File size: 10,850 Bytes
7a986e7
f2c28c8
 
7a986e7
 
 
f2c28c8
 
b75380d
c30c8d7
4234218
 
 
 
f2c28c8
7a986e7
 
 
 
 
 
 
 
 
 
 
 
 
c30c8d7
7a986e7
 
 
 
 
 
 
 
 
c30c8d7
7a986e7
 
 
 
 
 
 
 
 
 
 
 
 
131b493
 
 
 
 
 
 
 
 
 
7a986e7
 
 
 
 
0eb72c7
7a986e7
c30c8d7
7a986e7
 
0eb72c7
 
 
c30c8d7
0eb72c7
 
 
 
 
b75380d
7a986e7
0eb72c7
 
 
 
 
 
 
c30c8d7
0eb72c7
 
 
 
 
 
 
 
 
 
7a986e7
131b493
 
 
 
 
 
 
 
 
 
 
 
4234218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a986e7
f2c28c8
131b493
c30c8d7
131b493
 
 
 
 
8a1d3d2
 
 
 
 
 
 
 
f192f0b
8a1d3d2
 
 
 
 
c30c8d7
 
c73c262
8a1d3d2
c73c262
 
8a1d3d2
 
4234218
8a1d3d2
 
4234218
8a1d3d2
4234218
 
 
 
 
 
 
 
 
 
 
 
8a1d3d2
4234218
 
 
8a1d3d2
4234218
 
8a1d3d2
 
 
 
 
 
 
 
 
 
 
 
 
74d3d9b
c73c262
8a1d3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c73c262
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import cv2
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
import streamlit as st
from PIL import Image
import io
import zipfile
import pandas as pd
from datetime import datetime
import os
import tempfile

# --- GlaucomaModel Class ---
class GlaucomaModel(object):
    def __init__(self, 
                 cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", 
                 seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation',
                 device=torch.device('cpu')):
        self.device = device
        # Classification model for glaucoma
        self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
        self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
        # Segmentation model for optic disc and cup
        self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path)
        self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval()
        # Mapping for class labels
        self.cls_id2label = self.cls_model.config.id2label

    def glaucoma_pred(self, image):
        inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
        with torch.no_grad():
            inputs.to(self.device)
            outputs = self.cls_model(**inputs).logits
            probs = F.softmax(outputs, dim=-1)
            disease_idx = probs.cpu()[0, :].numpy().argmax()
            confidence = probs.cpu()[0, disease_idx].item() * 100
        return disease_idx, confidence

    def optic_disc_cup_pred(self, image):
        inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
        with torch.no_grad():
            inputs.to(self.device)
            outputs = self.seg_model(**inputs)
        logits = outputs.logits.cpu()
        upsampled_logits = nn.functional.interpolate(
            logits, size=image.shape[:2], mode="bilinear", align_corners=False
        )
        seg_probs = F.softmax(upsampled_logits, dim=1)
        pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
        
        # Calculate segmentation confidence based on probability distribution
        # For each pixel classified as cup/disc, check how confident the model is
        cup_mask = pred_disc_cup == 2
        disc_mask = pred_disc_cup == 1
        
        # Get confidence only for pixels predicted as cup/disc
        cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
        disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
        
        return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence

    def process(self, image):
        disease_idx, cls_confidence = self.glaucoma_pred(image)
        disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image)

        try:
            vcdr = simple_vcdr(disc_cup)
        except:
            vcdr = np.nan

        mask = (disc_cup > 0).astype(np.uint8)
        x, y, w, h = cv2.boundingRect(mask)
        padding = max(50, int(0.2 * max(w, h)))
        x = max(x - padding, 0)
        y = max(y - padding, 0)
        w = min(w + 2 * padding, image.shape[1] - x)
        h = min(h + 2 * padding, image.shape[0] - y)

        cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy()
        _, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)

        return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image

# --- Utility Functions ---
def simple_vcdr(mask):
    disc_area = np.sum(mask == 1)
    cup_area = np.sum(mask == 2)
    if disc_area == 0:
        return np.nan
    vcdr = cup_area / disc_area
    return vcdr

def add_mask(image, mask, classes, colors, alpha=0.5):
    overlay = image.copy()
    for class_id, color in zip(classes, colors):
        overlay[mask == class_id] = color
    output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
    return output, overlay

def get_confidence_level(confidence):
    if confidence >= 90:
        return "Very High"
    elif confidence >= 75:
        return "High"
    elif confidence >= 60:
        return "Moderate"
    elif confidence >= 45:
        return "Low"
    else:
        return "Very Low"

def process_batch(model, images_data, progress_bar=None):
    results = []
    for idx, (file_name, image) in enumerate(images_data):
        try:
            disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image)
            results.append({
                'file_name': file_name,
                'diagnosis': model.cls_id2label[disease_idx],
                'confidence': cls_conf,
                'vcdr': vcdr,
                'cup_conf': cup_conf,
                'disc_conf': disc_conf,
                'processed_image': disc_cup_image,
                'cropped_image': cropped_image
            })
            if progress_bar:
                progress_bar.progress((idx + 1) / len(images_data))
        except Exception as e:
            st.error(f"Error processing {file_name}: {str(e)}")
    return results

def save_results(results, original_images):
    # Create temporary directory for results
    with tempfile.TemporaryDirectory() as temp_dir:
        # Save report as CSV
        df = pd.DataFrame([{
            'File': r['file_name'],
            'Diagnosis': r['diagnosis'],
            'Confidence (%)': f"{r['confidence']:.1f}",
            'VCDR': f"{r['vcdr']:.3f}",
            'Cup Confidence (%)': f"{r['cup_conf']:.1f}",
            'Disc Confidence (%)': f"{r['disc_conf']:.1f}"
        } for r in results])
        
        report_path = os.path.join(temp_dir, 'report.csv')
        df.to_csv(report_path, index=False)
        
        # Save processed images
        for result, orig_img in zip(results, original_images):
            img_name = result['file_name']
            base_name = os.path.splitext(img_name)[0]
            
            # Save original
            orig_path = os.path.join(temp_dir, f"{base_name}_original.jpg")
            Image.fromarray(orig_img).save(orig_path)
            
            # Save segmentation
            seg_path = os.path.join(temp_dir, f"{base_name}_segmentation.jpg")
            Image.fromarray(result['processed_image']).save(seg_path)
            
            # Save ROI
            roi_path = os.path.join(temp_dir, f"{base_name}_roi.jpg")
            Image.fromarray(result['cropped_image']).save(roi_path)
        
        # Create ZIP file
        zip_path = os.path.join(temp_dir, 'results.zip')
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            for root, _, files in os.walk(temp_dir):
                for file in files:
                    if file != 'results.zip':
                        file_path = os.path.join(root, file)
                        arcname = os.path.basename(file_path)
                        zipf.write(file_path, arcname)
        
        with open(zip_path, 'rb') as f:
            return f.read()

# --- Streamlit Interface ---
def main():
    st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
    
    st.markdown("""
        <h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
        <p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
        """, unsafe_allow_html=True)
    
    # Simple sidebar without columns
    st.sidebar.markdown("### 📤 Upload Images")
    uploaded_files = st.sidebar.file_uploader(
        "Upload Retinal Images", 
        type=['png', 'jpeg', 'jpg'], 
        accept_multiple_files=True,
        help="Support multiple images in PNG, JPEG formats"
    )
    
    st.sidebar.markdown("### Settings")
    max_batch = st.sidebar.number_input("Max Batch Size", 
        min_value=1, 
        max_value=100, 
        value=20)
    
    if uploaded_files:
        if len(uploaded_files) > max_batch:
            st.warning(f"Please upload maximum {max_batch} images at once.")
            return

        st.markdown(f"Total images: {len(uploaded_files)}")
        st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}")
        
        # Initialize model
        model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
        
        # Process images
        images_data = []
        original_images = []
        for file in uploaded_files:
            try:
                image = Image.open(file).convert('RGB')
                image_np = np.array(image)
                images_data.append((file.name, image_np))
                original_images.append(image_np)
            except Exception as e:
                st.error(f"Error loading {file.name}: {str(e)}")
                continue
        
        progress = st.progress(0)
        st.write(f"Processing {len(images_data)} images...")
        
        # Process all images
        results = process_batch(model, images_data, progress)
        
        if results:
            # Show results one by one
            for result in results:
                st.markdown(f"### Results for {result['file_name']}")
                st.markdown(f"**Diagnosis:** {result['diagnosis']}")
                st.markdown(f"**Confidence:** {result['confidence']:.1f}%")
                st.markdown(f"**VCDR:** {result['vcdr']:.3f}")
                
                # Display images
                st.image(result['processed_image'], caption="Segmentation")
                st.image(result['cropped_image'], caption="ROI")
                st.markdown("---")
            
            # Generate downloads
            zip_data = save_results(results, original_images)
            
            st.markdown("### Download Results")
            st.download_button(
                label="Download All Results (ZIP)",
                data=zip_data,
                file_name=f"glaucoma_screening_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
                mime="application/zip"
            )
            
            # Simple summary
            st.markdown("### Summary")
            glaucoma_count = sum(1 for r in results if r['diagnosis'] == 'Glaucoma')
            normal_count = len(results) - glaucoma_count
            st.markdown(f"**Total Processed:** {len(results)}")
            st.markdown(f"**Glaucoma Detected:** {glaucoma_count}")
            st.markdown(f"**Normal:** {normal_count}")
            st.markdown(f"**Average Confidence:** {sum(r['confidence'] for r in results) / len(results):.1f}%")

if __name__ == "__main__":
    main()