X-Portrait / ORIGINAL_README.md
fffiloni's picture
Migrated from GitHub
bfed184 verified
|
raw
history blame
3.12 kB
<!-- # magic-edit.github.io -->
<p align="center">
<h2 align="center">X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention</h2>
<p align="center">
<a href="https://scholar.google.com/citations?user=FV0eXhQAAAAJ&hl=en">You Xie</a>,
<a href="https://hongyixu37.github.io/homepage/">Hongyi Xu</a>,
<a href="https://guoxiansong.github.io/homepage/index.html">Guoxian Song</a>,
<a href="https://chaowang.info/">Chao Wang</a>,
<a href="https://seasonsh.github.io/">Yichun Shi</a>,
<a href="http://linjieluo.com/">Linjie Luo</a>
<br>
<b>&nbsp; ByteDance Inc. </b>
<br>
<br>
<a href="https://arxiv.org/abs/2403.15931"><img src='https://img.shields.io/badge/arXiv-X--Portrait-red' alt='Paper PDF'></a>
<a href='https://byteaigc.github.io/x-portrait/'><img src='https://img.shields.io/badge/Project_Page-X--Portrait-green' alt='Project Page'></a>
<a href='https://youtu.be/VGxt5XghRdw'>
<img src='https://img.shields.io/badge/YouTube-X--Portrait-rgb(255, 0, 0)' alt='Youtube'></a>
<br>
</p>
<table align="center">
<tr>
<td>
<img src="assets/teaser/teaser.png">
</td>
</tr>
</table>
This repository contains the video generation code of SIGGRAPH 2024 paper [X-Portrait](https://arxiv.org/pdf/2403.15931).
## Installation
Note: Python 3.9 and Cuda 11.8 are required.
```shell
bash env_install.sh
```
## Model
Please download pre-trained model from [here](https://drive.google.com/drive/folders/1Bq0n-w1VT5l99CoaVg02hFpqE5eGLo9O?usp=sharing), and save it under "checkpoint/"
## Testing
```shell
bash scripts/test_xportrait.sh
```
parameters:
**model_config**: config file of the corresponding model
**output_dir**: output path for generated video
**source_image**: path of source image
**driving_video**: path of driving video
**best_frame**: specify the frame index in the driving video where the head pose best matches the source image (note: precision of best_frame index might affect the final quality)
**out_frames**: number of generation frames
**num_mix**: number of overlapping frames when applying prompt travelling during inference
**ddim_steps**: number of inference steps (e.g., 30 steps for ddim)
## Performance Boost
**efficiency**: Our model is compatible with LCM LoRA (https://huggingface.co/latent-consistency/lcm-lora-sdv1-5), which helps reduce the number of inference steps.
**expressiveness**: Expressiveness of the results could be boosted if results of other face reenactment approaches, e.g., face vid2vid, could be provided via parameter "--initial_facevid2vid_results".
## 🎓 Citation
If you find this codebase useful for your research, please use the following entry.
```BibTeX
@inproceedings{xie2024x,
title={X-Portrait: Expressive Portrait Animation with Hierarchical Motion Attention},
author={Xie, You and Xu, Hongyi and Song, Guoxian and Wang, Chao and Shi, Yichun and Luo, Linjie},
journal={arXiv preprint arXiv:2403.15931},
year={2024}
}
```