File size: 8,531 Bytes
7a986e7 f2c28c8 7a986e7 f2c28c8 b75380d c30c8d7 f2c28c8 7a986e7 c30c8d7 7a986e7 c30c8d7 7a986e7 131b493 7a986e7 0eb72c7 7a986e7 c30c8d7 7a986e7 0eb72c7 c30c8d7 0eb72c7 b75380d 7a986e7 0eb72c7 c30c8d7 0eb72c7 7a986e7 131b493 7a986e7 f2c28c8 131b493 c30c8d7 131b493 f192f0b c30c8d7 f192f0b 131b493 c30c8d7 f192f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import cv2
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
import streamlit as st
from PIL import Image
import io
import zipfile
# --- GlaucomaModel Class ---
class GlaucomaModel(object):
def __init__(self,
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification",
seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation',
device=torch.device('cpu')):
self.device = device
# Classification model for glaucoma
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
# Segmentation model for optic disc and cup
self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path)
self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval()
# Mapping for class labels
self.cls_id2label = self.cls_model.config.id2label
def glaucoma_pred(self, image):
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.cls_model(**inputs).logits
probs = F.softmax(outputs, dim=-1)
disease_idx = probs.cpu()[0, :].numpy().argmax()
confidence = probs.cpu()[0, disease_idx].item() * 100
return disease_idx, confidence
def optic_disc_cup_pred(self, image):
inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.seg_model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits, size=image.shape[:2], mode="bilinear", align_corners=False
)
seg_probs = F.softmax(upsampled_logits, dim=1)
pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
# Calculate segmentation confidence based on probability distribution
# For each pixel classified as cup/disc, check how confident the model is
cup_mask = pred_disc_cup == 2
disc_mask = pred_disc_cup == 1
# Get confidence only for pixels predicted as cup/disc
cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence
def process(self, image):
disease_idx, cls_confidence = self.glaucoma_pred(image)
disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image)
try:
vcdr = simple_vcdr(disc_cup)
except:
vcdr = np.nan
mask = (disc_cup > 0).astype(np.uint8)
x, y, w, h = cv2.boundingRect(mask)
padding = max(50, int(0.2 * max(w, h)))
x = max(x - padding, 0)
y = max(y - padding, 0)
w = min(w + 2 * padding, image.shape[1] - x)
h = min(h + 2 * padding, image.shape[0] - y)
cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy()
_, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)
return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image
# --- Utility Functions ---
def simple_vcdr(mask):
disc_area = np.sum(mask == 1)
cup_area = np.sum(mask == 2)
if disc_area == 0:
return np.nan
vcdr = cup_area / disc_area
return vcdr
def add_mask(image, mask, classes, colors, alpha=0.5):
overlay = image.copy()
for class_id, color in zip(classes, colors):
overlay[mask == class_id] = color
output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return output, overlay
def get_confidence_level(confidence):
if confidence >= 90:
return "Very High"
elif confidence >= 75:
return "High"
elif confidence >= 60:
return "Moderate"
elif confidence >= 45:
return "Low"
else:
return "Very Low"
# --- Streamlit Interface ---
def main():
st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
st.markdown("""
<h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
<p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
""", unsafe_allow_html=True)
# Sidebar settings
st.sidebar.markdown("### Upload Settings")
uploaded_files = st.sidebar.file_uploader("Upload Retinal Images",
type=['png', 'jpeg', 'jpg'],
accept_multiple_files=True,
help="Support multiple images in PNG, JPEG formats")
st.sidebar.markdown("### Analysis Settings")
st.sidebar.info("π Set confidence threshold to filter results")
confidence_threshold = st.sidebar.slider(
"Classification Confidence Threshold (%)",
0, 100, 70,
help="Images with confidence above this threshold will be marked as reliable predictions")
if uploaded_files:
for uploaded_file in uploaded_files:
image = Image.open(uploaded_file).convert('RGB')
image_np = np.array(image).astype(np.uint8)
st.markdown(f"## π Analysis Results: {uploaded_file.name}")
with st.spinner(f'π Processing {uploaded_file.name}...'):
model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np)
# Image display section
st.subheader("Original Image")
st.image(image_np, use_column_width=True)
st.subheader("Segmentation Overlay")
st.image(disc_cup_image, use_column_width=True)
st.subheader("Region of Interest")
st.image(cropped_image, use_column_width=True)
st.markdown("---")
# Classification Results
st.markdown("### π Classification")
diagnosis = model.cls_id2label[disease_idx]
is_confident = cls_conf >= confidence_threshold
if diagnosis == "Glaucoma":
st.markdown(f"<div style='padding: 10px; background-color: #ffebee; border-radius: 5px;'>"
f"<h4 style='color: #c62828;'>Diagnosis: {diagnosis}</h4></div>",
unsafe_allow_html=True)
else:
st.markdown(f"<div style='padding: 10px; background-color: #e8f5e9; border-radius: 5px;'>"
f"<h4 style='color: #2e7d32;'>Diagnosis: {diagnosis}</h4></div>",
unsafe_allow_html=True)
st.write(f"Classification Confidence: {cls_conf:.1f}%")
if not is_confident:
st.warning("β οΈ Below confidence threshold")
# Segmentation Results
st.markdown("### π― Segmentation Quality")
st.write(f"Optic Cup Confidence: {cup_conf:.1f}%")
st.write(f"Optic Disc Confidence: {disc_conf:.1f}%")
cup_level = get_confidence_level(cup_conf)
disc_level = get_confidence_level(disc_conf)
st.info(f"Cup Detection: {cup_level}\nDisc Detection: {disc_level}")
# Clinical Metrics
st.markdown("### π Clinical Metrics")
st.write(f"Cup-to-Disc Ratio (CDR): {vcdr:.3f}")
if vcdr > 0.7:
st.warning("β οΈ Elevated CDR (>0.7)")
elif vcdr > 0.5:
st.info("βΉοΈ Borderline CDR (0.5-0.7)")
else:
st.success("β
Normal CDR (<0.5)")
st.markdown("---")
# ... rest of the code remains the same ...
|