Spaces:
Runtime error
Runtime error
lemonaddie
commited on
Delete models/depth_normal_pipeline_clip_cfg_1.py
Browse files
models/depth_normal_pipeline_clip_cfg_1.py
DELETED
@@ -1,374 +0,0 @@
|
|
1 |
-
# A reimplemented version in public environments by Xiao Fu and Mu Hu
|
2 |
-
|
3 |
-
from typing import Any, Dict, Union
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from torch.utils.data import DataLoader, TensorDataset
|
7 |
-
import numpy as np
|
8 |
-
from tqdm.auto import tqdm
|
9 |
-
from PIL import Image
|
10 |
-
from diffusers import (
|
11 |
-
DiffusionPipeline,
|
12 |
-
DDIMScheduler,
|
13 |
-
AutoencoderKL,
|
14 |
-
)
|
15 |
-
from models.unet_2d_condition import UNet2DConditionModel
|
16 |
-
from diffusers.utils import BaseOutput
|
17 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
18 |
-
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
19 |
-
import torchvision.transforms.functional as TF
|
20 |
-
from torchvision.transforms import InterpolationMode
|
21 |
-
|
22 |
-
from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
|
23 |
-
from utils.colormap import kitti_colormap
|
24 |
-
from utils.depth_ensemble import ensemble_depths
|
25 |
-
from utils.normal_ensemble import ensemble_normals
|
26 |
-
from utils.batch_size import find_batch_size
|
27 |
-
import cv2
|
28 |
-
|
29 |
-
class DepthNormalPipelineOutput(BaseOutput):
|
30 |
-
"""
|
31 |
-
Output class for Marigold monocular depth prediction pipeline.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
depth_np (`np.ndarray`):
|
35 |
-
Predicted depth map, with depth values in the range of [0, 1].
|
36 |
-
depth_colored (`PIL.Image.Image`):
|
37 |
-
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
|
38 |
-
normal_np (`np.ndarray`):
|
39 |
-
Predicted normal map, with depth values in the range of [0, 1].
|
40 |
-
normal_colored (`PIL.Image.Image`):
|
41 |
-
Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
|
42 |
-
uncertainty (`None` or `np.ndarray`):
|
43 |
-
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
|
44 |
-
"""
|
45 |
-
depth_np: np.ndarray
|
46 |
-
depth_colored: Image.Image
|
47 |
-
normal_np: np.ndarray
|
48 |
-
normal_colored: Image.Image
|
49 |
-
uncertainty: Union[None, np.ndarray]
|
50 |
-
|
51 |
-
class DepthNormalEstimationPipeline(DiffusionPipeline):
|
52 |
-
# two hyper-parameters
|
53 |
-
latent_scale_factor = 0.18215
|
54 |
-
|
55 |
-
def __init__(self,
|
56 |
-
unet:UNet2DConditionModel,
|
57 |
-
vae:AutoencoderKL,
|
58 |
-
scheduler:DDIMScheduler,
|
59 |
-
image_encoder:CLIPVisionModelWithProjection,
|
60 |
-
feature_extractor:CLIPImageProcessor,
|
61 |
-
):
|
62 |
-
super().__init__()
|
63 |
-
|
64 |
-
self.register_modules(
|
65 |
-
unet=unet,
|
66 |
-
vae=vae,
|
67 |
-
scheduler=scheduler,
|
68 |
-
image_encoder=image_encoder,
|
69 |
-
feature_extractor=feature_extractor,
|
70 |
-
)
|
71 |
-
self.img_embed = None
|
72 |
-
|
73 |
-
@torch.no_grad()
|
74 |
-
def __call__(self,
|
75 |
-
input_image:Image,
|
76 |
-
denoising_steps: int = 10,
|
77 |
-
ensemble_size: int = 10,
|
78 |
-
processing_res: int = 768,
|
79 |
-
match_input_res:bool =True,
|
80 |
-
batch_size:int = 0,
|
81 |
-
domain: str = "indoor",
|
82 |
-
guidance_scale: int = 3,
|
83 |
-
color_map: str="Spectral",
|
84 |
-
show_progress_bar:bool = True,
|
85 |
-
ensemble_kwargs: Dict = None,
|
86 |
-
) -> DepthNormalPipelineOutput:
|
87 |
-
|
88 |
-
# inherit from thea Diffusion Pipeline
|
89 |
-
device = self.device
|
90 |
-
input_size = input_image.size
|
91 |
-
|
92 |
-
# adjust the input resolution.
|
93 |
-
if not match_input_res:
|
94 |
-
assert (
|
95 |
-
processing_res is not None
|
96 |
-
)," Value Error: `resize_output_back` is only valid with "
|
97 |
-
|
98 |
-
assert processing_res >=0
|
99 |
-
assert denoising_steps >=1
|
100 |
-
assert ensemble_size >=1
|
101 |
-
|
102 |
-
# --------------- Image Processing ------------------------
|
103 |
-
# Resize image
|
104 |
-
if processing_res >0:
|
105 |
-
input_image = resize_max_res(
|
106 |
-
input_image, max_edge_resolution=processing_res
|
107 |
-
)
|
108 |
-
|
109 |
-
# Convert the image to RGB, to 1. reomve the alpha channel.
|
110 |
-
input_image = input_image.convert("RGB")
|
111 |
-
image = np.array(input_image)
|
112 |
-
|
113 |
-
# Normalize RGB Values.
|
114 |
-
rgb = np.transpose(image,(2,0,1))
|
115 |
-
rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
116 |
-
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
|
117 |
-
rgb_norm = rgb_norm.to(device)
|
118 |
-
|
119 |
-
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
120 |
-
|
121 |
-
# ----------------- predicting depth -----------------
|
122 |
-
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
|
123 |
-
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
124 |
-
|
125 |
-
# find the batch size
|
126 |
-
if batch_size>0:
|
127 |
-
_bs = batch_size
|
128 |
-
else:
|
129 |
-
_bs = 1
|
130 |
-
|
131 |
-
single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
|
132 |
-
|
133 |
-
# predicted the depth
|
134 |
-
depth_pred_ls = []
|
135 |
-
normal_pred_ls = []
|
136 |
-
|
137 |
-
if show_progress_bar:
|
138 |
-
iterable_bar = tqdm(
|
139 |
-
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
140 |
-
)
|
141 |
-
else:
|
142 |
-
iterable_bar = single_rgb_loader
|
143 |
-
|
144 |
-
for batch in iterable_bar:
|
145 |
-
(batched_image, )= batch # here the image is still around 0-1
|
146 |
-
|
147 |
-
depth_pred_raw, normal_pred_raw = self.single_infer(
|
148 |
-
input_rgb=batched_image,
|
149 |
-
num_inference_steps=denoising_steps,
|
150 |
-
domain=domain,
|
151 |
-
guidance_scale=guidance_scale,
|
152 |
-
show_pbar=show_progress_bar,
|
153 |
-
)
|
154 |
-
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
155 |
-
normal_pred_ls.append(normal_pred_raw.detach().clone())
|
156 |
-
|
157 |
-
depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze()
|
158 |
-
normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
|
159 |
-
torch.cuda.empty_cache() # clear vram cache for ensembling
|
160 |
-
|
161 |
-
# ----------------- Test-time ensembling -----------------
|
162 |
-
if ensemble_size > 1:
|
163 |
-
depth_pred, pred_uncert = ensemble_depths(
|
164 |
-
depth_preds, **(ensemble_kwargs or {})
|
165 |
-
)
|
166 |
-
normal_pred = ensemble_normals(normal_preds)
|
167 |
-
else:
|
168 |
-
depth_pred = depth_preds
|
169 |
-
normal_pred = normal_preds
|
170 |
-
pred_uncert = None
|
171 |
-
|
172 |
-
# ----------------- Post processing -----------------
|
173 |
-
# Scale prediction to [0, 1]
|
174 |
-
min_d = torch.min(depth_pred)
|
175 |
-
max_d = torch.max(depth_pred)
|
176 |
-
depth_pred = (depth_pred - min_d) / (max_d - min_d)
|
177 |
-
|
178 |
-
# Convert to numpy
|
179 |
-
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
|
180 |
-
normal_pred = normal_pred.cpu().numpy().astype(np.float32)
|
181 |
-
|
182 |
-
# Resize back to original resolution
|
183 |
-
if match_input_res:
|
184 |
-
pred_img = Image.fromarray(depth_pred)
|
185 |
-
pred_img = pred_img.resize(input_size)
|
186 |
-
depth_pred = np.asarray(pred_img)
|
187 |
-
normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
|
188 |
-
|
189 |
-
# Clip output range: current size is the original size
|
190 |
-
depth_pred = depth_pred.clip(0, 1)
|
191 |
-
normal_pred = normal_pred.clip(-1, 1)
|
192 |
-
|
193 |
-
# Colorize
|
194 |
-
depth_colored = colorize_depth_maps(
|
195 |
-
depth_pred, 0, 1, cmap=color_map
|
196 |
-
).squeeze() # [3, H, W], value in (0, 1)
|
197 |
-
depth_colored = (depth_colored * 255).astype(np.uint8)
|
198 |
-
depth_colored_hwc = chw2hwc(depth_colored)
|
199 |
-
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
200 |
-
|
201 |
-
normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
|
202 |
-
normal_colored_img = Image.fromarray(normal_colored)
|
203 |
-
|
204 |
-
return DepthNormalPipelineOutput(
|
205 |
-
depth_np = depth_pred,
|
206 |
-
depth_colored = depth_colored_img,
|
207 |
-
normal_np = normal_pred,
|
208 |
-
normal_colored = normal_colored_img,
|
209 |
-
uncertainty=pred_uncert,
|
210 |
-
)
|
211 |
-
|
212 |
-
def __encode_img_embed(self, rgb):
|
213 |
-
"""
|
214 |
-
Encode clip embeddings for img
|
215 |
-
"""
|
216 |
-
clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device=self.device, dtype=self.dtype)
|
217 |
-
clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device=self.device, dtype=self.dtype)
|
218 |
-
|
219 |
-
img_in_proc = TF.resize((rgb +1)/2,
|
220 |
-
(self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']),
|
221 |
-
interpolation=InterpolationMode.BICUBIC,
|
222 |
-
antialias=True
|
223 |
-
)
|
224 |
-
# do the normalization in float32 to preserve precision
|
225 |
-
img_in_proc = ((img_in_proc.float() - clip_image_mean) / clip_image_std).to(self.dtype)
|
226 |
-
img_embed = self.image_encoder(img_in_proc).image_embeds.unsqueeze(1).to(self.dtype)
|
227 |
-
|
228 |
-
self.img_embed = img_embed
|
229 |
-
|
230 |
-
|
231 |
-
@torch.no_grad()
|
232 |
-
def single_infer(self,input_rgb:torch.Tensor,
|
233 |
-
num_inference_steps:int,
|
234 |
-
domain:str,
|
235 |
-
guidance_scale:int,
|
236 |
-
show_pbar:bool,):
|
237 |
-
|
238 |
-
device = input_rgb.device
|
239 |
-
|
240 |
-
# Set timesteps: inherit from the diffuison pipeline
|
241 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
|
242 |
-
timesteps = self.scheduler.timesteps # [T]
|
243 |
-
|
244 |
-
# encode image
|
245 |
-
rgb_latent = self.encode_RGB(input_rgb)
|
246 |
-
|
247 |
-
# Initial depth map (Guassian noise)
|
248 |
-
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
|
249 |
-
rgb_latent = rgb_latent.repeat(2,1,1,1)
|
250 |
-
|
251 |
-
# Batched img embedding
|
252 |
-
if self.img_embed is None:
|
253 |
-
self.__encode_img_embed(input_rgb)
|
254 |
-
|
255 |
-
batch_img_embed = self.img_embed.repeat(
|
256 |
-
(rgb_latent.shape[0], 1, 1)
|
257 |
-
) # [B, 1, 768]
|
258 |
-
|
259 |
-
batch_img_embed = torch.cat((torch.zeros_like(batch_img_embed), batch_img_embed), dim=0)
|
260 |
-
rgb_latent = torch.cat((rgb_latent, rgb_latent), dim=0)
|
261 |
-
|
262 |
-
# hybrid switcher
|
263 |
-
geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
|
264 |
-
geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
|
265 |
-
|
266 |
-
if domain == "indoor":
|
267 |
-
domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
|
268 |
-
elif domain == "outdoor":
|
269 |
-
domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
|
270 |
-
elif domain == "object":
|
271 |
-
domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
|
272 |
-
domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
|
273 |
-
|
274 |
-
class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
|
275 |
-
|
276 |
-
# Denoising loop
|
277 |
-
if show_pbar:
|
278 |
-
iterable = tqdm(
|
279 |
-
enumerate(timesteps),
|
280 |
-
total=len(timesteps),
|
281 |
-
leave=False,
|
282 |
-
desc=" " * 4 + "Diffusion denoising",
|
283 |
-
)
|
284 |
-
else:
|
285 |
-
iterable = enumerate(timesteps)
|
286 |
-
|
287 |
-
for i, t in iterable:
|
288 |
-
unet_input = torch.cat((rgb_latent, geo_latent.repeat(2,1,1,1)), dim=1)
|
289 |
-
# predict the noise residual
|
290 |
-
noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample
|
291 |
-
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
292 |
-
guidance_scale = guidance_scale
|
293 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
294 |
-
|
295 |
-
# compute the previous noisy sample x_t -> x_t-1
|
296 |
-
geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
|
297 |
-
|
298 |
-
geo_latent = geo_latent
|
299 |
-
torch.cuda.empty_cache()
|
300 |
-
|
301 |
-
depth = self.decode_depth(geo_latent[0][None])
|
302 |
-
depth = torch.clip(depth, -1.0, 1.0)
|
303 |
-
depth = (depth + 1.0) / 2.0
|
304 |
-
|
305 |
-
normal = self.decode_normal(geo_latent[1][None])
|
306 |
-
normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
|
307 |
-
normal *= -1.
|
308 |
-
|
309 |
-
return depth, normal
|
310 |
-
|
311 |
-
|
312 |
-
def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
|
313 |
-
"""
|
314 |
-
Encode RGB image into latent.
|
315 |
-
|
316 |
-
Args:
|
317 |
-
rgb_in (`torch.Tensor`):
|
318 |
-
Input RGB image to be encoded.
|
319 |
-
|
320 |
-
Returns:
|
321 |
-
`torch.Tensor`: Image latent.
|
322 |
-
"""
|
323 |
-
|
324 |
-
# encode
|
325 |
-
h = self.vae.encoder(rgb_in)
|
326 |
-
|
327 |
-
moments = self.vae.quant_conv(h)
|
328 |
-
mean, logvar = torch.chunk(moments, 2, dim=1)
|
329 |
-
# scale latent
|
330 |
-
rgb_latent = mean * self.latent_scale_factor
|
331 |
-
|
332 |
-
return rgb_latent
|
333 |
-
|
334 |
-
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
335 |
-
"""
|
336 |
-
Decode depth latent into depth map.
|
337 |
-
|
338 |
-
Args:
|
339 |
-
depth_latent (`torch.Tensor`):
|
340 |
-
Depth latent to be decoded.
|
341 |
-
|
342 |
-
Returns:
|
343 |
-
`torch.Tensor`: Decoded depth map.
|
344 |
-
"""
|
345 |
-
|
346 |
-
# scale latent
|
347 |
-
depth_latent = depth_latent / self.latent_scale_factor
|
348 |
-
# decode
|
349 |
-
z = self.vae.post_quant_conv(depth_latent)
|
350 |
-
stacked = self.vae.decoder(z)
|
351 |
-
# mean of output channels
|
352 |
-
depth_mean = stacked.mean(dim=1, keepdim=True)
|
353 |
-
return depth_mean
|
354 |
-
|
355 |
-
def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
|
356 |
-
"""
|
357 |
-
Decode normal latent into normal map.
|
358 |
-
|
359 |
-
Args:
|
360 |
-
normal_latent (`torch.Tensor`):
|
361 |
-
Depth latent to be decoded.
|
362 |
-
|
363 |
-
Returns:
|
364 |
-
`torch.Tensor`: Decoded normal map.
|
365 |
-
"""
|
366 |
-
|
367 |
-
# scale latent
|
368 |
-
normal_latent = normal_latent / self.latent_scale_factor
|
369 |
-
# decode
|
370 |
-
z = self.vae.post_quant_conv(normal_latent)
|
371 |
-
normal = self.vae.decoder(z)
|
372 |
-
return normal
|
373 |
-
|
374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|