File size: 14,236 Bytes
69c590e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import json
from tensorflow.keras.models import model_from_json
from networks.layers import AdaIN, AdaptiveAttention
import tensorflow as tf

import numpy as np
import cv2
import math
from skimage import transform as trans
from scipy.signal import convolve2d
from skimage.color import rgb2yuv, yuv2rgb

from PIL import Image


def save_model_internal(model, path, name, num):
    json_model = model.to_json()
    with open(path + name + '.json', "w") as json_file:
        json_file.write(json_model)

    model.save_weights(path + name + '_' + str(num) + '.h5')


def load_model_internal(path, name, num):
    with open(path + name + '.json', 'r') as json_file:
        model_dict = json_file.read()

    mod = model_from_json(model_dict, custom_objects={'AdaIN': AdaIN, 'AdaptiveAttention': AdaptiveAttention})
    mod.load_weights(path + name + '_' + str(num) + '.h5')

    return mod


def save_training_meta(state_dict, path, num):
    with open(path + str(num) + '.json', 'w') as json_file:
        json.dump(state_dict, json_file, indent=2)


def load_training_meta(path, num):
    with open(path + str(num) + '.json', 'r') as json_file:
        state_dict = json.load(json_file)
    return state_dict


def log_info(sw, results_dict, iteration):
    with sw.as_default():
        for key in results_dict.keys():
            tf.summary.scalar(key, results_dict[key], step=iteration)


src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
                 [51.157, 89.050], [57.025, 89.702]],
                dtype=np.float32)
# <--left
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
                 [45.177, 86.190], [64.246, 86.758]],
                dtype=np.float32)

# ---frontal
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
                 [42.463, 87.010], [69.537, 87.010]],
                dtype=np.float32)

# -->right
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
                 [48.167, 86.758], [67.236, 86.190]],
                dtype=np.float32)

# -->right profile
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
                 [55.388, 89.702], [61.257, 89.050]],
                dtype=np.float32)

src = np.array([src1, src2, src3, src4, src5])
src_map = {112: src, 224: src * 2}

# Left eye, right eye, nose, left mouth, right mouth
arcface_src = np.array(
    [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
     [41.5493, 92.3655], [70.7299, 92.2041]],
    dtype=np.float32)

arcface_src = np.expand_dims(arcface_src, axis=0)


def extract_face(img, bb, absolute_center, mode='arcface', extention_rate=0.05, debug=False):
    """Extract face from image given a bounding box"""
    # bbox
    x1, y1, x2, y2 = bb + 60
    adjusted_absolute_center = (absolute_center[0] + 60, absolute_center[1] + 60)
    if debug:
        print(bb + 60)
        x1, y1, x2, y2 = bb
        cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 3)
        cv2.circle(img, absolute_center, 1, (255, 0, 255), 2)
        Image.fromarray(img).show()
        x1, y1, x2, y2 = bb + 60
    # Pad image in case face is out of frame
    padded_img = np.zeros(shape=(248, 248, 3), dtype=np.uint8)
    padded_img[60:-60, 60:-60, :] = img

    if debug:
        cv2.rectangle(padded_img, (x1, y1), (x2, y2), (0, 255, 255), 3)
        cv2.circle(padded_img, adjusted_absolute_center, 1, (255, 255, 255), 2)
        Image.fromarray(padded_img).show()

    y_len = abs(y1 - y2)
    x_len = abs(x1 - x2)

    new_len = (y_len + x_len) // 2

    extension = int(new_len * extention_rate)

    x_adjust = (x_len - new_len) // 2
    y_adjust = (y_len - new_len) // 2

    x_1_adjusted = x1 + x_adjust - extension
    x_2_adjusted = x2 - x_adjust + extension

    if mode == 'arcface':
        y_1_adjusted = y1 - extension
        y_2_adjusted = y2 - 2 * y_adjust + extension
    else:
        y_1_adjusted = y1 + 2 * y_adjust - extension
        y_2_adjusted = y2 + extension

    move_x = adjusted_absolute_center[0] - (x_1_adjusted + x_2_adjusted) // 2
    move_y = adjusted_absolute_center[1] - (y_1_adjusted + y_2_adjusted) // 2

    x_1_adjusted = x_1_adjusted + move_x
    x_2_adjusted = x_2_adjusted + move_x
    y_1_adjusted = y_1_adjusted + move_y
    y_2_adjusted = y_2_adjusted + move_y

    # print(y_1_adjusted, y_2_adjusted, x_1_adjusted, x_2_adjusted)

    return padded_img[y_1_adjusted:y_2_adjusted, x_1_adjusted:x_2_adjusted]


def distance(a, b):
    return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)


def euclidean_distance(a, b):
    x1 = a[0]; y1 = a[1]
    x2 = b[0]; y2 = b[1]
    return np.sqrt(((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1)))


def align_face(img, landmarks, debug=False):
    nose, right_eye, left_eye = landmarks

    left_eye_x = left_eye[0]
    left_eye_y = left_eye[1]

    right_eye_x = right_eye[0]
    right_eye_y = right_eye[1]

    center_eye = ((left_eye[0] + right_eye[0]) // 2, (left_eye[1] + right_eye[1]) // 2)

    if left_eye_y < right_eye_y:
        point_3rd = (right_eye_x, left_eye_y)
        direction = -1
    else:
        point_3rd = (left_eye_x, right_eye_y)
        direction = 1

    if debug:
        cv2.circle(img, point_3rd, 1, (255, 0, 0), 1)
        cv2.circle(img, center_eye, 1, (255, 0, 0), 1)

        cv2.line(img, right_eye, left_eye, (0, 0, 0), 1)
        cv2.line(img, left_eye, point_3rd, (0, 0, 0), 1)
        cv2.line(img, right_eye, point_3rd, (0, 0, 0), 1)

    a = euclidean_distance(left_eye, point_3rd)
    b = euclidean_distance(right_eye, left_eye)
    c = euclidean_distance(right_eye, point_3rd)

    cos_a = (b * b + c * c - a * a) / (2 * b * c)

    angle = np.arccos(cos_a)

    angle = (angle * 180) / np.pi

    if direction == -1:
        angle = 90 - angle
        ang = math.radians(direction * angle)
    else:
        ang = math.radians(direction * angle)
        angle = 0 - angle

    M = cv2.getRotationMatrix2D((64, 64), angle, 1)
    new_img = cv2.warpAffine(img, M, (128, 128),
                            flags=cv2.INTER_CUBIC)

    rotated_nose = (int((nose[0] - 64) * np.cos(ang) - (nose[1] - 64) * np.sin(ang) + 64),
                    int((nose[0] - 64) * np.sin(ang) + (nose[1] - 64) * np.cos(ang) + 64))

    rotated_center_eye = (int((center_eye[0] - 64) * np.cos(ang) - (center_eye[1] - 64) * np.sin(ang) + 64),
                          int((center_eye[0] - 64) * np.sin(ang) + (center_eye[1] - 64) * np.cos(ang) + 64))

    abolute_center = (rotated_center_eye[0], (rotated_nose[1] + rotated_center_eye[1]) // 2)

    if debug:
        cv2.circle(new_img, rotated_nose, 1, (0, 0, 255), 1)
        cv2.circle(new_img, rotated_center_eye, 1, (0, 0, 255), 1)
        cv2.circle(new_img, abolute_center, 1, (0, 0, 255), 1)

    return new_img, abolute_center


def estimate_norm(lmk, image_size=112, mode='arcface', shrink_factor=1.0):
    assert lmk.shape == (5, 2)
    tform = trans.SimilarityTransform()
    lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
    min_M = []
    min_index = []
    min_error = float('inf')
    src_factor = image_size / 112
    if mode == 'arcface':
        src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
        src = src * src_factor
    else:
        src = src_map[image_size] * src_factor
    for i in np.arange(src.shape[0]):
        tform.estimate(lmk, src[i])
        M = tform.params[0:2, :]
        results = np.dot(M, lmk_tran.T)
        results = results.T
        error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
        #         print(error)
        if error < min_error:
            min_error = error
            min_M = M
            min_index = i
    return min_M, min_index


def inverse_estimate_norm(lmk, t_lmk, image_size=112, mode='arcface', shrink_factor=1.0):
    assert lmk.shape == (5, 2)
    tform = trans.SimilarityTransform()
    lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
    min_M = []
    min_index = []
    min_error = float('inf')
    src_factor = image_size / 112
    if mode == 'arcface':
        src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
        src = src * src_factor
    else:
        src = src_map[image_size] * src_factor
    for i in np.arange(src.shape[0]):
        tform.estimate(t_lmk, lmk)
        M = tform.params[0:2, :]
        results = np.dot(M, lmk_tran.T)
        results = results.T
        error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
        #         print(error)
        if error < min_error:
            min_error = error
            min_M = M
            min_index = i
    return min_M, min_index


def norm_crop(img, landmark, image_size=112, mode='arcface', shrink_factor=1.0):
    """
    Align and crop the image based of the facial landmarks in the image. The alignment is done with
    a similarity transformation based of source coordinates.
    :param img: Image to transform.
    :param landmark: Five landmark coordinates in the image.
    :param image_size: Desired output size after transformation.
    :param mode: 'arcface' aligns the face for the use of Arcface facial recognition model. Useful for
    both facial recognition tasks and face swapping tasks.
    :param shrink_factor: Shrink factor that shrinks the source landmark coordinates. This will include more border
    information around the face. Useful when you want to include more background information when performing face swaps.
    The lower the shrink factor the more of the face is included. Default value 1.0 will align the image to be ready
    for the Arcface recognition model, but usually omits part of the chin. Value of 0.0 would transform all source points
    to the middle of the image, probably rendering the alignment procedure useless.

    If you process the image with a shrink factor of 0.85 and then want to extract the identity embedding with arcface,
    you simply do a central crop of factor 0.85 to yield same cropped result as using shrink factor 1.0. This will
    reduce the resolution, the recommendation is to processed images to output resolutions higher than 112 is using
    Arcface. This will make sure no information is lost by resampling the image after central crop.
    :return: Returns the transformed image.
    """
    M, pose_index = estimate_norm(landmark, image_size, mode, shrink_factor=shrink_factor)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
    return warped


def transform_landmark_points(M, points):
    lmk_tran = np.insert(points, 2, values=np.ones(5), axis=1)
    transformed_lmk = np.dot(M, lmk_tran.T)
    transformed_lmk = transformed_lmk.T

    return transformed_lmk


def multi_convolver(image, kernel, iterations):
    if kernel == "Sharpen":
        kernel = np.array([[0, -1, 0],
                           [-1, 5, -1],
                           [0, -1, 0]])
    elif kernel == "Unsharp_mask":
        kernel = np.array([[1, 4, 6, 4, 1],
                           [4, 16, 24, 16, 1],
                           [6, 24, -476, 24, 1],
                           [4, 16, 24, 16, 1],
                           [1, 4, 6, 4, 1]]) * (-1 / 256)
    elif kernel == "Blur":
        kernel = (1 / 16.0) * np.array([[1., 2., 1.],
                                        [2., 4., 2.],
                                        [1., 2., 1.]])
    for i in range(iterations):
        image = convolve2d(image, kernel, 'same', boundary='fill', fillvalue = 0)
    return image


def convolve_rgb(image, kernel, iterations=1):
    img_yuv = rgb2yuv(image)
    img_yuv[:, :, 0] = multi_convolver(img_yuv[:, :, 0], kernel,
                                       iterations)
    final_image = yuv2rgb(img_yuv)

    return final_image.astype('float32')


def generate_mask_from_landmarks(lms, im_size):
    blend_mask_lm = np.zeros(shape=(im_size, im_size, 3), dtype='float32')

    # EYES
    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int(lms[0][0]), int(lms[0][1])), 12, (255, 255, 255), 30)
    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int(lms[1][0]), int(lms[1][1])), 12, (255, 255, 255), 30)
    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int((lms[0][0] + lms[1][0]) / 2), int((lms[0][1] + lms[1][1]) / 2)),
                               16, (255, 255, 255), 65)

    # NOSE
    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int(lms[2][0]), int(lms[2][1])), 5, (255, 255, 255), 5)
    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int((lms[0][0] + lms[1][0]) / 2), int(lms[2][1])), 16, (255, 255, 255), 100)

    # MOUTH
    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int(lms[3][0]), int(lms[3][1])), 6, (255, 255, 255), 30)
    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int(lms[4][0]), int(lms[4][1])), 6, (255, 255, 255), 30)

    blend_mask_lm = cv2.circle(blend_mask_lm,
                               (int((lms[3][0] + lms[4][0]) / 2), int((lms[3][1] + lms[4][1]) / 2)),
                               16, (255, 255, 255), 40)
    return blend_mask_lm


def display_distance_text(im, distance, lms, im_w, im_h, scale=2):
    blended_insert = cv2.putText(im, str(distance)[:4],
                                 (int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
                                 cv2.FONT_HERSHEY_SIMPLEX, scale * 0.5, (0.08, 0.16, 0.08), int(scale * 2))
    blended_insert = cv2.putText(blended_insert, str(distance)[:4],
                                 (int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
                                 cv2.FONT_HERSHEY_SIMPLEX, scale*  0.5, (0.3, 0.7, 0.32), int(scale * 1))
    return blended_insert


def get_lm(annotation, im_w, im_h):
    lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
                         [annotation[6] * im_w, annotation[7] * im_h],
                         [annotation[8] * im_w, annotation[9] * im_h],
                         [annotation[10] * im_w, annotation[11] * im_h],
                         [annotation[12] * im_w, annotation[13] * im_h]],
                        dtype=np.float32)
    return lm_align