File size: 10,850 Bytes
7a986e7 f2c28c8 7a986e7 f2c28c8 b75380d c30c8d7 4234218 f2c28c8 7a986e7 c30c8d7 7a986e7 c30c8d7 7a986e7 131b493 7a986e7 0eb72c7 7a986e7 c30c8d7 7a986e7 0eb72c7 c30c8d7 0eb72c7 b75380d 7a986e7 0eb72c7 c30c8d7 0eb72c7 7a986e7 131b493 4234218 7a986e7 f2c28c8 131b493 c30c8d7 131b493 8a1d3d2 f192f0b 8a1d3d2 c30c8d7 c73c262 8a1d3d2 c73c262 8a1d3d2 4234218 8a1d3d2 4234218 8a1d3d2 4234218 8a1d3d2 4234218 8a1d3d2 4234218 8a1d3d2 74d3d9b c73c262 8a1d3d2 c73c262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import cv2
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
import streamlit as st
from PIL import Image
import io
import zipfile
import pandas as pd
from datetime import datetime
import os
import tempfile
# --- GlaucomaModel Class ---
class GlaucomaModel(object):
def __init__(self,
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification",
seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation',
device=torch.device('cpu')):
self.device = device
# Classification model for glaucoma
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
# Segmentation model for optic disc and cup
self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path)
self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval()
# Mapping for class labels
self.cls_id2label = self.cls_model.config.id2label
def glaucoma_pred(self, image):
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.cls_model(**inputs).logits
probs = F.softmax(outputs, dim=-1)
disease_idx = probs.cpu()[0, :].numpy().argmax()
confidence = probs.cpu()[0, disease_idx].item() * 100
return disease_idx, confidence
def optic_disc_cup_pred(self, image):
inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.seg_model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits, size=image.shape[:2], mode="bilinear", align_corners=False
)
seg_probs = F.softmax(upsampled_logits, dim=1)
pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
# Calculate segmentation confidence based on probability distribution
# For each pixel classified as cup/disc, check how confident the model is
cup_mask = pred_disc_cup == 2
disc_mask = pred_disc_cup == 1
# Get confidence only for pixels predicted as cup/disc
cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence
def process(self, image):
disease_idx, cls_confidence = self.glaucoma_pred(image)
disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image)
try:
vcdr = simple_vcdr(disc_cup)
except:
vcdr = np.nan
mask = (disc_cup > 0).astype(np.uint8)
x, y, w, h = cv2.boundingRect(mask)
padding = max(50, int(0.2 * max(w, h)))
x = max(x - padding, 0)
y = max(y - padding, 0)
w = min(w + 2 * padding, image.shape[1] - x)
h = min(h + 2 * padding, image.shape[0] - y)
cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy()
_, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)
return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image
# --- Utility Functions ---
def simple_vcdr(mask):
disc_area = np.sum(mask == 1)
cup_area = np.sum(mask == 2)
if disc_area == 0:
return np.nan
vcdr = cup_area / disc_area
return vcdr
def add_mask(image, mask, classes, colors, alpha=0.5):
overlay = image.copy()
for class_id, color in zip(classes, colors):
overlay[mask == class_id] = color
output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return output, overlay
def get_confidence_level(confidence):
if confidence >= 90:
return "Very High"
elif confidence >= 75:
return "High"
elif confidence >= 60:
return "Moderate"
elif confidence >= 45:
return "Low"
else:
return "Very Low"
def process_batch(model, images_data, progress_bar=None):
results = []
for idx, (file_name, image) in enumerate(images_data):
try:
disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image)
results.append({
'file_name': file_name,
'diagnosis': model.cls_id2label[disease_idx],
'confidence': cls_conf,
'vcdr': vcdr,
'cup_conf': cup_conf,
'disc_conf': disc_conf,
'processed_image': disc_cup_image,
'cropped_image': cropped_image
})
if progress_bar:
progress_bar.progress((idx + 1) / len(images_data))
except Exception as e:
st.error(f"Error processing {file_name}: {str(e)}")
return results
def save_results(results, original_images):
# Create temporary directory for results
with tempfile.TemporaryDirectory() as temp_dir:
# Save report as CSV
df = pd.DataFrame([{
'File': r['file_name'],
'Diagnosis': r['diagnosis'],
'Confidence (%)': f"{r['confidence']:.1f}",
'VCDR': f"{r['vcdr']:.3f}",
'Cup Confidence (%)': f"{r['cup_conf']:.1f}",
'Disc Confidence (%)': f"{r['disc_conf']:.1f}"
} for r in results])
report_path = os.path.join(temp_dir, 'report.csv')
df.to_csv(report_path, index=False)
# Save processed images
for result, orig_img in zip(results, original_images):
img_name = result['file_name']
base_name = os.path.splitext(img_name)[0]
# Save original
orig_path = os.path.join(temp_dir, f"{base_name}_original.jpg")
Image.fromarray(orig_img).save(orig_path)
# Save segmentation
seg_path = os.path.join(temp_dir, f"{base_name}_segmentation.jpg")
Image.fromarray(result['processed_image']).save(seg_path)
# Save ROI
roi_path = os.path.join(temp_dir, f"{base_name}_roi.jpg")
Image.fromarray(result['cropped_image']).save(roi_path)
# Create ZIP file
zip_path = os.path.join(temp_dir, 'results.zip')
with zipfile.ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(temp_dir):
for file in files:
if file != 'results.zip':
file_path = os.path.join(root, file)
arcname = os.path.basename(file_path)
zipf.write(file_path, arcname)
with open(zip_path, 'rb') as f:
return f.read()
# --- Streamlit Interface ---
def main():
st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
st.markdown("""
<h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
<p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
""", unsafe_allow_html=True)
# Simple sidebar without columns
st.sidebar.markdown("### 📤 Upload Images")
uploaded_files = st.sidebar.file_uploader(
"Upload Retinal Images",
type=['png', 'jpeg', 'jpg'],
accept_multiple_files=True,
help="Support multiple images in PNG, JPEG formats"
)
st.sidebar.markdown("### Settings")
max_batch = st.sidebar.number_input("Max Batch Size",
min_value=1,
max_value=100,
value=20)
if uploaded_files:
if len(uploaded_files) > max_batch:
st.warning(f"Please upload maximum {max_batch} images at once.")
return
st.markdown(f"Total images: {len(uploaded_files)}")
st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}")
# Initialize model
model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
# Process images
images_data = []
original_images = []
for file in uploaded_files:
try:
image = Image.open(file).convert('RGB')
image_np = np.array(image)
images_data.append((file.name, image_np))
original_images.append(image_np)
except Exception as e:
st.error(f"Error loading {file.name}: {str(e)}")
continue
progress = st.progress(0)
st.write(f"Processing {len(images_data)} images...")
# Process all images
results = process_batch(model, images_data, progress)
if results:
# Show results one by one
for result in results:
st.markdown(f"### Results for {result['file_name']}")
st.markdown(f"**Diagnosis:** {result['diagnosis']}")
st.markdown(f"**Confidence:** {result['confidence']:.1f}%")
st.markdown(f"**VCDR:** {result['vcdr']:.3f}")
# Display images
st.image(result['processed_image'], caption="Segmentation")
st.image(result['cropped_image'], caption="ROI")
st.markdown("---")
# Generate downloads
zip_data = save_results(results, original_images)
st.markdown("### Download Results")
st.download_button(
label="Download All Results (ZIP)",
data=zip_data,
file_name=f"glaucoma_screening_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip",
mime="application/zip"
)
# Simple summary
st.markdown("### Summary")
glaucoma_count = sum(1 for r in results if r['diagnosis'] == 'Glaucoma')
normal_count = len(results) - glaucoma_count
st.markdown(f"**Total Processed:** {len(results)}")
st.markdown(f"**Glaucoma Detected:** {glaucoma_count}")
st.markdown(f"**Normal:** {normal_count}")
st.markdown(f"**Average Confidence:** {sum(r['confidence'] for r in results) / len(results):.1f}%")
if __name__ == "__main__":
main()
|