File size: 10,550 Bytes
7a986e7
f2c28c8
 
7a986e7
 
 
f2c28c8
 
b75380d
c30c8d7
f2c28c8
7a986e7
 
 
 
 
 
 
 
 
 
 
 
 
c30c8d7
7a986e7
 
 
 
 
 
 
 
 
c30c8d7
7a986e7
 
 
 
 
 
 
 
 
 
 
 
 
131b493
 
 
 
 
 
 
 
 
 
7a986e7
 
 
 
 
0eb72c7
7a986e7
c30c8d7
7a986e7
 
0eb72c7
 
 
c30c8d7
0eb72c7
 
 
 
 
b75380d
7a986e7
0eb72c7
 
 
 
 
 
 
c30c8d7
0eb72c7
 
 
 
 
 
 
 
 
 
7a986e7
131b493
 
 
 
 
 
 
 
 
 
 
 
7a986e7
f2c28c8
131b493
c30c8d7
131b493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c30c8d7
 
 
 
 
 
131b493
c30c8d7
 
 
131b493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c30c8d7
131b493
c30c8d7
131b493
 
c30c8d7
 
 
 
 
131b493
 
 
 
 
 
 
c30c8d7
 
131b493
 
 
 
 
 
 
f2c28c8
 
131b493
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import cv2
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
import streamlit as st
from PIL import Image
import io
import zipfile

# --- GlaucomaModel Class ---
class GlaucomaModel(object):
    def __init__(self, 
                 cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", 
                 seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation',
                 device=torch.device('cpu')):
        self.device = device
        # Classification model for glaucoma
        self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
        self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
        # Segmentation model for optic disc and cup
        self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path)
        self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval()
        # Mapping for class labels
        self.cls_id2label = self.cls_model.config.id2label

    def glaucoma_pred(self, image):
        inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
        with torch.no_grad():
            inputs.to(self.device)
            outputs = self.cls_model(**inputs).logits
            probs = F.softmax(outputs, dim=-1)
            disease_idx = probs.cpu()[0, :].numpy().argmax()
            confidence = probs.cpu()[0, disease_idx].item() * 100
        return disease_idx, confidence

    def optic_disc_cup_pred(self, image):
        inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
        with torch.no_grad():
            inputs.to(self.device)
            outputs = self.seg_model(**inputs)
        logits = outputs.logits.cpu()
        upsampled_logits = nn.functional.interpolate(
            logits, size=image.shape[:2], mode="bilinear", align_corners=False
        )
        seg_probs = F.softmax(upsampled_logits, dim=1)
        pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
        
        # Calculate segmentation confidence based on probability distribution
        # For each pixel classified as cup/disc, check how confident the model is
        cup_mask = pred_disc_cup == 2
        disc_mask = pred_disc_cup == 1
        
        # Get confidence only for pixels predicted as cup/disc
        cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
        disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
        
        return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence

    def process(self, image):
        disease_idx, cls_confidence = self.glaucoma_pred(image)
        disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image)

        try:
            vcdr = simple_vcdr(disc_cup)
        except:
            vcdr = np.nan

        mask = (disc_cup > 0).astype(np.uint8)
        x, y, w, h = cv2.boundingRect(mask)
        padding = max(50, int(0.2 * max(w, h)))
        x = max(x - padding, 0)
        y = max(y - padding, 0)
        w = min(w + 2 * padding, image.shape[1] - x)
        h = min(h + 2 * padding, image.shape[0] - y)

        cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy()
        _, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)

        return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image

# --- Utility Functions ---
def simple_vcdr(mask):
    disc_area = np.sum(mask == 1)
    cup_area = np.sum(mask == 2)
    if disc_area == 0:
        return np.nan
    vcdr = cup_area / disc_area
    return vcdr

def add_mask(image, mask, classes, colors, alpha=0.5):
    overlay = image.copy()
    for class_id, color in zip(classes, colors):
        overlay[mask == class_id] = color
    output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
    return output, overlay

def get_confidence_level(confidence):
    if confidence >= 90:
        return "Very High"
    elif confidence >= 75:
        return "High"
    elif confidence >= 60:
        return "Moderate"
    elif confidence >= 45:
        return "Low"
    else:
        return "Very Low"

# --- Streamlit Interface ---
def main():
    st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
    
    # Header with better styling
    st.markdown("""
        <h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
        <p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
        """, unsafe_allow_html=True)
    
    # Sidebar with better organization
    with st.sidebar:
        st.markdown("### Upload Settings")
        uploaded_files = st.file_uploader("Upload Retinal Images", 
            type=['png', 'jpeg', 'jpg'], 
            accept_multiple_files=True,
            help="Support multiple images in PNG, JPEG formats")
        
        st.markdown("### Analysis Settings")
        st.info("πŸ“Š Set confidence threshold to filter results")
        confidence_threshold = st.slider(
            "Classification Confidence Threshold (%)", 
            0, 100, 70,
            help="Images with confidence above this threshold will be marked as reliable predictions")
    
    if uploaded_files:
        for uploaded_file in uploaded_files:
            image = Image.open(uploaded_file).convert('RGB')
            image_np = np.array(image).astype(np.uint8)
            
            with st.spinner(f'πŸ”„ Processing {uploaded_file.name}...'):
                model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
                disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np)
                
                # Create expandable section for each image
                with st.expander(f"πŸ“Š Analysis Results: {uploaded_file.name}", expanded=True):
                    # Image display section
                    cols = st.columns(3)
                    cols[0].image(image_np, caption="Original Image", use_column_width=True)
                    cols[1].image(disc_cup_image, caption="Segmentation Overlay", use_column_width=True)
                    cols[2].image(cropped_image, caption="Region of Interest", use_column_width=True)
                    
                    # Metrics section with clear separation
                    st.markdown("---")
                    metric_cols = st.columns(3)
                    
                    # Classification Results
                    with metric_cols[0]:
                        st.markdown("### πŸ” Classification")
                        diagnosis = model.cls_id2label[disease_idx]
                        is_confident = cls_conf >= confidence_threshold
                        
                        # Color-coded diagnosis
                        if diagnosis == "Glaucoma":
                            st.markdown(f"<div style='padding: 10px; background-color: #ffebee; border-radius: 5px;'>"
                                      f"<h4 style='color: #c62828;'>Diagnosis: {diagnosis}</h4></div>", 
                                      unsafe_allow_html=True)
                        else:
                            st.markdown(f"<div style='padding: 10px; background-color: #e8f5e9; border-radius: 5px;'>"
                                      f"<h4 style='color: #2e7d32;'>Diagnosis: {diagnosis}</h4></div>", 
                                      unsafe_allow_html=True)
                        
                        st.metric("Classification Confidence", f"{cls_conf:.1f}%")
                        if not is_confident:
                            st.warning("⚠️ Below confidence threshold")
                    
                    # Segmentation Results
                    with metric_cols[1]:
                        st.markdown("### 🎯 Segmentation Quality")
                        st.metric("Optic Cup Confidence", f"{cup_conf:.1f}%")
                        st.metric("Optic Disc Confidence", f"{disc_conf:.1f}%")
                        
                        # Confidence level explanation
                        cup_level = get_confidence_level(cup_conf)
                        disc_level = get_confidence_level(disc_conf)
                        st.info(f"Cup Detection: {cup_level}\nDisc Detection: {disc_level}")
                    
                    # Clinical Metrics
                    with metric_cols[2]:
                        st.markdown("### πŸ“ Clinical Metrics")
                        st.metric("Cup-to-Disc Ratio (CDR)", f"{vcdr:.3f}")
                        
                        # CDR interpretation
                        if vcdr > 0.7:
                            st.warning("⚠️ Elevated CDR (>0.7)")
                        elif vcdr > 0.5:
                            st.info("ℹ️ Borderline CDR (0.5-0.7)")
                        else:
                            st.success("βœ… Normal CDR (<0.5)")
        
        # Download section
        if download_confident_images:
            st.sidebar.markdown("---")
            st.sidebar.markdown("### Download Results")
            with zipfile.ZipFile("confident_cropped_images.zip", "w") as zf:
                for cropped_image, name in download_confident_images:
                    img_buffer = io.BytesIO()
                    Image.fromarray(cropped_image).save(img_buffer, format="PNG")
                    zf.writestr(f"{name}_cropped.png", img_buffer.getvalue())
            
            st.sidebar.download_button(
                label="πŸ“₯ Download Analysis Results",
                data=open("confident_cropped_images.zip", "rb"),
                file_name="glaucoma_analysis_results.zip",
                mime="application/zip",
                help="Download cropped images and analysis results"
            )
    else:
        # Welcome message when no files are uploaded
        st.markdown("""
            <div style='text-align: center; padding: 50px;'>
                <h3>πŸ‘‹ Welcome to the Glaucoma Screening Tool</h3>
                <p>Upload retinal fundus images using the sidebar to begin analysis</p>
            </div>
            """, unsafe_allow_html=True)

if __name__ == '__main__':
    main()