
size_old = list(image.shape)[:2] |
|
|
|
image = cv2.resize( |
|
image, tuple(self.config['preprocessing']['resize'][::-1]), |
|
interpolation=cv2.INTER_LINEAR) |
|
image = np.array(image, dtype=np.uint8) |
|
|
|
|
|
if self.config["gray_scale"]: |
|
image = (color.rgb2gray(image) * 255.).astype(np.uint8) |
|
|
|
image = photoaug.normalize_image()(image) |
|
|
|
|
|
to_tensor = transforms.ToTensor() |
|
if not numpy: |
|
return {"image": to_tensor(image)} |
|
else: |
|
return {"image": image} |
|
|
|
def train_preprocessing_exported( |
|
self, data, numpy=False, disable_homoaug=False, desc_training=False, |
|
H1=None, H1_scale=None, H2=None, scale=1., h_crop=None, w_crop=None): |
|
""" Train preprocessing for the exported labels. """ |
|
data = copy.deepcopy(data) |
|
|
|
image = data["image"] |
|
junctions = data["junctions"] |
|
line_map = data["line_map"] |
|
image_size = image.shape[:2] |
|
|
|
|
|
if h_crop is None or w_crop is None: |
|
h_crop, w_crop = 0, 0 |
|
if scale > 1: |
|
H, W = self.config["preprocessing"]["resize"] |
|
H_scale, W_scale = round(H * scale), round(W * scale) |
|
if H_scale > H: |
|
h_crop = np.random.randint(H_scale - H) |
|
if W_scale > W: |
|
w_crop = np.random.randint(W_scale - W) |
|
|
|
|
|
if not(list(image_size) == self.config["preprocessing"]["resize"]): |
|
|
|
size_old = list(image.shape)[:2] |
|
|
|
image = cv2.resize( |
|
image, tuple(self.config['preprocessing']['resize'][::-1]), |
|
interpolation=cv2.INTER_LINEAR) |
|
image = np.array(image, dtype=np.uint8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1) |
|
image_size = image.shape[:2] |
|
heatmap = get_line_heatmap(junctions_xy, line_map, image_size) |
|
|
|
|
|
if self.config["gray_scale"]: |
|
image = (color.rgb2gray(image) * 255.).astype(np.uint8) |
|
|
|
|
|
|
|
|
|
if self.config["augmentation"]["photometric"]["enable"]: |
|
photo_trans_lst = self.get_photo_transform() |
|
|
|
np.random.shuffle(photo_trans_lst) |
|
image_transform = transforms.Compose( |
|
photo_trans_lst + [photoaug.normalize_image()]) |
|
else: |
|
image_transform = photoaug.normalize_image() |
|
image = image_transform(image) |
|
|
|
|
|
if scale != 1.: |
|
image, junctions, line_map, valid_mask = random_scaling( |
|
image, junctions, line_map, scale, |
|
h_crop=h_crop, w_crop=w_crop) |
|
else: |
|
|
|
valid_mask = np.ones(image_size) |
|
|
|
|
|
outputs = {} |
|
|
|
to_tensor = transforms.ToTensor() |
|
|
|
|
|
warp = (self.config["augmentation"]["homographic"]["enable"] |
|
and disable_homoaug == False) |
|
if warp: |
|
homo_trans = self.get_homo_transform() |
|
|
|
if H1 is None: |
|
homo_outputs = homo_trans(image, junctions, line_map, |
|
valid_mask=valid_mask) |
|
else: |
|
homo_outputs = homo_trans( |
|
image, junctions, line_map, homo=H1, scale=H1_scale, |
|
valid_mask=valid_mask) |
|
homography_mat = homo_outputs["homo"] |
|
|
|
|
|
if H1 is None: |
|
H1 = homo_outputs["homo"] |
|
|
|
|
|
if desc_training: |
|
line_points, line_indices = self.get_line_points( |
|
junctions, line_map, H1=H1, H2=H2, |
|
img_size=image_size, warp=warp) |
|
|
|
|
|
if warp: |
|
junctions = homo_outputs["junctions"] |
|
image = homo_outputs["warped_image"] |
|
line_map = homo_outputs["line_map"] |
|
valid_mask = homo_outputs["valid_mask"] |
|
heatmap = homo_outputs["warped_heatmap"] |
|
|
|
|
|
if not numpy: |
|
outputs["homography_mat"] = to_tensor( |
|
homography_mat).to(torch.float32)[0, ...] |
|
else: |
|
outputs["homography_mat"] = homography_mat.astype(np.float32) |
|
|
|
junction_map = self.junc_to_junc_map(junctions, image_size) |
|
|
|
if not numpy: |
|
outputs.update({ |
|
"image": to_tensor(image), |
|
"junctions": to_tensor(junctions).to(torch.float32)[0, ...], |
|
"junction_map": to_tensor(junction_map).to(torch.int), |
|
"line_map": to_tensor(line_map).to(torch.int32)[0, ...], |
|
"heatmap": to_tensor(heatmap).to(torch.int32), |
|
"valid_mask": to_tensor(valid_mask).to(torch.int32) |
|
}) |
|
if desc_training: |
|
outputs.update({ |
|
"line_points": to_tensor( |
|
line_points).to(torch.float32)[0], |
|
"line_indices": torch.tensor(line_indices, |
|
dtype=torch.int) |
|
}) |
|
else: |
|
outputs.update({ |
|
"image": image, |
|
"junctions": junctions.astype(np.float32), |
|
"junction_map": junction_map.astype(np.int32), |
|
"line_map": line_map.astype(np.int32), |
|
"heatmap": heatmap.astype(np.int32), |
|
"valid_mask": valid_mask.astype(np.int32) |
|
}) |
|
if desc_training: |
|
outputs.update({ |
|
"line_points": line_points.astype(np.float32), |
|
"line_indices": line_indices.astype(int) |
|
}) |
|
|
|
return outputs |
|
|
|
def preprocessing_exported_paired_desc(self, data, numpy=False, scale=1.): |
|
""" Train preprocessing for paired data for the exported labels |
|
for descriptor training. """ |
|
outputs = {} |
|
|
|
|
|
h_crop, w_crop = 0, 0 |
|
if scale > 1: |
|
H, W = self.config["preprocessing"]["resize"] |
|
H_scale, W_scale = round(H * scale), round(W * scale) |
|
if H_scale > H: |
|
h_crop = np.random.randint(H_scale - H) |
|
if W_scale > W: |
|
w_crop = np.random.randint(W_scale - W) |
|
|
|
|
|
homo_config = self.config["augmentation"]["homographic"]["params"] |
|
image_shape = self.config["preprocessing"]["resize"] |
|
ref_H, ref_scale = homoaug.sample_homography(image_shape, |
|
**homo_config) |
|
|
|
|
|
target_data = self.train_preprocessing_exported( |
|
data, numpy=numpy, desc_training=True, H1=None, H2=ref_H, |
|
scale=scale, h_crop=h_crop, w_crop=w_crop) |
|
|
|
|
|
ref_data = self.train_preprocessing_exported( |
|
data, numpy=numpy, desc_training=True, H1=ref_H, |
|
H1_scale=ref_scale, H2=target_data['homography_mat'].numpy(), |
|
scale=scale, h_crop=h_crop, w_crop=w_crop) |
|
|
|
|
|
for key, val in ref_data.items(): |
|
outputs["ref_" + key] = val |
|
|
|
|
|
for key, val in target_data.items(): |
|
outputs["target_" + key] = val |
|
|
|
return outputs |
|
|
|
def test_preprocessing_exported(self, data, numpy=False): |
|
""" Test preprocessing for the exported labels. """ |
|
data = copy.deepcopy(data) |
|
|
|
image = data["image"] |
|
junctions = data["junctions"] |
|
line_map = data["line_map"] |
|
image_size = image.shape[:2] |
|
|
|
|
|
if not(list(image_size) == self.config["preprocessing"]["resize"]): |
|
|
|
size_old = list(image.shape)[:2] |
|
|
|
image = cv2.resize( |
|
image, tuple(self.config['preprocessing']['resize'][::-1]), |
|
interpolation=cv2.INTER_LINEAR) |
|
image = np.array(image, dtype=np.uint8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.config["gray_scale"]: |
|
image = (color.rgb2gray(image) * 255.).astype(np.uint8) |
|
|
|
|
|
image_transform = photoaug.normalize_image() |
|
image = image_transform(image) |
|
|
|
|
|
junctions_xy = np.flip(np.round(junctions).astype(np.int32), axis=1) |
|
image_size = image.shape[:2] |
|
heatmap = get_line_heatmap(junctions_xy, line_map, image_size) |
|
|
|
|
|
valid_mask = np.ones(image_size) |
|
|
|
junction_map = self.junc_to_junc_map(junctions, image_size) |
|
|
|
|
|
to_tensor = transforms.ToTensor() |
|
if not numpy: |
|
outputs = { |
|
"image": to_tensor(image), |
|
"junctions": to_tensor(junctions).to(torch.float32)[0, ...], |
|
"junction_map": to_tensor(junction_map).to(torch.int), |
|
"line_map": to_tensor(line_map).to(torch.int32)[0, ...], |
|
"heatmap": to_tensor(heatmap).to(torch.int32), |
|
"valid_mask": to_tensor(valid_mask).to(torch.int32) |
|
} |
|
else: |
|
outputs = { |
|
"image": image, |
|
"junctions": junctions.astype(np.float32), |
|
"junction_map": junction_map.astype(np.int32), |
|
"line_map": line_map.astype(np.int32), |
|
"heatmap": heatmap.astype(np.int32), |
|
"valid_mask": valid_mask.astype(np.int32) |
|
} |
|
|
|
return outputs |
|
|
|
def __len__(self): |
|
return self.dataset_length |
|
|
|
def get_data_from_key(self, file_key): |
|
""" Get data from file_key. """ |
|
|
|
if not file_key in self.filename_dataset.keys(): |
|
raise ValueError( |
|
"[Error] the specified key is not in the dataset.") |
|
|
|
|
|
data_path = self.filename_dataset[file_key] |
|
|
|
data = self.get_data_from_path(data_path) |
|
|
|
|
|
if (self.mode == "train" |
|
or self.config["add_augmentation_to_all_splits"]): |
|
data = self.train_preprocessing(data, numpy=True) |
|
else: |
|
data = self.test_preprocessing(data, numpy=True) |
|
|
|
|
|
data["file_key"] = file_key |
|
|
|
return data |
|
|
|
def __getitem__(self, idx): |
|
"""Return data |
|
file_key: str, keys used to retrieve data from the filename dataset. |
|
image: torch.float, C*H*W range 0~1, |
|
junctions: torch.float, N*2, |
|
junction_map: torch.int32, 1*H*W range 0 or 1, |
|
line_map: torch.int32, N*N range 0 or 1, |
|
heatmap: torch.int32, 1*H*W range 0 or 1, |
|
valid_mask: torch.int32, 1*H*W range 0 or 1 |
|
""" |
|
|
|
file_key = self.datapoints[idx] |
|
data_path = self.filename_dataset[file_key] |
|
|
|
data = self.get_data_from_path(data_path) |
|
|
|
if self.gt_source: |
|
with h5py.File(self.gt_source, "r") as f: |
|
exported_label = parse_h5_data(f[file_key]) |
|
|
|
data["junctions"] = exported_label["junctions"] |
|
data["line_map"] = exported_label["line_map"] |
|
|
|
|
|
return_type = self.config.get("return_type", "single") |
|
if self.gt_source is None: |
|
|
|
data = self.export_preprocessing(data) |
|
elif (self.mode == "train" |
|
or self.config["add_augmentation_to_all_splits"]): |
|
|
|
if self.config["augmentation"]["random_scaling"]["enable"]: |
|
scale_range = self.config["augmentation"]["random_scaling"]["range"] |
|
|
|
scale = np.random.uniform(min(scale_range), max(scale_range)) |
|
else: |
|
scale = 1. |
|
if self.mode == "train" and return_type == "paired_desc": |
|
data = self.preprocessing_exported_paired_desc(data, |
|
scale=scale) |
|
else: |
|
data = self.train_preprocessing_exported(data, scale=scale) |
|
else: |
|
if return_type == "paired_desc": |
|
data = self.preprocessing_exported_paired_desc(data) |
|
else: |
|
data = self.test_preprocessing_exported(data) |
|
|
|
|
|
data["file_key"] = file_key |
|
|
|
return data |
|
|
|
|