Spaces:
Running
on
L40S
Running
on
L40S
<!-- # magic-edit.github.io --> | |
<p align="center"> | |
<h2 align="center">X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention</h2> | |
<p align="center"> | |
<a href="https://scholar.google.com/citations?user=FV0eXhQAAAAJ&hl=en">You Xie</a>, | |
<a href="https://hongyixu37.github.io/homepage/">Hongyi Xu</a>, | |
<a href="https://guoxiansong.github.io/homepage/index.html">Guoxian Song</a>, | |
<a href="https://chaowang.info/">Chao Wang</a>, | |
<a href="https://seasonsh.github.io/">Yichun Shi</a>, | |
<a href="http://linjieluo.com/">Linjie Luo</a> | |
<br> | |
<b> ByteDance Inc. </b> | |
<br> | |
<br> | |
<a href="https://arxiv.org/abs/2403.15931"><img src='https://img.shields.io/badge/arXiv-X--Portrait-red' alt='Paper PDF'></a> | |
<a href='https://byteaigc.github.io/x-portrait/'><img src='https://img.shields.io/badge/Project_Page-X--Portrait-green' alt='Project Page'></a> | |
<a href='https://youtu.be/VGxt5XghRdw'> | |
<img src='https://img.shields.io/badge/YouTube-X--Portrait-rgb(255, 0, 0)' alt='Youtube'></a> | |
<br> | |
</p> | |
<table align="center"> | |
<tr> | |
<td> | |
<img src="assets/teaser/teaser.png"> | |
</td> | |
</tr> | |
</table> | |
This repository contains the video generation code of SIGGRAPH 2024 paper [X-Portrait](https://arxiv.org/pdf/2403.15931). | |
## Installation | |
Note: Python 3.9 and Cuda 11.8 are required. | |
```shell | |
bash env_install.sh | |
``` | |
## Model | |
Please download pre-trained model from [here](https://drive.google.com/drive/folders/1Bq0n-w1VT5l99CoaVg02hFpqE5eGLo9O?usp=sharing), and save it under "checkpoint/" | |
## Testing | |
```shell | |
bash scripts/test_xportrait.sh | |
``` | |
parameters: | |
**model_config**: config file of the corresponding model | |
**output_dir**: output path for generated video | |
**source_image**: path of source image | |
**driving_video**: path of driving video | |
**best_frame**: specify the frame index in the driving video where the head pose best matches the source image (note: precision of best_frame index might affect the final quality) | |
**out_frames**: number of generation frames | |
**num_mix**: number of overlapping frames when applying prompt travelling during inference | |
**ddim_steps**: number of inference steps (e.g., 30 steps for ddim) | |
## Performance Boost | |
**efficiency**: Our model is compatible with LCM LoRA (https://huggingface.co/latent-consistency/lcm-lora-sdv1-5), which helps reduce the number of inference steps. | |
**expressiveness**: Expressiveness of the results could be boosted if results of other face reenactment approaches, e.g., face vid2vid, could be provided via parameter "--initial_facevid2vid_results". | |
## 🎓 Citation | |
If you find this codebase useful for your research, please use the following entry. | |
```BibTeX | |
@inproceedings{xie2024x, | |
title={X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention}, | |
author={Xie, You and Xu, Hongyi and Song, Guoxian and Wang, Chao and Shi, Yichun and Luo, Linjie}, | |
journal={arXiv preprint arXiv:2403.15931}, | |
year={2024} | |
} | |
``` | |