lemonaddie commited on
Commit
463b37d
·
verified ·
1 Parent(s): 0c69724

Update app2.py

Browse files
Files changed (1) hide show
  1. app2.py +42 -21
app2.py CHANGED
@@ -31,7 +31,7 @@ import sys
31
  sys.path.append("../")
32
  from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
33
  #from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
34
- #from models.depth_normal_pipeline_clip_cfg1 import DepthNormalEstimationPipeline
35
  from utils.seed_all import seed_all
36
  import matplotlib.pyplot as plt
37
  from utils.de_normalized import align_scale_shift
@@ -56,13 +56,20 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variation
56
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
57
 
58
  unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
59
- #unet = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
60
 
61
  pipe = DepthNormalEstimationPipeline(vae=vae,
62
  image_encoder=image_encoder,
63
  feature_extractor=feature_extractor,
64
  unet=unet,
65
  scheduler=scheduler)
 
 
 
 
 
 
 
66
 
67
  try:
68
  import xformers
@@ -78,20 +85,34 @@ def depth_normal(img,
78
  denoising_steps,
79
  ensemble_size,
80
  processing_res,
81
- #guidance_scale,
82
  domain):
83
 
84
  #img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
85
- pipe_out = pipe(
86
- img,
87
- denoising_steps=denoising_steps,
88
- ensemble_size=ensemble_size,
89
- processing_res=processing_res,
90
- batch_size=0,
91
- #guidance_scale=guidance_scale,
92
- domain=domain,
93
- show_progress_bar=True,
94
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  depth_colored = pipe_out.depth_colored
97
  normal_colored = pipe_out.normal_colored
@@ -152,13 +173,13 @@ def run_demo():
152
  label="Data Type (Must Select One matches your image)",
153
  value="indoor",
154
  )
155
- # guidance_scale = gr.Slider(
156
- # label="Classifier Free Guidance Scale",
157
- # minimum=1,
158
- # maximum=5,
159
- # step=1,
160
- # value=1,
161
- # )
162
  denoising_steps = gr.Slider(
163
  label="Number of denoising steps (More stepes, better quality)",
164
  minimum=1,
@@ -195,7 +216,7 @@ def run_demo():
195
  inputs=[input_image, denoising_steps,
196
  ensemble_size,
197
  processing_res,
198
- #guidance_scale,
199
  domain],
200
  outputs=[depth, normal]
201
  )
 
31
  sys.path.append("../")
32
  from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
33
  #from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
34
+ from models.depth_normal_pipeline_clip_cfg_1 import DepthNormalEstimationPipeline as DepthNormalEstimationPipelineCFG
35
  from utils.seed_all import seed_all
36
  import matplotlib.pyplot as plt
37
  from utils.de_normalized import align_scale_shift
 
56
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
57
 
58
  unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
59
+ unet_cfg = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
60
 
61
  pipe = DepthNormalEstimationPipeline(vae=vae,
62
  image_encoder=image_encoder,
63
  feature_extractor=feature_extractor,
64
  unet=unet,
65
  scheduler=scheduler)
66
+
67
+ pipe_cfg = DepthNormalEstimationPipelineCFG(vae=vae,
68
+ image_encoder=image_encoder,
69
+ feature_extractor=feature_extractor,
70
+ unet=unet_cfg,
71
+ scheduler=scheduler)
72
+
73
 
74
  try:
75
  import xformers
 
85
  denoising_steps,
86
  ensemble_size,
87
  processing_res,
88
+ guidance_scale,
89
  domain):
90
 
91
  #img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
92
+
93
+ if guidance_scale > 0:
94
+ pipe_out = pipe_cfg(
95
+ img,
96
+ denoising_steps=denoising_steps,
97
+ ensemble_size=ensemble_size,
98
+ processing_res=processing_res,
99
+ batch_size=0,
100
+ guidance_scale=guidance_scale,
101
+ domain=domain,
102
+ show_progress_bar=True,
103
+ )
104
+
105
+ else:
106
+ pipe_out = pipe(
107
+ img,
108
+ denoising_steps=denoising_steps,
109
+ ensemble_size=ensemble_size,
110
+ processing_res=processing_res,
111
+ batch_size=0,
112
+ #guidance_scale=guidance_scale,
113
+ domain=domain,
114
+ show_progress_bar=True,
115
+ )
116
 
117
  depth_colored = pipe_out.depth_colored
118
  normal_colored = pipe_out.normal_colored
 
173
  label="Data Type (Must Select One matches your image)",
174
  value="indoor",
175
  )
176
+ guidance_scale = gr.Slider(
177
+ label="Classifier Free Guidance Scale, 0 for without guidance",
178
+ minimum=0,
179
+ maximum=5,
180
+ step=1,
181
+ value=0,
182
+ )
183
  denoising_steps = gr.Slider(
184
  label="Number of denoising steps (More stepes, better quality)",
185
  minimum=1,
 
216
  inputs=[input_image, denoising_steps,
217
  ensemble_size,
218
  processing_res,
219
+ guidance_scale,
220
  domain],
221
  outputs=[depth, normal]
222
  )