fkunn1326's picture
Create app.py
be9cf62
raw
history blame
8.9 kB
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
start_time = time.time()
is_colab = utils.is_google_colab()
class Model:
def __init__(self, name, path="", prefix=""):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Cool Japanese Diffusion", "alfredplpl/cool-japan-diffusion-for-learning-2-0", "Cool Japanese Diffusion"),
]
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
predict_epsilon=True,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
custom_model = None
last_mode = "txt2img"
current_model = models[0]
current_model_path = current_model.path
else:
print(f"{datetime.datetime.now()} Downloading vae...")
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae")
for model in models:
try:
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet")
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler)
except Exception as e:
print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
models.remove(model)
pipe = models[0].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "Running on GPU πŸ”₯" if torch.cuda.is_available() else "Running on CPU πŸ₯Ά"
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def on_model_change(model_name):
prefix = "γƒ—γƒ­γƒ³γƒ—γƒˆγ‚’ε…₯εŠ›" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
print(psutil.virtual_memory())
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
try:
if img is not None:
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
else:
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator), None
except Exception as e:
return None, error_str(e)
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator):
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
pipe = pipe.to("cpu")
pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return replace_nsfw_images(result)
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
if current_model == custom_model:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
else:
pipe = pipe.to("cpu")
pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return replace_nsfw_images(result)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
with gr.Box(visible=False) as custom_model_group:
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="γƒγ‚¬γƒ†γ‚£γƒ–γƒ—γƒ­γƒ³γƒ—γƒˆγ‚’ε…₯εŠ›")
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(label="CFG Scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="strength", minimum=0, maximum=1, step=0.01, value=0.5)
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
ex = gr.Examples([
[models[0].name, "iron man", 7.5, 50],
], inputs=[model_name, prompt, guidance, steps, seed], outputs=outputs, fn=inference, cache_examples=False)
gr.HTML("""
<div style="border-top: 1px solid #303030;">
<br>
<p>Model by TopdeckingLands.</p>
</div>
""")
print(f"Space built in {time.time() - start_time:.2f} seconds")
demo.queue(concurrency_count=1)
demo.launch()