luigi12345
commited on
Commit
•
27efa08
1
Parent(s):
d5fb548
app.py
CHANGED
@@ -182,115 +182,72 @@ def save_results(results, original_images):
|
|
182 |
|
183 |
# --- Streamlit Interface ---
|
184 |
def main():
|
185 |
-
|
|
|
186 |
|
187 |
-
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
""", unsafe_allow_html=True)
|
193 |
-
|
194 |
-
# Simple sidebar without columns
|
195 |
-
st.sidebar.markdown("### 📤 Upload Images")
|
196 |
uploaded_files = st.sidebar.file_uploader(
|
197 |
-
"Upload
|
198 |
type=['png', 'jpeg', 'jpg'],
|
199 |
-
accept_multiple_files=True
|
200 |
-
help="Support multiple images in PNG, JPEG formats"
|
201 |
)
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
|
211 |
if uploaded_files:
|
212 |
-
|
213 |
-
|
214 |
-
if len(uploaded_files) > max_batch:
|
215 |
-
st.warning(f"Please upload maximum {max_batch} images at once.")
|
216 |
-
return
|
217 |
-
|
218 |
-
st.markdown(f"Total images: {len(uploaded_files)}")
|
219 |
-
st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}")
|
220 |
|
221 |
try:
|
222 |
-
# Initialize model
|
223 |
-
print("Initializing model") # Debug print
|
224 |
model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
|
225 |
|
226 |
-
# Process images
|
227 |
-
images_data = []
|
228 |
-
original_images = []
|
229 |
-
print("Starting image processing") # Debug print
|
230 |
-
|
231 |
for file in uploaded_files:
|
232 |
try:
|
233 |
-
|
|
|
234 |
image = Image.open(file).convert('RGB')
|
235 |
image_np = np.array(image)
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
except Exception as e:
|
239 |
-
|
240 |
-
st.error(f"Error loading {file.name}: {str(e)}")
|
241 |
continue
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
progress = st.progress(0)
|
248 |
-
st.write(f"Processing {len(images_data)} images...")
|
249 |
-
|
250 |
-
# Process all images
|
251 |
-
print("Starting batch processing") # Debug print
|
252 |
-
results = process_batch(model, images_data, progress)
|
253 |
-
print(f"Batch processing complete. Results: {len(results)}") # Debug print
|
254 |
|
255 |
-
if results:
|
256 |
-
print("Showing results") # Debug print
|
257 |
-
# Show results one by one
|
258 |
-
for result in results:
|
259 |
-
st.markdown(f"### Results for {result['file_name']}")
|
260 |
-
st.markdown(f"**Diagnosis:** {result['diagnosis']}")
|
261 |
-
st.markdown(f"**Confidence:** {result['confidence']:.1f}%")
|
262 |
-
st.markdown(f"**VCDR:** {result['vcdr']:.3f}")
|
263 |
-
|
264 |
-
# Display images
|
265 |
-
st.image(result['processed_image'], caption="Segmentation")
|
266 |
-
st.image(result['cropped_image'], caption="ROI")
|
267 |
-
st.markdown("---")
|
268 |
-
|
269 |
-
# Generate downloads
|
270 |
-
print("Generating ZIP file") # Debug print
|
271 |
-
zip_data = save_results(results, original_images)
|
272 |
-
|
273 |
-
st.markdown("### Download Results")
|
274 |
-
# Replace download_button with direct download link
|
275 |
-
filename = f"glaucoma_screening_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
|
276 |
-
st.markdown(
|
277 |
-
f'<a href="data:application/zip;base64,{base64.b64encode(zip_data).decode()}" download="{filename}">Download All Results (ZIP)</a>',
|
278 |
-
unsafe_allow_html=True
|
279 |
-
)
|
280 |
-
|
281 |
-
# Simple summary
|
282 |
-
st.markdown("### Summary")
|
283 |
-
glaucoma_count = sum(1 for r in results if r['diagnosis'] == 'Glaucoma')
|
284 |
-
normal_count = len(results) - glaucoma_count
|
285 |
-
st.markdown(f"**Total Processed:** {len(results)}")
|
286 |
-
st.markdown(f"**Glaucoma Detected:** {glaucoma_count}")
|
287 |
-
st.markdown(f"**Normal:** {normal_count}")
|
288 |
-
st.markdown(f"**Average Confidence:** {sum(r['confidence'] for r in results) / len(results):.1f}%")
|
289 |
-
|
290 |
except Exception as e:
|
291 |
-
print(f"Error in main processing: {str(e)}") # Debug print
|
292 |
st.error(f"An error occurred: {str(e)}")
|
293 |
|
294 |
if __name__ == "__main__":
|
295 |
-
print("Starting main") # Debug print
|
296 |
main()
|
|
|
182 |
|
183 |
# --- Streamlit Interface ---
|
184 |
def main():
|
185 |
+
# Use the old layout setting method
|
186 |
+
st.set_page_config(layout="wide")
|
187 |
|
188 |
+
# Use simple title instead of markdown
|
189 |
+
st.title("Glaucoma Screening from Retinal Fundus Images")
|
190 |
+
st.write("Upload retinal images for automated glaucoma detection and optic disc/cup segmentation")
|
191 |
|
192 |
+
# Sidebar using old method
|
193 |
+
st.sidebar.title("Upload Images")
|
194 |
+
st.set_option('deprecation.showfileUploaderEncoding', False) # Important for old versions
|
|
|
|
|
|
|
|
|
195 |
uploaded_files = st.sidebar.file_uploader(
|
196 |
+
"Upload retinal images",
|
197 |
type=['png', 'jpeg', 'jpg'],
|
198 |
+
accept_multiple_files=True
|
|
|
199 |
)
|
200 |
|
201 |
+
# Simple explanation in sidebar
|
202 |
+
st.sidebar.markdown("""
|
203 |
+
### Understanding Results:
|
204 |
+
- Diagnosis Confidence: AI certainty level
|
205 |
+
- VCDR: Cup to disc ratio (>0.7 high risk)
|
206 |
+
- Segmentation: Accuracy of detection
|
207 |
+
""")
|
208 |
|
209 |
if uploaded_files:
|
210 |
+
st.write("Loading AI models...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
try:
|
|
|
|
|
213 |
model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
|
214 |
|
|
|
|
|
|
|
|
|
|
|
215 |
for file in uploaded_files:
|
216 |
try:
|
217 |
+
# Process each image
|
218 |
+
st.write(f"Processing: {file.name}")
|
219 |
image = Image.open(file).convert('RGB')
|
220 |
image_np = np.array(image)
|
221 |
+
|
222 |
+
# Get predictions
|
223 |
+
disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np)
|
224 |
+
|
225 |
+
# Display results using old methods
|
226 |
+
st.write("---")
|
227 |
+
st.write(f"Results for {file.name}")
|
228 |
+
|
229 |
+
# Show diagnosis
|
230 |
+
diagnosis = model.cls_id2label[disease_idx]
|
231 |
+
st.write(f"Diagnosis: {diagnosis}")
|
232 |
+
st.write(f"Confidence: {cls_conf:.1f}%")
|
233 |
+
st.write(f"VCDR: {vcdr:.3f}")
|
234 |
+
|
235 |
+
# Display images
|
236 |
+
st.write("Segmentation Result:")
|
237 |
+
st.image(disc_cup_image, caption="Green: Optic Disc | Red: Optic Cup")
|
238 |
+
st.write("Region of Interest:")
|
239 |
+
st.image(cropped_image, caption="ROI")
|
240 |
+
|
241 |
except Exception as e:
|
242 |
+
st.error(f"Error processing {file.name}: {str(e)}")
|
|
|
243 |
continue
|
244 |
|
245 |
+
# Simple summary at the end
|
246 |
+
st.write("---")
|
247 |
+
st.write("Processing complete!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
except Exception as e:
|
|
|
250 |
st.error(f"An error occurred: {str(e)}")
|
251 |
|
252 |
if __name__ == "__main__":
|
|
|
253 |
main()
|