|
import os |
|
import glob |
|
import pickle |
|
from posixpath import basename |
|
import numpy as np |
|
import h5py |
|
from .base_dumper import BaseDumper |
|
|
|
import sys |
|
|
|
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) |
|
sys.path.insert(0, ROOT_DIR) |
|
import utils |
|
|
|
|
|
class scannet(BaseDumper): |
|
def get_seqs(self): |
|
self.pair_list = np.loadtxt("../assets/scannet_eval_list.txt", dtype=str) |
|
self.seq_list = np.unique( |
|
np.asarray([path.split("/")[0] for path in self.pair_list[:, 0]], dtype=str) |
|
) |
|
self.dump_seq, self.img_seq = [], [] |
|
for seq in self.seq_list: |
|
dump_dir = os.path.join(self.config["feature_dump_dir"], seq) |
|
cur_img_seq = glob.glob( |
|
os.path.join( |
|
os.path.join(self.config["rawdata_dir"], seq, "img", "*.jpg") |
|
) |
|
) |
|
cur_dump_seq = [ |
|
os.path.join(dump_dir, path.split("/")[-1]) |
|
+ "_" |
|
+ self.config["extractor"]["name"] |
|
+ "_" |
|
+ str(self.config["extractor"]["num_kpt"]) |
|
+ ".hdf5" |
|
for path in cur_img_seq |
|
] |
|
self.img_seq += cur_img_seq |
|
self.dump_seq += cur_dump_seq |
|
|
|
def format_dump_folder(self): |
|
if not os.path.exists(self.config["feature_dump_dir"]): |
|
os.mkdir(self.config["feature_dump_dir"]) |
|
for seq in self.seq_list: |
|
seq_dir = os.path.join(self.config["feature_dump_dir"], seq) |
|
if not os.path.exists(seq_dir): |
|
os.mkdir(seq_dir) |
|
|
|
def format_dump_data(self): |
|
print("Formatting data...") |
|
self.data = { |
|
"K1": [], |
|
"K2": [], |
|
"R": [], |
|
"T": [], |
|
"e": [], |
|
"f": [], |
|
"fea_path1": [], |
|
"fea_path2": [], |
|
"img_path1": [], |
|
"img_path2": [], |
|
} |
|
|
|
for pair in self.pair_list: |
|
img_path1, img_path2 = pair[0], pair[1] |
|
seq = img_path1.split("/")[0] |
|
index1, index2 = int(img_path1.split("/")[-1][:-4]), int( |
|
img_path2.split("/")[-1][:-4] |
|
) |
|
ex1, ex2 = np.loadtxt( |
|
os.path.join( |
|
self.config["rawdata_dir"], seq, "extrinsic", str(index1) + ".txt" |
|
), |
|
dtype=float, |
|
), np.loadtxt( |
|
os.path.join( |
|
self.config["rawdata_dir"], seq, "extrinsic", str(index2) + ".txt" |
|
), |
|
dtype=float, |
|
) |
|
K1, K2 = np.loadtxt( |
|
os.path.join( |
|
self.config["rawdata_dir"], seq, "intrinsic", str(index1) + ".txt" |
|
), |
|
dtype=float, |
|
), np.loadtxt( |
|
os.path.join( |
|
self.config["rawdata_dir"], seq, "intrinsic", str(index2) + ".txt" |
|
), |
|
dtype=float, |
|
) |
|
|
|
relative_extrinsic = np.matmul(np.linalg.inv(ex2), ex1) |
|
dR, dt = relative_extrinsic[:3, :3], relative_extrinsic[:3, 3] |
|
dt /= np.sqrt(np.sum(dt**2)) |
|
|
|
e_gt_unnorm = np.reshape( |
|
np.matmul( |
|
np.reshape( |
|
utils.evaluation_utils.np_skew_symmetric( |
|
dt.astype("float64").reshape(1, 3) |
|
), |
|
(3, 3), |
|
), |
|
np.reshape(dR.astype("float64"), (3, 3)), |
|
), |
|
(3, 3), |
|
) |
|
e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) |
|
f_gt_unnorm = np.linalg.inv(K2.T) @ e_gt @ np.linalg.inv(K1) |
|
f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm) |
|
|
|
self.data["K1"].append(K1), self.data["K2"].append(K2) |
|
self.data["R"].append(dR), self.data["T"].append(dt) |
|
self.data["e"].append(e_gt), self.data["f"].append(f_gt) |
|
|
|
dump_seq_dir = os.path.join(self.config["feature_dump_dir"], seq) |
|
fea_path1, fea_path2 = os.path.join( |
|
dump_seq_dir, |
|
img_path1.split("/")[-1] |
|
+ "_" |
|
+ self.config["extractor"]["name"] |
|
+ "_" |
|
+ str(self.config["extractor"]["num_kpt"]) |
|
+ ".hdf5", |
|
), os.path.join( |
|
dump_seq_dir, |
|
img_path2.split("/")[-1] |
|
+ "_" |
|
+ self.config["extractor"]["name"] |
|
+ "_" |
|
+ str(self.config["extractor"]["num_kpt"]) |
|
+ ".hdf5", |
|
) |
|
self.data["img_path1"].append(img_path1), self.data["img_path2"].append( |
|
img_path2 |
|
) |
|
self.data["fea_path1"].append(fea_path1), self.data["fea_path2"].append( |
|
fea_path2 |
|
) |
|
|
|
self.form_standard_dataset() |
|
|