Spaces:
Running
Running
File size: 11,980 Bytes
69c590e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
"""Anchor utils modified from https://github.com/biubug6/Pytorch_Retinaface"""
import math
import tensorflow as tf
import numpy as np
from itertools import product as product
###############################################################################
# Tensorflow / Numpy Priors #
###############################################################################
def prior_box(image_sizes, min_sizes, steps, clip=False):
"""prior box"""
feature_maps = [
[math.ceil(image_sizes[0] / step), math.ceil(image_sizes[1] / step)]
for step in steps]
anchors = []
for k, f in enumerate(feature_maps):
for i, j in product(range(f[0]), range(f[1])):
for min_size in min_sizes[k]:
s_kx = min_size / image_sizes[1]
s_ky = min_size / image_sizes[0]
cx = (j + 0.5) * steps[k] / image_sizes[1]
cy = (i + 0.5) * steps[k] / image_sizes[0]
anchors += [cx, cy, s_kx, s_ky]
output = np.asarray(anchors).reshape([-1, 4])
if clip:
output = np.clip(output, 0, 1)
return output
def prior_box_tf(image_sizes, min_sizes, steps, clip=False):
"""prior box"""
image_sizes = tf.cast(tf.convert_to_tensor(image_sizes), tf.float32)
feature_maps = tf.math.ceil(
tf.reshape(image_sizes, [1, 2]) /
tf.reshape(tf.cast(steps, tf.float32), [-1, 1]))
anchors = []
for k in range(len(min_sizes)):
grid_x, grid_y = _meshgrid_tf(tf.range(feature_maps[k][1]),
tf.range(feature_maps[k][0]))
cx = (grid_x + 0.5) * steps[k] / image_sizes[1]
cy = (grid_y + 0.5) * steps[k] / image_sizes[0]
cxcy = tf.stack([cx, cy], axis=-1)
cxcy = tf.reshape(cxcy, [-1, 2])
cxcy = tf.repeat(cxcy, repeats=tf.shape(min_sizes[k])[0], axis=0)
sx = min_sizes[k] / image_sizes[1]
sy = min_sizes[k] / image_sizes[0]
sxsy = tf.stack([sx, sy], 1)
sxsy = tf.repeat(sxsy[tf.newaxis],
repeats=tf.shape(grid_x)[0] * tf.shape(grid_x)[1],
axis=0)
sxsy = tf.reshape(sxsy, [-1, 2])
anchors.append(tf.concat([cxcy, sxsy], 1))
output = tf.concat(anchors, axis=0)
if clip:
output = tf.clip_by_value(output, 0, 1)
return output
def _meshgrid_tf(x, y):
""" workaround solution of the tf.meshgrid() issue:
https://github.com/tensorflow/tensorflow/issues/34470"""
grid_shape = [tf.shape(y)[0], tf.shape(x)[0]]
grid_x = tf.broadcast_to(tf.reshape(x, [1, -1]), grid_shape)
grid_y = tf.broadcast_to(tf.reshape(y, [-1, 1]), grid_shape)
return grid_x, grid_y
###############################################################################
# Tensorflow Encoding #
###############################################################################
def encode_tf(labels, priors, match_thresh, ignore_thresh,
variances=[0.1, 0.2]):
"""tensorflow encoding"""
assert ignore_thresh <= match_thresh
priors = tf.cast(priors, tf.float32)
bbox = labels[:, :4]
landm = labels[:, 4:-1]
landm_valid = labels[:, -1] # 1: with landm, 0: w/o landm.
# jaccard index
overlaps = _jaccard(bbox, _point_form(priors))
# (Bipartite Matching)
# [num_objects] best prior for each ground truth
best_prior_overlap, best_prior_idx = tf.math.top_k(overlaps, k=1)
best_prior_overlap = best_prior_overlap[:, 0]
best_prior_idx = best_prior_idx[:, 0]
# [num_priors] best ground truth for each prior
overlaps_t = tf.transpose(overlaps)
best_truth_overlap, best_truth_idx = tf.math.top_k(overlaps_t, k=1)
best_truth_overlap = best_truth_overlap[:, 0]
best_truth_idx = best_truth_idx[:, 0]
# ensure best prior
def _loop_body(i, bt_idx, bt_overlap):
bp_mask = tf.one_hot(best_prior_idx[i], tf.shape(bt_idx)[0])
bp_mask_int = tf.cast(bp_mask, tf.int32)
new_bt_idx = bt_idx * (1 - bp_mask_int) + bp_mask_int * i
bp_mask_float = tf.cast(bp_mask, tf.float32)
new_bt_overlap = bt_overlap * (1 - bp_mask_float) + bp_mask_float * 2
return tf.cond(best_prior_overlap[i] > match_thresh,
lambda: (i + 1, new_bt_idx, new_bt_overlap),
lambda: (i + 1, bt_idx, bt_overlap))
_, best_truth_idx, best_truth_overlap = tf.while_loop(
lambda i, bt_idx, bt_overlap: tf.less(i, tf.shape(best_prior_idx)[0]),
_loop_body, [tf.constant(0), best_truth_idx, best_truth_overlap])
matches_bbox = tf.gather(bbox, best_truth_idx) # [num_priors, 4]
matches_landm = tf.gather(landm, best_truth_idx) # [num_priors, 10]
matches_landm_v = tf.gather(landm_valid, best_truth_idx) # [num_priors]
loc_t = _encode_bbox(matches_bbox, priors, variances)
landm_t = _encode_landm(matches_landm, priors, variances)
landm_valid_t = tf.cast(matches_landm_v > 0, tf.float32)
conf_t = tf.cast(best_truth_overlap > match_thresh, tf.float32)
conf_t = tf.where(
tf.logical_and(best_truth_overlap < match_thresh,
best_truth_overlap > ignore_thresh),
tf.ones_like(conf_t) * -1, conf_t) # 1: pos, 0: neg, -1: ignore
return tf.concat([loc_t, landm_t, landm_valid_t[..., tf.newaxis],
conf_t[..., tf.newaxis]], axis=1)
def _encode_bbox(matched, priors, variances):
"""Encode the variances from the priorbox layers into the ground truth
boxes we have matched (based on jaccard overlap) with the prior boxes.
Args:
matched: (tensor) Coords of ground truth for each prior in point-form
Shape: [num_priors, 4].
priors: (tensor) Prior boxes in center-offset form
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
encoded boxes (tensor), Shape: [num_priors, 4]
"""
# dist b/t match center and prior's center
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
# encode variance
g_cxcy /= (variances[0] * priors[:, 2:])
# match wh / prior wh
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
g_wh = tf.math.log(g_wh) / variances[1]
# return target for smooth_l1_loss
return tf.concat([g_cxcy, g_wh], 1) # [num_priors,4]
def _encode_landm(matched, priors, variances):
"""Encode the variances from the priorbox layers into the ground truth
boxes we have matched (based on jaccard overlap) with the prior boxes.
Args:
matched: (tensor) Coords of ground truth for each prior in point-form
Shape: [num_priors, 10].
priors: (tensor) Prior boxes in center-offset form
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
encoded landm (tensor), Shape: [num_priors, 10]
"""
# dist b/t match center and prior's center
matched = tf.reshape(matched, [tf.shape(matched)[0], 5, 2])
priors = tf.broadcast_to(
tf.expand_dims(priors, 1), [tf.shape(matched)[0], 5, 4])
g_cxcy = matched[:, :, :2] - priors[:, :, :2]
# encode variance
g_cxcy /= (variances[0] * priors[:, :, 2:])
# g_cxcy /= priors[:, :, 2:]
g_cxcy = tf.reshape(g_cxcy, [tf.shape(g_cxcy)[0], -1])
# return target for smooth_l1_loss
return g_cxcy
def _point_form(boxes):
""" Convert prior_boxes to (xmin, ymin, xmax, ymax)
representation for comparison to point form ground truth data.
Args:
boxes: (tensor) center-size default boxes from priorbox layers.
Return:
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
"""
return tf.concat((boxes[:, :2] - boxes[:, 2:] / 2,
boxes[:, :2] + boxes[:, 2:] / 2), axis=1)
def _intersect(box_a, box_b):
""" We resize both tensors to [A,B,2]:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (tensor) bounding boxes, Shape: [A,4].
box_b: (tensor) bounding boxes, Shape: [B,4].
Return:
(tensor) intersection area, Shape: [A,B].
"""
A = tf.shape(box_a)[0]
B = tf.shape(box_b)[0]
max_xy = tf.minimum(
tf.broadcast_to(tf.expand_dims(box_a[:, 2:], 1), [A, B, 2]),
tf.broadcast_to(tf.expand_dims(box_b[:, 2:], 0), [A, B, 2]))
min_xy = tf.maximum(
tf.broadcast_to(tf.expand_dims(box_a[:, :2], 1), [A, B, 2]),
tf.broadcast_to(tf.expand_dims(box_b[:, :2], 0), [A, B, 2]))
inter = tf.maximum((max_xy - min_xy), tf.zeros_like(max_xy - min_xy))
return inter[:, :, 0] * inter[:, :, 1]
def _jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A β© B / A βͺ B = A β© B / (area(A) + area(B) - A β© B)
Args:
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = _intersect(box_a, box_b)
area_a = tf.broadcast_to(
tf.expand_dims(
(box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]), 1),
tf.shape(inter)) # [A,B]
area_b = tf.broadcast_to(
tf.expand_dims(
(box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]), 0),
tf.shape(inter)) # [A,B]
union = area_a + area_b - inter
return inter / union # [A,B]
###############################################################################
# Tensorflow Decoding #
###############################################################################
def decode_tf(labels, priors, variances=[0.1, 0.2]):
"""tensorflow decoding"""
bbox = _decode_bbox(labels[:, :4], priors, variances)
landm = _decode_landm(labels[:, 4:14], priors, variances)
landm_valid = labels[:, 14][:, tf.newaxis]
conf = labels[:, 15][:, tf.newaxis]
return tf.concat([bbox, landm, landm_valid, conf], axis=1)
def _decode_bbox(pre, priors, variances=[0.1, 0.2]):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
pre (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
centers = priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:]
sides = priors[:, 2:] * tf.math.exp(pre[:, 2:] * variances[1])
return tf.concat([centers - sides / 2, centers + sides / 2], axis=1)
def _decode_landm(pre, priors, variances=[0.1, 0.2]):
"""Decode landm from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
pre (tensor): landm predictions for loc layers,
Shape: [num_priors,10]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded landm predictions
"""
landms = tf.concat(
[priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:]], axis=1)
return landms
|