|
|
|
|
|
|
|
|
|
import os, pdb |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from .dataset import Dataset, CatDataset |
|
from tools.transforms import instanciate_transformation |
|
from tools.transforms_tools import persp_apply |
|
|
|
|
|
class PairDataset (Dataset): |
|
""" A dataset that serves image pairs with ground-truth pixel correspondences. |
|
""" |
|
def __init__(self): |
|
Dataset.__init__(self) |
|
self.npairs = 0 |
|
|
|
def get_filename(self, img_idx, root=None): |
|
if is_pair(img_idx): |
|
return tuple(Dataset.get_filename(self, i, root) for i in img_idx) |
|
return Dataset.get_filename(self, img_idx, root) |
|
|
|
def get_image(self, img_idx): |
|
if is_pair(img_idx): |
|
return tuple(Dataset.get_image(self, i) for i in img_idx) |
|
return Dataset.get_image(self, img_idx) |
|
|
|
def get_corres_filename(self, pair_idx): |
|
raise NotImplementedError() |
|
|
|
def get_homography_filename(self, pair_idx): |
|
raise NotImplementedError() |
|
|
|
def get_flow_filename(self, pair_idx): |
|
raise NotImplementedError() |
|
|
|
def get_mask_filename(self, pair_idx): |
|
raise NotImplementedError() |
|
|
|
def get_pair(self, idx, output=()): |
|
""" returns (img1, img2, `metadata`) |
|
|
|
`metadata` is a dict() that can contain: |
|
flow: optical flow |
|
aflow: absolute flow |
|
corres: list of 2d-2d correspondences |
|
mask: boolean image of flow validity (in the first image) |
|
... |
|
""" |
|
raise NotImplementedError() |
|
|
|
def get_paired_images(self): |
|
fns = set() |
|
for i in range(self.npairs): |
|
a,b = self.image_pairs[i] |
|
fns.add(self.get_filename(a)) |
|
fns.add(self.get_filename(b)) |
|
return fns |
|
|
|
def __len__(self): |
|
return self.npairs |
|
|
|
def __repr__(self): |
|
res = 'Dataset: %s\n' % self.__class__.__name__ |
|
res += ' %d images,' % self.nimg |
|
res += ' %d image pairs' % self.npairs |
|
res += '\n root: %s...\n' % self.root |
|
return res |
|
|
|
@staticmethod |
|
def _flow2png(flow, path): |
|
flow = np.clip(np.around(16*flow), -2**15, 2**15-1) |
|
bytes = np.int16(flow).view(np.uint8) |
|
Image.fromarray(bytes).save(path) |
|
return flow / 16 |
|
|
|
@staticmethod |
|
def _png2flow(path): |
|
try: |
|
flow = np.asarray(Image.open(path)).view(np.int16) |
|
return np.float32(flow) / 16 |
|
except: |
|
raise IOError("Error loading flow for %s" % path) |
|
|
|
|
|
|
|
class StillPairDataset (PairDataset): |
|
""" A dataset of 'still' image pairs. |
|
By overloading a normal image dataset, it appends the get_pair(i) function |
|
that serves trivial image pairs (img1, img2) where img1 == img2 == get_image(i). |
|
""" |
|
def get_pair(self, pair_idx, output=()): |
|
if isinstance(output, str): output = output.split() |
|
img1, img2 = map(self.get_image, self.image_pairs[pair_idx]) |
|
|
|
W,H = img1.size |
|
sx = img2.size[0] / float(W) |
|
sy = img2.size[1] / float(H) |
|
|
|
meta = {} |
|
if 'aflow' in output or 'flow' in output: |
|
mgrid = np.mgrid[0:H, 0:W][::-1].transpose(1,2,0).astype(np.float32) |
|
meta['aflow'] = mgrid * (sx,sy) |
|
meta['flow'] = meta['aflow'] - mgrid |
|
|
|
if 'mask' in output: |
|
meta['mask'] = np.ones((H,W), np.uint8) |
|
|
|
if 'homography' in output: |
|
meta['homography'] = np.diag(np.float32([sx, sy, 1])) |
|
|
|
return img1, img2, meta |
|
|
|
|
|
|
|
class SyntheticPairDataset (PairDataset): |
|
""" A synthetic generator of image pairs. |
|
Given a normal image dataset, it constructs pairs using random homographies & noise. |
|
""" |
|
def __init__(self, dataset, scale='', distort=''): |
|
self.attach_dataset(dataset) |
|
self.distort = instanciate_transformation(distort) |
|
self.scale = instanciate_transformation(scale) |
|
|
|
def attach_dataset(self, dataset): |
|
assert isinstance(dataset, Dataset) and not isinstance(dataset, PairDataset) |
|
self.dataset = dataset |
|
self.npairs = dataset.nimg |
|
self.get_image = dataset.get_image |
|
self.get_key = dataset.get_key |
|
self.get_filename = dataset.get_filename |
|
self.root = None |
|
|
|
def make_pair(self, img): |
|
return img, img |
|
|
|
def get_pair(self, i, output=('aflow')): |
|
""" Procedure: |
|
This function applies a series of random transformations to one original image |
|
to form a synthetic image pairs with perfect ground-truth. |
|
""" |
|
if isinstance(output, str): |
|
output = output.split() |
|
|
|
original_img = self.dataset.get_image(i) |
|
|
|
scaled_image = self.scale(original_img) |
|
scaled_image, scaled_image2 = self.make_pair(scaled_image) |
|
scaled_and_distorted_image = self.distort( |
|
dict(img=scaled_image2, persp=(1,0,0,0,1,0,0,0))) |
|
W, H = scaled_image.size |
|
trf = scaled_and_distorted_image['persp'] |
|
|
|
meta = dict() |
|
if 'aflow' in output or 'flow' in output: |
|
|
|
xy = np.mgrid[0:H,0:W][::-1].reshape(2,H*W).T |
|
aflow = np.float32(persp_apply(trf, xy).reshape(H,W,2)) |
|
meta['flow'] = aflow - xy.reshape(H,W,2) |
|
meta['aflow'] = aflow |
|
|
|
if 'homography' in output: |
|
meta['homography'] = np.float32(trf+(1,)).reshape(3,3) |
|
|
|
return scaled_image, scaled_and_distorted_image['img'], meta |
|
|
|
def __repr__(self): |
|
res = 'Dataset: %s\n' % self.__class__.__name__ |
|
res += ' %d images and pairs' % self.npairs |
|
res += '\n root: %s...' % self.dataset.root |
|
res += '\n Scale: %s' % (repr(self.scale).replace('\n','')) |
|
res += '\n Distort: %s' % (repr(self.distort).replace('\n','')) |
|
return res + '\n' |
|
|
|
|
|
|
|
class TransformedPairs (PairDataset): |
|
""" Automatic data augmentation for pre-existing image pairs. |
|
Given an image pair dataset, it generates synthetically jittered pairs |
|
using random transformations (e.g. homographies & noise). |
|
""" |
|
def __init__(self, dataset, trf=''): |
|
self.attach_dataset(dataset) |
|
self.trf = instanciate_transformation(trf) |
|
|
|
def attach_dataset(self, dataset): |
|
assert isinstance(dataset, PairDataset) |
|
self.dataset = dataset |
|
self.nimg = dataset.nimg |
|
self.npairs = dataset.npairs |
|
self.get_image = dataset.get_image |
|
self.get_key = dataset.get_key |
|
self.get_filename = dataset.get_filename |
|
self.root = None |
|
|
|
def get_pair(self, i, output=''): |
|
""" Procedure: |
|
This function applies a series of random transformations to one original image |
|
to form a synthetic image pairs with perfect ground-truth. |
|
""" |
|
img_a, img_b_, metadata = self.dataset.get_pair(i, output) |
|
|
|
img_b = self.trf({'img': img_b_, 'persp':(1,0,0,0,1,0,0,0)}) |
|
trf = img_b['persp'] |
|
|
|
if 'aflow' in metadata or 'flow' in metadata: |
|
aflow = metadata['aflow'] |
|
aflow[:] = persp_apply(trf, aflow.reshape(-1,2)).reshape(aflow.shape) |
|
W, H = img_a.size |
|
flow = metadata['flow'] |
|
mgrid = np.mgrid[0:H, 0:W][::-1].transpose(1,2,0).astype(np.float32) |
|
flow[:] = aflow - mgrid |
|
|
|
if 'corres' in metadata: |
|
corres = metadata['corres'] |
|
corres[:,1] = persp_apply(trf, corres[:,1]) |
|
|
|
if 'homography' in metadata: |
|
|
|
trf_ = np.float32(trf+(1,)).reshape(3,3) |
|
metadata['homography'] = np.float32(trf_ @ metadata['homography']) |
|
|
|
return img_a, img_b['img'], metadata |
|
|
|
def __repr__(self): |
|
res = 'Transformed Pairs from %s\n' % type(self.dataset).__name__ |
|
res += ' %d images and pairs' % self.npairs |
|
res += '\n root: %s...' % self.dataset.root |
|
res += '\n transform: %s' % (repr(self.trf).replace('\n','')) |
|
return res + '\n' |
|
|
|
|
|
|
|
class CatPairDataset (CatDataset): |
|
''' Concatenation of several pair datasets. |
|
''' |
|
def __init__(self, *datasets): |
|
CatDataset.__init__(self, *datasets) |
|
pair_offsets = [0] |
|
for db in datasets: |
|
pair_offsets.append(db.npairs) |
|
self.pair_offsets = np.cumsum(pair_offsets) |
|
self.npairs = self.pair_offsets[-1] |
|
|
|
def __len__(self): |
|
return self.npairs |
|
|
|
def __repr__(self): |
|
fmt_str = "CatPairDataset(" |
|
for db in self.datasets: |
|
fmt_str += str(db).replace("\n"," ") + ', ' |
|
return fmt_str[:-2] + ')' |
|
|
|
def pair_which(self, i): |
|
pos = np.searchsorted(self.pair_offsets, i, side='right')-1 |
|
assert pos < self.npairs, 'Bad pair index %d >= %d' % (i, self.npairs) |
|
return pos, i - self.pair_offsets[pos] |
|
|
|
def pair_call(self, func, i, *args, **kwargs): |
|
b, j = self.pair_which(i) |
|
return getattr(self.datasets[b], func)(j, *args, **kwargs) |
|
|
|
def get_pair(self, i, output=()): |
|
b, i = self.pair_which(i) |
|
return self.datasets[b].get_pair(i, output) |
|
|
|
def get_flow_filename(self, pair_idx, *args, **kwargs): |
|
return self.pair_call('get_flow_filename', pair_idx, *args, **kwargs) |
|
|
|
def get_mask_filename(self, pair_idx, *args, **kwargs): |
|
return self.pair_call('get_mask_filename', pair_idx, *args, **kwargs) |
|
|
|
def get_corres_filename(self, pair_idx, *args, **kwargs): |
|
return self.pair_call('get_corres_filename', pair_idx, *args, **kwargs) |
|
|
|
|
|
|
|
def is_pair(x): |
|
if isinstance(x, (tuple,list)) and len(x) == 2: |
|
return True |
|
if isinstance(x, np.ndarray) and x.ndim == 1 and x.shape[0] == 2: |
|
return True |
|
return False |
|
|
|
|